
Y. H. Lee
Nagoya Math. J.
Vol. 162 (2001), 149–167

SOLUTIONS OF

A CERTAIN NONLINEAR ELLIPTIC EQUATION

ON RIEMANNIAN MANIFOLDS

YONG HAH LEE

Abstract. In this paper, we prove that if a complete Riemannian manifold
M has finitely many ends, each of which is a Harnack end, then the set of all
energy finite bounded A-harmonic functions on M is one to one corresponding
to R

l, where A is a nonlinear elliptic operator of type p on M and l is the
number of p-nonparabolic ends of M . We also prove that if a complete Rieman-
nian manifold M is roughly isometric to a complete Riemannian manifold with
finitely many ends, each of which satisfies the volume doubling condition, the
Poincaré inequality and the finite covering condition near infinity, then the set
of all energy finite bounded A-harmonic functions on M is finite dimensional.
This result generalizes those of Yau, of Donnelly, of Grigor’yan, of Li and Tam,
of Holopainen, and of Kim and the present author, but with a barrier argument
at infinity that the peculiarity of nonlinearity demands.

§1. Introduction

The classical Liouville theorem, which states that any bounded har-

monic function on R2 must be constant, has long been an interesting topic

of study to analysts and geometers. In 1975, Yau [20] proved a remarkable

result that any complete Riemannian manifold with nonnegative Ricci cur-

vature has no nonconstant positive harmonic functions. On the other hand,

the validity of the Liouville property means that the space of positive har-

monic functions on the manifold is one dimensional. In this view point, it

is natural to regard the finite dimensionality of the space of positive har-

monic functions as a generalized version of the Liouville property. Later,

such a theory is, in this line, well developed by the works of Donnelly [6],

Grigor’yan [7], Li and Tam [15], [16], Kim and the present author [14], and

others.

In this paper, we consider, in line with the above viewpoint, the gener-

alized version of the Liouville property for solutions for a nonlinear elliptic
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operator A in the following setting: Let M be a complete Riemannian man-

ifold and Ω be an open subset of M . Let W 1,p(Ω) be the Sobolev space of

all functions u ∈ Lp(Ω) whose distributional gradient ∇u also belongs to

Lp(Ω). We equip W 1,p(Ω) with the norm ‖u‖1,p = ‖u‖p +‖∇u‖p. The space

W 1,p
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(Ω).

Let TΩ = ∪x∈ΩTxM . Suppose that a map A : TΩ → TΩ satisfies the

following assumptions for some constants 1 < p < ∞ and 0 < C1 ≤ C2 <

∞;

(A1) the mapping Ax = A|TxM : TxM → TxM is continuous for a.e. x ∈ Ω,

and the mapping x 7→ Ax(ξ) is a measurable vector field whenever ξ

is; for a.e. x ∈ Ω and for all ξ ∈ TxM

(A2) 〈Ax(ξ), ξ〉 ≥ C1|ξ|
p;

(A3) |Ax(ξ)| ≤ C2|ξ|
p−1;

(A4) 〈Ax(ξ1) −Ax(ξ2), ξ1 − ξ2〉 > 0 whenever ξ1 6= ξ2;

(A5) Ax(λξ) = λ|λ|p−2Ax(ξ) whenever λ ∈ R, λ 6= 0.

A function u in W 1,p
loc (Ω) is a solution (supersolution, subsolution, respec-

tively) of the equation

− divAx(∇u) = 0 (≥ 0,≤ 0, respectively)(1)

in Ω if
∫

Ω
〈Ax(∇u),∇φ〉 = 0 (≥ 0,≤ 0, respectively)

for any (nonnegative, respectively) φ ∈ C∞
0 (Ω). We say that a function

u is A-harmonic (of type p) if u is a continuous solution of the equation

(1). In the typical case Ax(ξ) = ξ|ξ|p−2, A-harmonic functions are called

p-harmonic and, in particular, if p = 2, we obtain harmonic functions. An

important property of A-harmonic functions is the comparison principle as

follows: if u ∈W 1,p(Ω) is a supersolution and v ∈W 1,p(Ω) is a subsolution

of (1), respectively, in an open set Ω, and min{u − v, 0} ∈ W 1,p
0 (Ω), then

u ≥ v a.e. in Ω. In particular, if both u and v are A-harmonic in a bounded

set Ω and u ≥ v on ∂Ω, then u ≥ v in Ω. (See [8].) A Green’s function

G = G(x, ·) for the elliptic operator A on M denotes (if exists) a positive

solution of the equation

−divA(∇G) = δx
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for each x ∈M , in the sense of distributions, i.e.,

∫

M
〈A(∇G),∇φ〉 = φ(x)

for any φ ∈ C∞
0 (M). It is known that a Green’s function G for the elliptic

operator A on M exists if and only if M has positive p-capacity, i.e., there

exists a compact subset K ⊂M such that

Capp(K,∞,M) = inf
φ

∫

M
|∇φ|p > 0,

where the infimum is taken over all functions φ ∈ C∞
0 (M) with φ = 1 on K.

We say that a complete Riemannian manifold M is p-parabolic if M does

not admit any Green’s function G. Otherwise, M is called p-nonparabolic.

Also, we consider functionals associated with F : TΩ → R, where

(A6) the mapping Fx = F|TxM : TxM → R is strictly convex and differ-

entiable for all x ∈ Ω, and the mapping x 7→ Fx(ξ) is measurable

whenever ξ is;

(A7) there exist constants 0 < C1 ≤ C2 <∞ such that

C1|ξ|
p ≤ Fx(ξ) ≤ C2|ξ|

p

for all x ∈ Ω and ξ ∈ TxM .

We will write

J(u,Ω) =

∫

Ω
Fx(∇u).

Let Ax(ξ) = (A1(ξ),A2(ξ), . . . ,An(ξ)) be defined by

Ai(ξ) =
∂

∂ξi
Fx(ξ) for i = 1, 2, . . . , n.

Then A satisfies (A1) through (A4). In fact, given f ∈ W 1,p
0 (Ω), each A-

harmonic function h with h − f ∈ W 1,p
0 (Ω) minimizes J in H = {u ∈

W 1,p(Ω) : u − f ∈ W 1,p
0 (Ω)}. (See [18].) In the case when an A-harmonic

function u on M has finite energy, i.e., J(u,M) < ∞, we say that u is

an energy finite A-harmonic function. We now introduce an additional as-

sumption on F as follows: For any ξ1, ξ2 ∈ TxM ,
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(A8) in case 2 ≤ p <∞,

Fx

(ξ1 + ξ2
2

)

+ Fx

(ξ1 − ξ2
2

)

≤
1

2
(Fx(ξ1) + Fx(ξ2));

in case 1 < p ≤ 2,

Fx

(ξ1 + ξ2
2

)p′

+ Fx

(ξ1 − ξ2
2

)p′

≤
(1

2
(Fx(ξ1) + Fx(ξ2))

)p′

,

where p′ = 1/(p− 1).

In particular, using Clarkson’s inequality, the assumption (A8) is satisfied

in the typical case F(ξ) = 1
p |ξ|

p, i.e., p-harmonic case. (See [9].)

In the above setting, we can describe the set of nonnegative A-harmonic

functions on a complete Riemannian manifold M in terms of ends of M as

follows:

Theorem 1.1. Let M be a complete Riemannian manifold with finitely

many ends, each of which is a Harnack end. Let E1, E2, . . . , El and e1, e2,

. . . , es be p-nonparabolic ends and p-parabolic ends, respectively, with l ≥ 1

and s ≥ 0. Then for any nonnegative A-harmonic function f on M , there

exist real numbers a1, a2, . . . , al ∈ R and a subset P of {1, 2, . . . , s} such

that

lim
x→∞,x∈Ei

f(x) = ai;(2)

lim
x→∞,x∈ej

f(x) = ∞,(3)

where i = 1, 2, . . . , l and j ∈ P . Conversely, given real numbers a1, a2,

. . . , al ∈ R and a subset P of {1, 2, . . . , s}, there exists nonnegative A-

harmonic function f satisfying (2) and (3).

Moreover, in the case when A satisfies (A5) through (A8), each energy

finite bounded A-harmonic function f is uniquely determined by the values

in (2).

It is instructive to note that in the case of harmonic functions, we have

only to construct generators of the space of positive harmonic functions.

(See [7], [15], [16] and [14].) However in the above setting, there is no clear

way to define generators due to the nonlinearity. Furthermore, a sum of

A-harmonic functions is not necessarily A-harmonic again. Hence we need
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to directly construct each solution taking the given data at infinity of each

end. The key argument in proving the existence theorem is to construct

barriers at infinity corresponding to given data, which impose a solution to

converge to given data at infinity, thereby we get the desired solution. On

the other hand, the proof of the uniqueness is more delicate. In the case

of the Laplacian, if a positive harmonic function converges asymptotically

zero at infinity of each nonparabolic end, then by the maximum principle

it is identically zero. Therefore, the uniqueness immediately follows from

the linearity. However, in nonlinear case, this procedure is not feasible any

longer. In Section 3, we introduce a rather subtle method, which depends

deeply on the energy finiteness of solutions. This method, together with the

barrier argument, plays a crucial role in proving the uniqueness in Theorem

1.1.

That an end is Harnack means the validity of the Harnack inequality

near infinity for nonnegative A-harmonic functions on the end. Holopainen

[10], [11] proved that the Harnack inequality forces each nonnegative A-

harmonic function to converge to a constant at infinity of each end, and gave

various examples of Harnack ends. As another example of Harnack ends,

we consider ends satisfying the volume doubling condition, the Poincaré

inequality and the finite covering condition, expounded later. In fact, these

conditions are valid on each end of a complete Riemannian manifold with

nonnegative Ricci curvature outside a compact subset and finite first Betti

number. (See [2], [3], [17] and [19].) An ingredient treated in this paper

is the rough isometry, which is a more general one than the bi-Lipschitz

map. We can prove the rough isometric invariance of the volume doubling

condition, the Poincaré inequality and the finite covering condition, and

hence we obtain that any end roughly isometric to an end satisfying these

conditions is also Harnack. Moreover, the number of ends is invariant under

rough isometries between complete Riemannian manifolds and each rough

isometry between manifolds can be reduced to a rough isometry between

ends. Also, following the program of Kanai [13], one can prove that the

p-parabolicity is invariant under rough isometries between ends. (See also

[10].) Hence, we get the same result as that of Theorem 1.1 on a lager class

of complete Riemannian manifolds as follows:

Corollary 1.2. Let M and N be complete Riemannian manifolds

satisfying the local volume doubling condition and the local Poincaré in-

equality, expounded later, and roughly isometric to each other. Suppose that
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M has finitely many ends, each of which satisfies the volume doubling con-

dition (D)∞, the Poincaré inequality (P )∞ and the finite covering condition

(FC). Then N has the same numbers of p-nonparabolic ends and p-parabolic

ends as those of M , respectively, and each end of N is Harnack.

Let E1, E2, . . . , El, l ≥ 1, and e1, e2, . . . , es, s ≥ 0, be p-nonparabolic

ends and p-parabolic ends of N , respectively, and A be an elliptic operator

on N satisfying (A1) through (A5). Then for any nonnegative A-harmonic

function f on N , there exist real numbers a1, a2, . . . , al ∈ R and a subset P

of {1, 2, . . . , s} such that

lim
x→∞,x∈Ei

f(x) = ai;(4)

lim
x→∞,x∈ej

f(x) = ∞,(5)

where i = 1, 2, . . . , l and j ∈ P . Conversely, given real numbers a1, a2,

. . . , al ∈ R and a subset P of {1, 2, . . . , s}, there exists nonnegative A-

harmonic function f on N satisfying (4) and (5).

Moreover, in the case when A satisfies (A5) through (A8), each energy

finite bounded A-harmonic function f is uniquely determined by the values

in (4).

As mentioned above, if a complete Riemannian manifold has nonneg-

ative Ricci curvature outside a compact set and finite first Betti number,

then each end of the manifold satisfies the volume doubling condition (D)∞,

the Poincaré inequality (P )∞ and the finite covering condition (FC) at in-

finity. Hence, each end becomes a Harnack end. Therefore, from Corollary

1.2, we have a generalization of results of Yau [20], Donnelly [6], Grigor’yan

[7], Li and Tam [15], [16], and Kim and the present author [14] as follows:

Corollary 1.3. Let M be a complete Riemannian manifolds being

roughly isometric to a complete Riemannian manifold with nonnegative

Ricci curvature outside a compact set and finite first Betti number. Let

E1, E2, . . . , El, l ≥ 1, and e1, e2, . . . , es, s ≥ 0, be p-nonparabolic ends and

p-parabolic ends of M , respectively, and A be an elliptic operator on N sat-

isfying (A1) through (A5). Then given real numbers a1, a2, . . . , al ∈ R and

a subset P of {1, 2, . . . , s}, there exists nonnegative A-harmonic function f

on M satisfying (4) and (5).

Moreover, in the case when A satisfies (A5) through (A8), the set of

all energy finite bounded A-harmonic functions on M is one to one corre-

sponding to Rl.
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§2. p-parabolicity and Harnack end

We begin with defining ends of a complete Riemannian manifoldM : Fix

a point o in M . We denote by ](r) the number of unbounded components

of M \ Br(o). It is easy to prove that ](r) is nondecreasing in r > 0. Let

limr→∞](r) = k, where k may be infinity, then we say that the number of

ends of M is k. Through this paper, we assume that the number of ends

of each manifold is finite. In this case, we can choose r0 > 0 such that

](r) = k for all r ≥ r0. Hence, there exist mutually disjoint unbounded

components E1, E2, . . . , Ek of M \Br0
(o) and we call each Ei an end of M

for i = 1, 2, . . . , k.

We classify all ends of a complete Riemannian manifold by p-paraboli-

city as follows:

Definition 2.1. We say that an end E of a complete Riemannian

manifold M is p-nonparabolic if E has positive p-capacity at infinity, i.e.,

for some r1 ≥ r0,

Capp(E \Br1
(o)) = inf

u

∫

E\Br1 (o)
|∇u|p > 0,

where the infimum is taken over all continuous functions u on E \ Br1
(o)

such that u is compactly supported, smooth on E \ Br1
(o) and u = 1 on

∂Br1
(o) ∩ E. Otherwise, E is called p-parabolic end.

On the other hand, A-harmonic functions are quasi-minimizers of p-

Dirichlet integral, i.e., if u ∈ W 1,p(Ω) is a solution of (1) and u − φ ∈

W 1,p
0 (Ω), then there exists a constant C <∞ such that

∫

Ω
|∇u|p ≤ C

∫

Ω
|∇φ|p.

Therefore, the p-parabolicity of an end E is equivalent to the existence of

a continuous function uE, called an A-harmonic measure of E, on E such

that






AuE = 0 in E \Br1
(o);

uE = 0 on Br1
(o) ∩ E;

supE\Br1(o)uE = 1.
(6)

We now give a characterization of p-parabolic ends as follows:
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Lemma 2.2. Let e be a p-parabolic end of a complete Riemannian man-

ifold and f be a nonconstant A-harmonic function bounded below on e. Then

infe f < lim infx→∞,x∈e f(x).

Proof. Suppose that lim infx→∞,x∈ef(x) = infef = m > −∞. Since f

is nonconstant, there exists a proper open subset Ω of e such that Ω = {x ∈

e : f(x) < m+ε} for sufficiently small ε > 0. Put v = max{(m+ε−f)/ε, 0}.

Then v is a nonnegative subsolution for the operator A on e such that v ≡ 0

on e \ Ω and supe v = 1. By the comparison principle, we can construct an

A-harmonic measure ue of e, which contradicts p-parabolicity of e.

We now introduce a nonnegative A-harmonic function in each

p-parabolic end e, which virtually takes over the role as a barrier at

infinity of e in Section 3. (See [11] for the proof.)

Lemma 2.3. Let e be a p-parabolic end. Then there exists a nonnegative

A-harmonic function ve in e such that ve = 0 on ∂Br0
(o) ∩ E and ve is

unbounded on e.

Let o be a fixed point of a complete Riemannian manifold M . We say

that an end E of M is Harnack if there exist a sequence {HR} of compact

(not necessarily connected) subsets of E and a constant C < ∞ such that

for any nonnegative A-harmonic function f in E,

sup
HR

f ≤ C inf
HR

f,

where d(o,HR) → ∞ as R → ∞, and each HR divides E into a bounded

subset and the unbounded component of E \HR.

Let us consider some examples of Harnack ends.

Example 2.4. (i) Let E be an end of a complete Riemannian manifold

M and o be fixed point of M . Suppose that E satisfies the volume doubling

condition and the Poincaré inequality as follows:

(D)∞ for given 0 < α < 1/2, there is a constant C < ∞ depending only on

α such that for any point x ∈ ∂BR(o) ∩ E and any 0 < r < R/2,

volBr(x) ≤ CvolBαr(x);
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(P )∞ there exist a constant C <∞ and an integer k ∈ N such that for any

point x ∈ ∂BR(o) ∩ E, any 0 < r < R/2 and all f ∈ C∞(Br(x)),

∫

Br/k(x)
|f − f | ≤ Cr(volBr(x))

1−1/p
(

∫

Br(x)
|∇f |p

)1/p
,

where f = (volBr/k(x))
−1

∫

Br/k(x) f .

By the result of [11], the Harnack inequality is valid on each ball Br(x) ⊂ E

with 0 < r < d(o, x)/2, i.e., there exists a constant C < ∞ such that for

any nonnegative A-harmonic function f in Br(x),

sup
Br/2(x)

f ≤ C inf
Br/2(x)

f.

We now add the following finite covering condition on E:

(FC) for given 0 < α < 1/4, there exist a positive integer m = m(α) and

points x1, x2, . . . , xm in ∂CE,R such that
⋃m

i=1BαR(xi) is connected

and ∂CE,R ⊂
⋃m

i=1BαR(xi), where CE,R denotes the unbounded com-

ponent of E \BR(o).

This condition gives a uniform connectedness near infinity of E. Therefore,

we get the Harnack inequality as follows: There exists a constant C < ∞

such that for any nonnegative A-harmonic function f in E,

sup
∂CE,R

f ≤ C inf
∂CE,R

f.

(ii) Let M be a complete Riemannian manifold with nonnegative Ricci

curvature outside a compact set. Then the volume doubling condition (D)∞
and the Poincaré inequality (P )∞ are satisfied on each end of M . In addi-

tion, if the manifold M has finite first Betti number, then the finite covering

condition (FC) also holds on each end. (See [16] and [17].)

(iii) As the simplest case, let M be a complete Riemannian manifold

with nonnegative Ricci curvature everywhere. Then by the splitting theorem

of Cheeger and Gromoll [4], M has at most two ends. Furthermore, for each

end E of M , ∂BR(o) ∩ E is connected, where o is a fixed point of M . (See

[1].) Since M satisfies the volume doubling condition globally, the finite

covering condition (FC) is valid on each end. The Poincaré inequality also

holds globally on M . Therefore, every end of a connected sum of complete

Riemannian manifolds with nonnegative Ricci curvature is Harnack.
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Let us end this section by mentioning the rough isometric invariance

of (D)∞, (P )∞, (FC) and the p-parabolicity of ends. In fact, we can prove

that if an end E is roughly isometric to an end satisfying (D)∞, (P )∞ and

(FC), then E is also a Harnack end. Therefore, using this result, one can

find further examples of Harnack ends.

A rough isometry ϕ : X → Y is a (not necessarily continuous) map

between two metric spaces X and Y satisfying the following conditions :

(R1) for some τ > 0, the τ -neighborhood of the image ϕ(X) covers Y ;

(R2) there exist constants a ≥ 1 and b ≥ 0 such that

1

a
d(x1, x2) − b ≤ d(ϕ(x1), ϕ(x2)) ≤ ad(x1, x2) + b

for all x1, x2 ∈ X, where d denotes the distances of X and Y induced

from their metrics, respectively.

Especially, being roughly isometric is an equivalence relation. (See [12] or

[5].) However, even if two metric spaces are roughly isometric to each other,

their topologies may be completely different, since the rough isometry is

not assumed to be continuous. So, in order to deploy our theory via rough

isometry, we need to add the following local conditions on manifolds: Let

ϕ : M → N be a rough isometry between manifolds M and N .

(D)loc there exists a constant Cr <∞ depending only on r > 0 such that for

any point x in M (in N , respectively)

volB2r(x) ≤ CrvolBr(x);

(P )loc there exists a constant Cr <∞ depending only on r > 0 such that for

any point x in M (in N, respectively) and for all f ∈ C∞(Br(x))

∫

Br(x)
|f − f | ≤ Cr

∫

Br(x)
|∇f |,

where f = (volBr(x))
−1 ∫

Br(x) f ;

(C)loc there exists a constant C ≥ 1 such that for any point x in M

1

C
volB1(x) ≤ volB1(ϕ(x)) ≤ CvolB1(x).
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Note that these local assumptions are satisfied on any complete Riemannian

manifold with the Ricci curvature bounded below by a constant and the

positive injectivity radius. (See [3] or [12].) From now on, when we say that

a map ϕ : M → N is a rough isometry between complete Riemannian

manifolds M and N , it means that the map ϕ satisfies the conditions (R1),

(R2) and (C)loc, and M andN satisfy the local conditions (D)loc and (P )loc,

unless otherwise specified.

In [14], Kim and the present author proved that the number of ends

of complete Riemannian manifolds is preserved under rough isometries be-

tween complete Riemannian manifolds, moreover, the restriction map to

each end becomes a rough isometry between ends. On the other hand,

slightly modifying the program of Kanai [11], [12], one can obtain the rough

isometric invariance of the conditions (D)∞ and p-parabolicity of ends. Re-

cently, Coulhon and Saloff-Coste [5] proved that the Poincaré inequality is

invariant under rough isometries between complete Riemannian manifolds.

One can easily apply this result to our situation. Now we have only to

check the invariance of the finite covering condition (FC). However, we get

only the modified version of the finite covering condition via rough isome-

try. Nonetheless, this modified one still gives a uniform connectedness near

infinity as follows:

Lemma 2.5. Let ϕ : D → E be a rough isometry between ends of

complete Riemannian manifolds. Suppose that D satisfies the finite covering

condition (FC). Then there exist a sequence {HR} of hypersurfaces in E

such that d(o,HR) → ∞ as R → ∞ for a fixed point o ∈ E and each HR

divides E into a bounded subset and the unbounded component of E \HR,

and a positive integer m̃ and finitely many points y1, y2, . . . , ym̃ such that
⋃m̃

i=1BβR(yi) is connected and HR ⊂
⋃m̃

i=1BβR(yi), where 0 < β < 1/4 is

independent of R.

Proof. Fix a point õ in D and put o = ϕ(õ). Choose a smallest integer

n ∈ N such that n ≥ 8a2/α and a finite sequence {Rj}j=0,1,...,n such that

R0 = R/2a and Rj = Rj−1 + αR/4a for j = 1, 2, . . . , n. Then by (FC),

there exist an integer l ∈ N and points xj
1, x

j
2, . . . , x

j
l ∈ ∂CD,Rj such that

(Ba(R+τ+b)(õ) \B(R−τ−b)/a(õ)) ∩D ⊂
n
⋃

j=0

l
⋃

i=1

BaαR(xj
i ) ∪

n
⋃

j=0

Aj
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and
⋃n

j=0

⋃l
i=1BaαR(xj

i ) is connected, where Aj is the union of bounded

components of D \ BRj (õ). Also by (R2),
⋃n

j=0

⋃l
i=1BβR(ϕ(xj

i )) is con-

nected, where β = 3a2α.

We claim that
⋃n

j=0

⋃l
i=1BβR(ϕ(xj

i )) divides E into a bounded subset

and the unbounded component of E \
⋃n

j=0

⋃l
i=1BβR(ϕ(xj

i )). Otherwise,

there exist a point y ∈ ∂CE,R\(
⋃n

j=0

⋃l
i=1B3a2αR(ϕ(xj

i ))) and an arclength

parameterized curve γ : [0,∞) → E\BR(o) such that γ(0) = y, d(o, γ(t)) →

∞ as t→ ∞ and

Bc(γ[0,∞)) ∩ (
n
⋃

j=0

l
⋃

i=1

B2a2αR(ϕ(xj
i ))) = ∅(7)

for some c > 5a2(τ + a + b). From the condition (R1), we can choose a

sequence {zk}k∈N in D \ BR/2a(õ) such that d(ϕ(zk), γ(k)) ≤ τ for each

k ∈ N. Therefore, there exists a curve σ : [0,∞) → D \ BR/2a(õ) such

that σ(0) ∈ ∂BR/2a(õ) ∩ D, d(õ, σ(t)) → ∞ as t → ∞ and σ[0,∞) ⊂
⋃∞

k=0Ba(2τ+b+1)(zk). By (R2), ϕ(σ[0,∞)) ⊂ B4a2(τ+a+b)(γ[0,∞)) and this

implies that

Bτ (ϕ(σ[0,∞))) ⊂ Bc(γ[0,∞)).(8)

On the other hand, since σ(0) ∈ B2aR(õ) and σ(t) → ∞ as t → ∞, there

exists a point x0 ∈ σ[0,∞) ∩ ∂CD,2aR. Hence by (8), ϕ(x0) ∈ Bc(γ[0,∞)).

However since

ϕ(∂CD,2aR) ⊂ Bτ (ϕ(
n
⋃

j=0

l
⋃

i=1

BαR(xj
i ))) ⊂

n
⋃

j=0

l
⋃

i=1

B2a2αR(ϕ(xj
i )),

this contradicts (7).

§3. Proof of main results

Any nonnegative A-harmonic function on a Harnack end satisfies the

asymptotically constant property as follows: (See [11] for the proof.)

Lemma 3.1. Let E be a Harnack end and f be a nonnegative A-

harmonic function on E. Then there exists a constant 0 ≤ Cf ≤ ∞ such

that

limx→∞,x∈Ef(x) = Cf .(9)

In particular, if E is p-nonparabolic, then f is bounded at infinity, hence

the limit value Cf in (9) is finite.
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We construct nonnegative A-harmonic functions corresponding to each

p-parabolic end, in particular, each of which takes the infinity as the value

at infinity of each corresponding p-parabolic end.

Lemma 3.2. Let M have at least one p-nonparabolic end, and e be a

p-parabolic and Harnack end of M . Then there exists a nonnegative A-

harmonic function h on M such that

(i) limx→∞,x∈e h(x) = ∞;

(ii) limx→∞,x∈E h(x) = 0 for any p-nonparabolic end E;

(iii) 0 ≤ h ≤ Ch on M \ e, where Ch is a constant.

Proof. By Lemma 2.3 and Lemma 3.1, there exists a nonnegative

continuous function ve on e such that ve is A-harmonic in e, ve = 0 on

∂Br0
(o) ∩ e and limx→∞,x∈e ve(x) = ∞. Let {hr}r>r0

be a sequence of con-

tinuous functions on Br(o) such that hr is A-harmonic in Br(o), hr = ve

on ∂Br(o) ∩ e and hr = 0 on ∂Br(o) \ e.
We claim that {hr} is uniformly bounded on ∂Br0

(o) ∩ e. Otherwise,

there exists an increasing sequence {ri} such that ari = max∂Br0 (o)∩e hri →

∞ as ri → ∞. Put Hi = hri/ari , then Hi = ve/ari on ∂Bri(o) ∩ e, Hi = 0

on ∂Bri(o) \ e and max∂Br0 (o)∩e Hi = 1. By the comparison principle, we

get

0 ≤ Hi ≤ ve/ari + 1 on Bri(o) ∩ e.

Since 0 ≤ Hi ≤ 1 on Bri(o) \ e, the sequence {Hi} is locally uniformly

bounded. By the result of [8], the sequence {Hi} is equicontinuous. Hence

by Ascoli’s theorem, there exists a subsequence converging uniformly to an

A-harmonic function H on any compact subset of M such that 0 ≤ H ≤ 1

on M .

On the other hand, since 0 ≤ Hi ≤ 1 on Bri(o) \ (e \Br0
(o)), for each

p-nonparabolic end E, 0 ≤ Hi ≤ 1 − uE on Br(o) ∩ E, where uE is the

A-harmonic measure given in (6). Hence we get

lim
x→∞,x∈E

H(x) = 0.(10)

Since max∂Br0 (o)∩eHi = 1, we can suitably choose a subsequence of {Hi}
in such a way that max∂Br0 (o)∩eH = 1. Then by the strong maximum

principle, H ≡ 1, but this contradicts (10). Therefore, {hr} is uniformly

bounded on ∂Br0
(o) ∩ e.
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Put a = supr ar. Then by the comparison principle, ve ≤ hri ≤ ve + a

on (Bri(o) \ Br0
(o)) ∩ e. By Ascoli’s theorem, there exists a subsequence,

denoted again by {hri}, converging uniformly on any compact subset of M .

The limit function h = limi→∞ hri is a nonnegative A-harmonic function

on M such that

ve ≤ h ≤ ve + a on e \Br0
(o),

hence we get (i). On the other hand, since hr = 0 on ∂Br(o) \ e and hr ≤ a

on ∂Br0
(o) ∩ e, by the comparison principle, we have 0 ≤ hr ≤ a(1 − uE)

on Br(o)∩E for each p-nonparabolic end E and 0 ≤ hr ≤ a on Br(o) \ (e \
Br0

(o)). Hence we get

0 ≤ h ≤ a(1 − uE) on E and 0 ≤ h ≤ a on M \ (e \Br0
(o)).

These imply (ii) and (iii), respectively.

Proof of Theorem 1.1. From Lemma 3.2, we can choose a nonnegative

A-harmonic function hj on M for each j ∈ P such that

(i) limx→∞,x∈ej hj(x) = ∞;

(ii) limx→∞,x∈Ei hj(x) = 0 for each i = 1, 2, . . . , l;

(iii) 0 ≤ hj ≤ Cj <∞ on M \ ej .

Put C = max{supM\ej
hj : j ∈ P}. Without loss of generality, we may

assume that 0 < a1 ≤ a2 ≤ . . . ≤ al ≤ 2a1 and C ≤ 2a1 − al. By the

comparison principle, we have hj + ai ≤ ai(2 − uEi) on each Ei, where uEi

is the A-harmonic measure of Ei. Now construct a sequence {fr}r>r0
of

continuous functions such that














A fr = 0 in Br(o);

fr = ai on ∂Br(o) ∩ Ei;

fr = hj on ∂Br(o) ∩ ej;
fr = a1 on ∂Br(o) \ ∪j∈P ej ,

where i = 1, 2, . . . , l and j ∈ P . By the comparison principle, fr ≤ hj + ai

on Br(o) ∩Ei, hence aiuEi ≤ fr ≤ ai(2 − uEi) on Br(o) ∩Ei. On the other

hand, hj ≤ fr ≤ hj + al on Br(o) ∩ ej .
By Ascoli’s theorem, there exists a subsequence, denoted again by {fr},

converging uniformly on any compact subset of M . The limit function f =

limr→∞ fr is a nonnegative A-harmonic function on M such that aiuEi ≤
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f ≤ ai(2 − uEi) on Ei for each i = 1, 2, . . . , l, hj ≤ f ≤ hj + al on ej for

each j ∈ P . Hence we get

lim
x→∞,x∈Ei

f(x) = ai and lim
x→∞,x∈ej

f(x) = ∞,

where i = 1, 2, . . . , l and j ∈ P . On the other hand, since fr ≤ max{hj : j ∈

P} + al on Br(o) \ ∪j∈P ej , f is bounded on M \ ∪j∈Pej .

Note that in the case that P = ∅, we get the consequence by neglecting

the role of the A-harmonic function hj corresponding to p-parabolic end ej .

Let us prove the last statement. Suppose that f and f ′ are energy finite

bounded A-harmonic function on M such that limx→∞,x∈E(f − f ′)(x) = 0

for each p-nonparabolic end E of M . Put g = max{f − f ′, 0} and Cg =

supM g. Since limx→∞,x∈E g(x) = 0 for any p-nonparabolic end E of M ,

for given ε > 0, there exists R0 such that g(x) ≤ ε for all x ∈ E \ BR(o),

whenever R ≥ R0.

Choose a sequence {hR} of continuous functions such that hR is A-

harmonic in BR(o) and hR = g on ∂BR(o). Then for sufficiently large

R ≥ R0, hR ≤ Cg(1 − uE) + ε on ∂BR(o) ∩ E and hR ≤ Cg(1 − uE) on

∂Br1
(o)∩E, where uE is the A-harmonic measure of E. By the comparison

principle,

0 ≤ hR ≤ Cg(1 − uE) + ε on BR(o) ∩ E.

By Ascoli’s theorem, there exists a subsequence {hRn} converging uniformly

to an A-harmonic function h on any compact subset of M . Moreover, by

the minimizing property of A-harmonic function, h has the finite energy.

Put φn = g − hn with hn = hRn , then each φn has a compact support

and {φn} converges uniformly to φ = g − h on any compact subset of M .

We will prove that

lim
n→∞

J(φ− φn,M) = 0.(11)

On the other hand, there exists a constant α <∞ such that

α = inf
η

J(g − η,M),

where the infimum is taken over all compactly supported smooth functions

η on M . By the minimizing property of A-harmonic functions,

α = lim
n→∞

J(hn,M).
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In case 2 ≤ p <∞, by (A8),

α ≤ J((hn + hm)/2,M)

≤ J((hn + hm)/2,M) + J((hn − hm)/2,M)

≤ 2−1(J(hn,M) + J(hm,M)) → α as n,m→ ∞,

and in case 1 < p ≤ 2, by (A8),

αp′ ≤ J((hn + hm)/2,M)p
′

≤ J((hn + hm)/2,M)p
′

+ J((hn − hm)/2,M)p
′

≤ (2−1(J(hn,M) + J(hm,M)))p
′

→ αp′ as n,m→ ∞,

where p′ = 1/(p− 1). Therefore, we get

J(hn − hm) = 0 as n,m→ ∞.

By the Lebesgue dominated convergence theorem, we have

lim
n→∞

J(h− hn) = 0,

which is equivalent to (11).

Note again that 0 ≤ h ≤ Cg(1 − uE) + ε on each p-nonparabolic

end E. Since limx→∞,x∈E uE(x) = 1 and ε > 0 is chosen arbitrarily, we

have limx→∞,x∈E h(x) = 0 for each p-nonparabolic end E of M . Hence, by

Lemma 2.2, h ≡ 0 on M .

Applying the above argument to w = max{f ′ − f, 0}, we can choose a

sequence {ψn} of compactly supported continuous functions such that

lim
n→∞

J(w − ψn,M) = 0.(12)

Combining (11) and (12), the sequence {φn − ψn} of compactly supported

continuous functions such that

lim
n→∞

J((f − f ′) − (φn − ψn),M) = 0.(13)

By (A3) and the Hölder inequality, we get
∫

M
〈A(∇f ),∇(f − f ′) −∇(φn − ψn)〉

≤ C2

∫

M
|∇f |p−1|∇((f − f ′) − (φn − ψn))|

≤ C2

(

∫

M
|∇f |p

)(p−1)/p(
∫

M
|∇((f − f ′) − (φn − ψn))|p

)1/p
.
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Using (A7), (13) and the energy finiteness of f , we have

∫

M
〈A(∇f ),∇(f − f ′) −∇(φn − ψn)〉 → 0 as n→ ∞.

Since f is an A-harmonic function, this implies that

∫

M
〈A(∇f ),∇(f − f ′)〉 = 0.

Similarly arguing, we have

∫

M
〈A(∇f ′),∇(f − f ′)〉 = 0.

These imply the following identities;

∫

M
〈A(∇f ),∇f 〉 =

∫

M
〈A(∇f ),∇f ′〉

and
∫

M
〈A(∇f ′),∇f ′〉 =

∫

M
〈A(∇f ′),∇f 〉.

Using these identity,

∫

M
〈A(∇f ) −Ax(∇f

′),∇f −∇f ′〉

=

∫

M
〈A(∇f ),∇f 〉 −

∫

M
〈A(∇f ),∇f ′〉 −

∫

M
〈A(∇f ′),∇f 〉

+

∫

M
〈A(∇f ′),∇f ′〉

= 0.

Thus by (A4), f−f ′ ≡ C for a constant C. Since limx→∞,x∈E(f−f ′)(x) = 0

for each p-nonparabolic end E of M , we have f ≡ f ′.

As mentioned in Section 2, if an end E is roughly isometric to an end

satisfying the conditions (D)∞, (P )∞ and (FC), then E becomes a Harnack

end. Also since these conditions are satisfied on each end of a complete

Riemannian manifolds with nonnegative Ricci curvature outside a compact

subset and finite first Betti number, we have Corollary 1.2 and Corollary

1.3.
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By the result of [11], when M is a complete Riemannian manifold with

nonnegative Ricci curvature, the p-nonparabolicity of M is equivalent to
∫ ∞

r0

( r

volBr(o)

)1/(p−1)
dr <∞(14)

for a fixed point o in M and some r0 > 0. On the other hand, by the

splitting theorem [4], M has at most two ends. Furthermore, if M has two

ends, then M is isometric to K × R, where K is compact, hence M is p-

parabolic. Therefore, applying our result to this simple situation, we have

the following corollary:

Corollary 3.3. Let M1,M2, . . . ,Mk be complete Riemannian mani-

folds with nonnegative Ricci curvature and M be a complete Riemannian

manifold being roughly isometric to a connected sum of M1,M2, . . . ,Mk.

Then the set of all energy finite bounded A-harmonic functions on M is

one to one corresponding to Rl, where l is the number of Mi’s satisfying

(14).
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