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AN ANALOGUE OF PITMAN’S 2M −X THEOREM
FOR EXPONENTIAL WIENER FUNCTIONALS

PART II: THE ROLE OF THE GENERALIZED

INVERSE GAUSSIAN LAWS

HIROYUKI MATSUMOTO and MARC YOR

Abstract. In Part I of this work, we have shown that the stochastic process
Z(µ) defined by (8.1) below is a diffusion process, which may be considered as
an extension of Pitman’s 2M −X theorem. In this Part II, we deduce from an
identity in law partly due to Dufresne that Z(µ) is intertwined with Brownian
motion with drift µ and that the intertwining kernel may be expressed in terms
of Generalized Inverse Gaussian laws.

Foreword

Although the results found in this paper (Part II) are closely related

to those in Part I [19], the methods used in each part are quite different;

in particular, Part II may be read independently from Part I. However, it

may be convenient for a reader of Part II to have Part I nearby.

§8. Introduction to Part II

The main result presented in Part I (Theorem 1.6) of this study consists

in the following: if B(µ) =
{
B
(µ)
t , t � 0

}
denotes a Brownian motion with

constant drift µ, then the stochastic process

Z
(µ)
t ≡ exp

(
−B

(µ)
t

)
A
(µ)
t , t � 0(8.1)

is a diffusion, where
{
A
(µ)
t , t � 0

}
is the quadratic variation process of the

associated geometric Brownian motion
{
e
(µ)
t ≡ exp

(
B
(µ)
t

)
, t � 0

}
given by

A
(µ)
t =

∫ t
0
exp
(
2B(µ)s

)
ds.
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The infinitesimal generator and some properties of Z(µ) =
{
Z
(µ)
t , t � 0

}
,

in particular, its relation to the generalized (upward and downward) Bessel

processes, were discussed in detail in Part I.

For the reader’s convenience, we repeat the precise statements of the

main result and of the key proposition.

Theorem 1.6. Let µ ∈ R. (i) Z(µ) is a diffusion process whose natural

filtration
{
�
(µ)
t , t � 0

}
is strictly contained in that of B(µ), that is, for any

t > 0,

�
(µ)
t � σ

{
B(µ)s ; s � t

}
.

Furthermore, the infinitesimal generator of Z(µ) is given by

1

2
z2
d2

dz2
+

{( 1
2
− µ
)
z +
(K1+µ
Kµ

)( 1
z

)} d
dz
.

(ii) The diffusion processes Z(µ) and Z(−µ) have the same distribution.

Proposition 1.7. Let µ ∈ R. For any t > 0, the conditional distri-
bution of B

(µ)
t given �

(µ)
t is

P
(
B
(µ)
t ∈ dx|�

(µ)
t , Z

(µ)
t = z

)
=
exp(µx)

2Kµ(1/z)
exp

(
−
cosh(x)

z

)
dx.(8.2)

The same formula holds when t is replaced by any
(
�
(µ)
t

)
-stopping time T .

In the present Part II, we show that these results may be derived as

a consequence of the following extension given in [17] of Dufresne’s iden-

tity [9].

Theorem 8.1. Let µ > 0. Then the following identity in law holds :{
1

A
(−µ)
t

, t > 0

}
(law)
=

{
1

A
(µ)
t

+
1

Ã
(−µ)
∞

, t > 0

}
,(8.3)

where Ã
(−µ)
∞ on the right hand side denotes a copy of A

(−µ)
∞ = limt→∞A

(−µ)
t ,

independent of
{
A
(µ)
t , t � 0

}
.

Remark 8.1. It is known ([8], [28]) that A
(−µ)
∞ , µ > 0, is distributed as

1/2γµ, where γµ is a Gamma(µ) random variable whose law is given by

P
(
γµ ∈ dt

)
=
1

Γ(µ)
tµ−1e−t dt.
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The derivation of Theorem 1.6 from Theorem 8.1 is made in Section 10,

after giving, in the next Section 9, some necessary preliminaries on the

generalized inverse Gaussian laws (GIG laws in short), which play important

roles in Section 10 and, indeed, throughout this whole Part II paper. As

a result of their interpretation in this Brownian motion context (which is

partially new; see Vallois [24]), we obtain further properties of the GIG laws

in Section 13.

In Section 11 we derive from the conditional laws obtained in Sec-

tion 10 some further semigroup intertwining results, in particular, between

the semigroups of B(µ) and Z(µ). In Section 12 we study the diffusion pro-

cess Z(µ) under a Brownian bridge. Furthermore, in Section 13 we develop

the parallel between the study of Rogers–Pitman [21] and ours. In Sec-

tion 14 we study the processes +Z(µ) and +ξ(µ) for µ < 0, which are defined

similarly to Z(µ) and ξ(µ) (see Part I for details on ξ(µ)) but are looking

into the future.

§9. Generalized Inverse Gaussian Distributions: Basic Results

The GIG laws constitute a three parameter family of probability dis-

tributions on R+ which are given by

GIG(µ; a, b)(dt) =
( b
a

)µ tµ−1

2Kµ(ab)
exp

(
−
1

2
(a2/t+ b2t)

)
dt(9.1)

for µ ∈ R, a, b > 0. We follow the notation in recent papers by Barndorff–
Nielsen [2] and Barndorff–Nielsen–Shephard [4]. The reader should beware

of the different notations for GIG laws used in Seshadri [22] and Vallois [24].

Owing to the historical survey in Seshadri [22], the GIG laws would

deserve to be named the Halphen laws. They have been introduced by

Good [10] and have been widely discussed by Barndorff–Nielsen et al [2],

[3] and Vallois [24] among others.

In this paper it will be convenient to denote by I
(µ)
a,b a random variable

with law GIG(µ; a, b). We note the following elementary properties.

1/I
(µ)
a,b

(law)
= I

(−µ)
b,a ;(9.2)

c2I
(µ)
a,b

(law)
= I

(µ)
ca,b/c

for c > 0 and, consequently(9.3) ( b
a

)
I
(µ)
a,b

(law)
= I

(µ)
√
ab,
√
ab
;
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P (I
(ν)
a,b ∈ dt) = t

ν−µP (I
(µ)
a,b ∈ dt)/C

ν,µ
a,b , where(9.4)

Cν,µa,b =
( b
a

)µ−νKν(ab)
Kµ(ab)

.

Beside these elementary properties, the following one lies deeper and

has been the subject of a number of studies (see, in particular, Vallois [24]):

I
(µ)
a,b

(law)
= I

(−µ)
a,b +

2

b2
γµ for µ > 0,(9.5)

where γµ denotes a Gamma(µ) random variable independent of I
(−µ)
a,b .

A companion family to the GIG laws are the hyperbolic distributions

which are the laws of the random variables:

H
(µ)
a,b = N

√
I
(µ)
a,b(9.6)

for a standard normal random variable N independent of I
(µ)
a,b . It is easily

shown that the distribution of H
(µ)
a,b is given by

P
(
H
(µ)
a,b ∈ dx

)
(9.7)

=
(b/a)µ

√
2πbµ−1/2Kµ(ab)

(
x2 + a2

)(µ−1/2)/2
Kµ−1/2

(
b
√
a2 + x2

)
dx

(see, e.g., [4], formula (63)).

Vallois [24] has extensively discussed the realizations of (9.5) in terms of

diffusion processes. The case where µ = 1/2 is an easy, although important

particular one. In this case (9.5) may be understood as a consequence of the

following, which is an instance of application of the strong Markov property:

Λ
(−b)
a→0

(law)
= T

(−b)
a→0 +Λ

(−b)
0→0,(9.8)

where

Λ
(−b)
α→β = sup

{
t ; α+B

(−b)
t = β

}
, T

(−b)
α→β = inf

{
t ; α+B

(−b)
t = β

}
,

and the two random variables on the right hand side of (9.8) are indepen-

dent.

More generally, (9.5) may be understood in a similar manner starting

from a downward BES(−µ, δ↓) process and considering the additive de-
composition of Λ, its last hitting time of 0, as T + (Λ− T ) with an obvious
notation. We will provide a more detailed discussion in Section 13.
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§10. Second proofs of the Markov property of Z(µ) and of Propo-
sition 1.7

We shall proceed with the help of the following two lemmas. We set

�
(ν)
t = σ

{
B(ν)s ; s � t

}
and �

(ν)
t = σ

{
Z(ν)s ; s � t

}
.

Lemma 10.1. Let µ > 0. Then A
(−µ)
∞ is independent of Z(−µ) and it

holds that

�
(−µ)
∞ = � (−µ)∞ ∨ σ

(
A(−µ)∞

)
.(10.1)

More generally, �
(−µ)
t = �

(−µ)
t ∨ σ

(
A
(−µ)
t

)
.

Remark 10.1. Combining this lemma with Proposition 1.7, we see that

�
(−µ)
t and A

(−µ)
t are conditionally independent given Z

(−µ)
t .

Proof. Taking derivatives (with respect to t) on both hand sides of

(8.3), we obtain the following reinforcement of (8.3):

{(
Z
(−µ)
t , A

(−µ)
t

)
, t � 0

} (law)
=

{(
Z
(µ)
t ,

A
(µ)
t Ã

(−µ)
∞

A
(µ)
t + Ã

(−µ)
∞

)
, t � 0

}
.

In particular, letting t → ∞ for the quantities which involve A(±µ) found
on both hand sides, we obtain({

Z
(−µ)
t , t � 0

}
, A(−µ)∞

) (law)
=
({
Z
(µ)
t , t � 0}, Ã(−µ)∞

)
,

which proves the first assertion of the lemma.

The second and third statements follow from

1

A
(−µ)
t

=
1

A
(−µ)
s

−

∫ t
s

exp
(
2B
(−µ)
u

)(
A
(−µ)
u

)2 du =
1

A
(−µ)
s

−

∫ t
s

du(
Z
(−µ)
u

)2 ,
which holds for 0 < s � t �∞.

Remark 10.2. The last argument shows equally well that, for 0 < s <

t <∞,
�
(ν)
t = �

(ν)
t ∨ σ

(
A(ν)s
)
= �

(ν)
t ∨ σ

(
B(ν)s
)

holds for any ν ∈ R. Consequently, one has

�
(ν)
t = �

(ν)
s ∨ �

(ν)
t ,(10.2)
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but the reader should beware that, however tempting this may be (i.e.,

letting s ↓ 0), the equality (10.2) does not yield the equality between �
(ν)
t

and �
(ν)
t , as discussed in Theorem 1.6 and explained in Proposition 1.7.

For the discussion of a similar situation in the framework of Tsirel’son’s

celebrated stochastic differential equation, see, e.g., Yor [29].

Lemma 10.2. Let µ be positive, Qω,zt be the regular conditional dis-

tribution of B(−µ) given �
(−µ)
t , where z = Z

(−µ)
t , and γµ be a Gamma(µ)

random variable which is independent of B(−µ). Then, for any bounded

Borel function f on [0,∞), it holds that

EQ
ω,z
t
[
f
(
ze
(−µ)
t +

(
e
(−µ)
t

)2
/2γµ

)]
= E[f(1/2γµ)].(10.3)

More generally, this identity extends with t replaced by any
(
�
(−µ)
t

)
-stop-

ping time.

Proof. As was remarked above, the identity in law

A(−µ)∞ =

∫ ∞
0
exp
(
2B(−µ)s

)
ds
(law)
=

1

2γµ

holds for any µ > 0. Moreover we have (still under Qω,zt )

A(−µ)∞ = A
(−µ)
t +

∫ ∞
0
exp
(
B
(−µ)
t+s

)
ds = A

(−µ)
t + exp

(
2B
(−µ)
t

)
Ã(−µ)∞ ,

so that finally, under Qω,zt , we get

A(−µ)∞ = e
(−µ)
t Z

(−µ)
t +

(
e
(−µ)
t

)2
Ã(−µ)∞

(law)
=

1

2γµ
(10.4)

by virtue of Lemma 10.1, where Ã
(−µ)
∞ is independent of �

(−µ)
t and is dis-

tributed as 1/2γµ. This yields the assertion of the lemma.

Denote by E(µ) the expectation with respect to the law of
{
B
(µ)
t , t � 0

}
on the canonical path space and let �t be the σ-field generated by the Z-

process up to time t. Then, by the Cameron–Martin theorem, we get

E(−µ)[Ft f(et)] = E
(−1/2)

[
Ft f(et)(et)

−µ+1/2 exp

(( 1
8
−
1

2
µ2
)
t

)]
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for any �t-measurable non-negative functional Ft and for any bounded non-

negative Borel function f . Moreover, from Bayes rule (cf., e.g., [16], Chap-

ter 7), it holds that

E(−µ)[f(et) | �t] =
E(−1/2)[f(et)(et)

−µ+1/2 | �t]

E(−1/2)[(et)−µ+1/2 | �t]
.(10.5)

Now we are in a position to prove both Proposition 1.7 and Theo-

rem 1.6.

Second proof of Proposition 1.7. We shall show, using the notation

ρ(µ)z (u) =
uµ−1

2Kµ(1/z)
exp

(
−
1

2z

(
u+

1

u

))
,

that the probability law of e
(µ)
t under Qω,zt is ρ

(µ)
z (u) du. Note that

ρ(µ)z (u) du = GIG
(
µ; 1/

√
z, 1/
√
z
)
(du).

At first we consider the case µ = −1/2. Since

K−1/2(z) = K1/2(z) =
( π
2z

)1/2
e−z,

the Laplace transform of ρ
(−1/2)
z (u) is computed as follows:∫ ∞

0
e−αuρ(−1/2)z (u) du

= e1/z
∫ ∞
0

1
√
2πu3z

exp

(
−

(
1

2zu
+
(
α+

1

2z

)
u

))
du

= exp

(
−

√
2α

z
+
1

z2
+
1

z

)
.

Now we use (10.3) by setting f(u) = exp(−λ2u/2), λ > 0. Then, noting
that

E
[
exp(−λ2/4γ1/2)

]
= e−λ,

we obtain

EQ
ω,z
t

[
exp

(
−
λ2

2
e
(−1/2)
t z −

λ2

2

(e
(−1/2)
t )2

2γµ

)]
= EQ

ω,z
t

[
exp

(
−
(λ2
2
z + λ

)
e
(−1/2)
t

)]
= e−λ.
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Moreover, setting λ+ λ2z/2 = α, we get

EQ
ω,z
t
[
exp(−αe

(−1/2)
t )

]
= exp

(
−

√
2α

z
+
1

z2
+
1

z

)
.

Therefore we have proved that the distribution of e
(−1/2)
t under Qω,zt is given

by ρ
(−1/2)
z (u) du, that is,

P
(
e
(−1/2)
t ∈ du|�

(−1/2)
t , Z

(−1/2)
t = z

)
= ρ(−1/2)z (u) du.

Furthermore, by the integral representation of the Macdonald function

(cf. Lebedev [13], p. 119)

Kν(y) =
1

2

( y
2

)ν ∫ ∞
0
e−t−(y

2/4t)t−ν−1 dt,(10.6)

a straightforward calculation shows

E
[(
e
(−1/2)
t

)−µ+1/2
|�
(−1/2)
t , Z

(−1/2)
t = z

]
=

1
√
2πz
Kµ(1/z)e

1/z.

Finally, by using (10.5), we obtain

P
(
e
(−µ)
t ∈ du|� (−µ)t , Z

(−µ)
t = z

)
(10.7)

=

√
2πz

2Kµ(1/z)e1/z
u−µ+1/2ρ(−1/2)z (u) du = ρ(−µ)z (u) du.

(8.2) is now easily verified from (10.7) by a change of variable and the proof

of Proposition 1.7 is completed.

Second proof of Theorem 1.6. By Itô’s formula, we deduce from the

definition of Z(−µ)

Z
(−µ)
t = −

∫ t
0
Z(−µ)s dBs+

( 1
2
+µ
) ∫ t
0
Z(−µ)s ds+

∫ t
0
exp
(
B(−µ)s

)
ds.(10.8)

We consider

E
[
exp(B

(−µ)
t ) | �

(−µ)
t

]
≡ E
[
e
(−µ)
t | �

(−µ)
t

]
and use (10.7). Then, by the integral representation (10.6) of the Macdonald

function and the identity Kν = K−ν , we can easily show

E
[
e
(−µ)
t | �

(−µ)
t , Z

(−µ)
t = z

]
=

(
K1−µ

K−µ

)( 1
z

)
≡

(
K1−µ

Kµ

)( 1
z

)
.
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Therefore, “projecting” the right hand side of (10.8) on the filtration

�
(−µ)
t (cf. [16], Chapter 7), we obtain the existence of a (�

(−µ)
t )-Brownian

motion {βt, t � 0} such that

Z
(−µ)
t =

∫ t
0
Z(−µ)s dβs +

( 1
2
+ µ
) ∫ t
0
Z(−µ)s ds+

∫ t
0

(
K1−µ
Kµ

)(
1

Z
(−µ)
s

)
ds

and the proof of Theorem 1.6 is completed.

§11. More Intertwinings

As discussed in Alili–Dufresne–Yor [1], the stochastic process ξ̂(µ) ={
ξ̂
(µ)
t , t � 0

}
defined by

ξ̂
(µ)
t = exp

(
−B

(µ)
t

){
ξ̂0 +

∫ t
0
exp
(
B(µ)s
)
dγs

}
, t � 0,

is an R-valued diffusion, where {γs, s � 0} is a standard Brownian motion
independent of B(µ). In particular, if ξ̂0 = 0,

{
ξ̂
(0)
t , t � 0

}
is distributed as

{sinh(Bt), t � 0} and, from this, simple time reversal considerations lead
to Bougerol’s identity

sinh(Bt)
(law)
= γAt for any fixed t.

We now prove the following.

Theorem 11.1. The diffusions ξ̂(µ) and Z(µ) are intertwined as fol-

lows : letting
{
P̂
(µ)
t

}
be the semigroup of ξ̂(µ) and K̂(µ) be the Markov kernel

given by

K̂(µ)ϕ(z) = E
[
ϕ
(
H
(−µ)
1,1/z

)]
for a hyperbolic random variable H

(−µ)
1,1/z defined by (9.6), it holds that

Q
(µ)
t K̂

(µ) = K̂(µ)P̂ (µ)t .(11.1)

Proof. It is quite similar to the proof of the intertwining relationship

between ξ(µ) and Z(µ) which was presented in Theorem 1.7. Indeed we need

only to consider

E
[
ϕ
(
ξ̂
(µ)
t

)
|�
(µ)
t , Z

(µ)
t = z

]
= E
[
ϕ
(
N

√
ξ
(µ)
t

)
|�
(µ)
t , Z

(µ)
t = z

]
(11.2)

= E
[
ϕ
(
N

√
zI
(−µ)
1/
√
z,1/
√
z

)
|Z
(µ)
t = z

]
(11.3)

= E
[
ϕ
(
H
(−µ)
1,1/z

)]
.(11.4)
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The first equality (11.2) comes from the independence of γ and B(µ), (11.3)

follows from Theorem 1.7 and (9.3) and, finally, (11.4) is a consequence of

the definition of H(−µ).

We also present another intertwining result, which is even simpler to

notice. However it would be a pity to forget this relationship, since it relates

B(µ) and Z(µ) via intertwinings.

Theorem 11.2. The geometric Brownian motion G(µ) =
{
G
(µ)
t =

exp(B
(µ)
t ), t � 0

}
, and the diffusion process Z(µ) = {Z(µ)t , t � 0} are inter-

twined as follows:

Q
(µ)
t K̃

(µ) = K̃(µ)P̃ (µ)t ,(11.5)

where
{
P̃
(µ)
t

}
is the semigroup of G(µ) and the Markov kernel K̃(µ) is given

by

K̃(µ)ϕ(z) = E
[
ϕ
(
I
(µ)

1/
√
z,1/
√
z

)]
.

Proof. This presents no difficulty, since we have shown in Proposi-

tion 1.6 that

E
[
ϕ
(
exp
(
B
(µ)
t

))
|�
(µ)
t , Z

(µ)
t = z

]
= E
[
ϕ
(
I
(µ)

1/
√
z,1/
√
z

)]
.

Remark 11.1. Of course, instead of the intertwining relation (11.5) be-

tween G(µ) and Z(µ), we can equivalently state an intertwining relation

between B(µ) and Z(µ) which can be deduced from (11.5).

Remark 11.2. In the case where µ = 0, it seems most interesting to

compare the results from Theorems 11.1 and 11.2 because, as we already

remarked, ξ̂(0) is nothing else but {sinh(Bt), t � 0}. Thus, is it true that
Theorem 11.2 is equivalent to Theorem 11.1 when µ = 0?

§12. The Process Z(µ) under a Brownian Bridge

In this section we present a formula which expresses the conditional law

of
{
Z
(µ)
s , 0 � s � t

}
given B

(µ)
t = x in terms of the law of

{
Z
(µ)
s , 0 � s � t

}
.

Precisely we show the following.
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Proposition 12.1. For any R-valued bounded measurable functional

Ft on C([0, t];R+), one has

1
√
2πt
exp

(
−
1

2

(x2
t
+ µ2t

))
E[Ft(Z)|Bt = x](12.1)

= E

[
Ft
(
Z(µ)
) 1

2Kµ
(
1/Z

(µ)
t

) exp(−cosh(x)
Z
(µ)
t

)]
.

Remark 12.1. Concerning the left hand side of (12.1), we note that

E
[
Ft
(
Z(µ)
)
|B
(µ)
t = x

]
= E
[
Ft(Z)|Bt = x

]
,

since the bridge of
{
B
(µ)
u , 0 � u � t

}
given B

(µ)
t = x does not depend on

µ.

By virtue of Proposition 1.7, Proposition 12.1 is a particular case of

the following more general:

Proposition 12.2. Let Z̃ =
{
Z̃t, t � 0

}
and B̃ =

{
B̃t, t � 0

}
be two

stochastic processes taking values in R which are strongly intertwined with

the kernel

Λ : f �−→ Λf(z) =

∫
R
λ(z, x)f(x) dx ;

more precisely, the process Z̃ is adapted with respect to B̃, i.e., �̃t ⊆ �̃t
and, moreover,

E[f(B̃t) | �̃t] = Λf(Z̃t)

for every t > 0 and every non-negative Borel function f . Then it holds that

p̃t(x)E
[
Ft(Z̃)|B̃t = x

]
= E
[
Ft(Z̃)λ(Z̃t, x)

]
for dx almost all x and for every bounded functional Ft(Z̃) = F

({
Z̃s, 0 �

s � t
})
, where p̃t(x) is the probability density for B̃t with respect to the

Lebesgue measure dx.

Proof. This is a simple consequence of the fact that E
[
Ft(Z̃)f(B̃t)

]
can be written in two forms:

E
[
Ft(Z̃)f(B̃t)

]
=

∫
R
p̃t(x)f(x)E

[
Ft(Z̃)|B̃t = x

]
dx
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and

E
[
Ft(Z̃)f(B̃t)

]
= E
[
Ft(Z̃)Λf(Z̃t)

]
=

∫
R
E
[
Ft(Z̃)λ(Z̃t, x)

]
f(x) dx.

An application of Proposition 12.2 to the pair
(
B̃t, Z̃t = 2M̃t − B̃t

)
,

where B̃t is a Brownian motion and M̃t = sups�t B̃s, yields the following
well known result.

Corollary 12.3. ([6], [7]) Let {bu, 0 � u � t} be the Brownian bridge
of length t such that b0 = bt = 0. Denote by {�u, 0 � u � t} its local time
at 0 and set σu = sups�u bs. Then both processes {σu − bu, 0 � u � t} and
{�u + |bu|, 0 � u � t} are distributed as the Brownian meander of length t.

For a more general statement involving Brownian bridge ending at x 
=
0, see, e.g., Revuz–Yor [20], Chapter XII, Exercise (4.25), p. 510.

Although Proposition 12.1 may be considered as some adequate sub-

stitute concerning the process Z(µ) under Brownian bridges, we miss an

interpretation of the “right hand side” of the formula (12.1) as the law of

an “adequate” meander, that is, we miss Imhof’s result in the BES(3)–

Brownian motion case. Again see, e.g., Biane–Yor [7], Revuz–Yor [20] and

the original papers by Imhof [11], [12].

Nonetheless, we derive the following formulae from Proposition 12.1.

Corollary 12.4. (i) The law of Z
(µ)
t may be characterized as follows:

E

[
1

2Kµ(1/Z
(µ)
t )
exp

(
−
cosh(x)

Z
(µ)
t

)]
=

1
√
2πt
exp

(
−
1

2

(x2
t
+ µ2t

))
.

(ii) It holds that∫ ∞
0
θu(t) exp(−u cosh(x))

du

u
=

1
√
2πt
exp(−x2/2t),(12.2)

where θr(t) has been introduced in formula (4.8) in Part I [19].

Proof. (i) follows immediately from formula (12.1) in which we take

Ft ≡ 1. (ii) follows from (i) in the case µ = 0 and the formula which gives

the probability density of Z
(µ)
t in terms of θ1/z(t).
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Remark 12.2. Again, formula (12.2) provides a nice check on our re-

sults; indeed, taking the Laplace transform (in λ2/2) with respect to t on

both hand sides of (12.2), we obtain∫ ∞
0
Iλ(u) exp(−u cosh(x))

du

u
=
1

λ
e−λx (λ > 0).(12.3)

Now this formula is a well-known particular case of the more general

Lipschitz-Hankel formula (see, e.g., Watson [25], p. 386, formula (7), and

also the formulae (2.f) and (2.7’) in Yor [27].)

§13. Some Complements to the GIG relations and a Parallel with
the Rogers-Pitman Study

Our main result in this Part II, the Markov property of Z(µ), has been

obtained as a consequence of two essential ingredients.

(i) Generalized Dufresne’s identity in law

We know {
1

A
(−µ)
t

, t � 0
}
(law)
=

{
1

A
(µ)
t

+
1

Ã
(−µ)
∞

, t � 0
}

(13.1)

for µ > 0, which was recalled in Theorem 8.1. Dufresne [9] has shown this

identity for fixed time, hence we used the above terminology. In fact, for

our purpose in this section, it is more convenient to rewrite (13.1) in the

following equivalent form:

1

A
(−µ)
∞

is independent of

{
1

A
(−µ)
t

−
1

A
(−µ)
∞

, t � 0
}
and(13.2)

the latter process is distributed as

{
1

A
(µ)
t

, t � 0
}
.

Moreover 1/A
(−µ)
∞ is distributed as 2γµ, where γµ is a Gamma(µ) random

variable.

(ii) Quadratic Random Equation

Our second essential ingredient has been to establish the quadratic

equation:

AX2 + zX
(law)
= A,(13.3)
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where A
(law)
= 1/2γµ, X = e

(−µ)
t is independent of A and the left hand side

of (13.3) is considered under Qω,zt . We showed that, for µ = 1/2, there is

only one “distribution solution” X to (13.3). Although we can conclude

from there in our framework (cf. Proposition 1.7), it would be interesting

to know whether (13.3) admits only one “distribution solution” for any µ.

As we were trying to solve this problem, our attention was drawn to

Theorem 3.10, page 105 of Seshadri [22], where the following is shown (see

also Letac–Seshadri [14]). Let A be as above and consider the equation

1

X

(law)
= X +

z

A
,(13.4)

where the two random variables on the right hand side are assumed to be

independent. Then (13.4) admits only one solution given by

X
(law)
= I

(−µ)
1/
√
z,1/
√
z
.

Firstly we note that (13.4) is nothing else but the equation version

of (9.5). Secondly we prove that X = I
(−µ)
1/
√
z,1/
√
z
satisfies in fact a two-

dimensional identity in law which unifies (13.3) and (13.4).

Proposition 13.1. The random variable X = I
(−µ)
1/
√
z,1/
√
z
satisfies(

AX,X +
z

A

)
(law)
=
(
AX,

1

X

)
,(13.5)

where A
(law)
= 1/2γµ and is independent of X. As a consequence, both (13.3)

and (13.4) hold.

Proof. Using the explicit form (9.1) of the density of X, it is easy to

show that

E
[
Xµe−uXg((1 + 2zu)X)

]
= E
[
Xµe−uXg(X−1)

]
(13.6)

holds for every bounded Borel function g on R+ and every u > 0. Then, it

is also easy to show that (13.6) implies( γµ
X
,X + 2zγµ

)
(law)
=
( γµ
X
,
1

X

)
,

which is an equivalent assertion to (13.5).
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Remark 13.1. (1) Letac–Seshadri [14] reinforce (13.4) in the form of a

continued fraction representation

X
(law)
=

1

Γ1+

1

Γ2+

1

Γ3+

where {Γi}∞i=1 is an i.i.d. sequence distributed as 2zγµ and the notation
1

a+ b means 1
a+b .

(2) In the opposite direction, we can reinforce the quadratic equa-

tion (13.3) as follows. Set Γ = 2zγµ. Then (13.3) is rewritten as

1

Γ

(law)
= X +

X2

Γ
.

From this we can deduce

1

Γ

(law)
= X1 +X

2
1X2 +X

2
1X
2
2X3 + · · ·+X

2
1X
2
2 · · ·X

2
nXn+1 + · · · ,(13.7)

where {Xi}∞i=1 is an i.i.d. sequence distributed as e
(−µ)
t under Qω,zt , i.e.,

as I
(−µ)
1/
√
z,1/
√
z
, and the right hand side of (13.7) converges almost surely. In

order to see this convergence, it suffices to note

E[(Xi)
α] =

Kµ−α(1/z)

Kµ(1/z)
< 1 if 0 < α < 2µ.

(3) Letac–Wesolowski [15] have recently shown that, if X = I
(µ)
a,b and Y

is a Gamma random variable whose distribution is given by

P (Y ∈ dy) = γp,2a−1(dy) =
1

Γ(p)

( a
2

)p
yp−1 exp

(
−
1

2
ay
)
dy, y > 0,

and if X and Y are independent, then (X+Y )−1 and X−1− (X+Y )−1 are

independent and distributed as I
(−µ)
a,b and γp,2b−1 , respectively. This result is

an extension of (13.5), which also presents a converse to this independence

property.

The following complements Proposition 13.1.

Proposition 13.2. The joint law of (AX,X) is given by

P (AX ∈ du, X ∈ dx)(13.8)

=
1

Γ(µ)Kµ(1/z)(2u)µ+1x
exp

[
−
1

2

(( 1
u
+
1

z

)
x+

1

zx

)]
dudx.
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Consequently, conditioning on AX = u, one has(
1 +

z

u

)
X
(law)
= X,(13.9)

P (X ∈ dx|AX = u)(13.10)

=
1

Cz(u)x
exp

[
−
1

2

(( 1
u
+
1

z

)
x+

1

zx

)]
,

Cz(u) = 2K0
(√
z−1(u−1 + z−1)

)
,

P (AX ∈ du) =
Cz(u)

Γ(µ)(2u)µ+1Kµ(1/z)
du.(13.11)

Proof. (13.8) is elementary. (13.9) follows immediately from (13.5).

(13.10) and (13.11) are also shown easily if we use the integral representation

Kλ(
√
ab) =

1

2

( a
b

)λ/2 ∫ ∞
0
xλ−1 exp

(
−
1

2
(ax+ b/x)

)
dx, a, b > 0.

Remark 13.2. It should be noted that the conditional law in (13.10)

does not depend on µ; in fact, this law is GIG(0; a, b), where a2 = z−1,

b2 = u−1+z−1. Moreover the right hand side of (13.11) is quite reminiscent

of the probability law (9.7) of H
(µ)
a,b .

We now discuss how (i) and (ii) are seen in the limit regime already

discussed after Theorem 1.1µ in order to pass from Z
(µ) to 2M (µ) − B(µ),

and in fact in most part of Section 1 in our part I paper.

(i)∞ Williams’ Theorem

In (13.2) above, we replace µ and the time t by µc and t/c2 (c > 0),

respectively, take logarithms and let c tend to 0. Then, setting

A(µ)(s, u; c) =

∫ u
s

exp
( 2
c
B(µ)τ

)
dτ,

we find{
c log

A(−µ)(t,∞; c)

A(−µ)(0, t; c)A(−µ)(0,∞; c)

}
t�0

(law)
=
{
−c logA(µ)(0, t; c)

}
t�0 .

Now, using an elementary Laplace method argument, we obtain the

following analogue of (13.2).
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Theorem 13.3. Assume µ > 0. Then supu�0B
(−µ)
u obeys the expo-

nential distribution with parameter 2µ and is independent of

Σ
(−µ)
t =

⎧⎪⎨⎪⎩
sup
0�u�t

B(−µ)u , t � ρ,

2 sup
u�0
B(−µ)u − sup

u�t
B(−µ)u , t > ρ,

(13.12)

where ρ = inf
{
t ; B

(−µ)
t = supu�0B

(−µ)
u

}
. Moreover it holds that

{
Σ
(−µ)
t , t � 0

} (law)
=
{
sup0�u�tB

(µ)
u , t � 0

}
.

In fact, in the limiting procedure described above,
{
Σ
(−µ)
t , t � 0

}
arises

from

sup
0�u�t

B(−µ)u + sup
u�0
B(−µ)u − sup

u�t
B(−µ)u , t > 0,

which is easily shown to coincide with the right hand side of (13.12).

The above theorem is a part of a theorem due to Williams [26] and has

been discussed by Rogers–Pitman [21] in their Corollary 2.

(ii)∞ “Quadratic” Random Equations in the Rogers–Pitman Framework

We now describe an analogue of the equation (13.3) in the Rogers–

Pitman framework [21] for the process Y
(−µ)
t ≡ 2M (−µ)t − B(−µ)t , where

M
(−µ)
t = sups�tB

(−µ)
s .

We begin with the decomposition

M (−µ)∞ =M
(−µ)
t ∨

(
supu�tB

(−µ)
u

)
(13.13)

under Qω,yt , the conditional law given �
(−µ)
t = σ

{
Y
(−µ)
s ; s � t

}
. Recall

(cf. [21] and Theorem 13.3 above) that M
(−µ)
∞

(law)
= e/2µ, where e is a

standard exponential random variable, and that M
(−µ)
∞ is independent of

�
(−µ)
∞ . Then, denoting X = B

(−µ)
t , we can deduce easily from (13.13) that

the analogue of (13.3) is

e

µ

(law)
= (X + y) ∨

( e
µ
+ 2X

)
.

Taking exponentials on both hand sides, we obtain

A
(law)
=
(
zX̂
)
∨
(
AX̂2

)
,(13.14)
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where A
(law)
= exp(e/µ). (13.14) explains the term “quadratic” in the above

subtitle. It follows from the Rogers-Pitman results that the following Xµ,y
is a distribution solution to (13.13):

P (Xµ,y ∈ dx) =
µeµx

2 sinhµy
I(−y,y)(x) dx.

As in (ii) above, it would be interesting to prove that (13.13) admits only

this distribution solution.

§14. The Forward Processes +Z(−µ) and +ξ(−µ)

Following Proposition 13.1, we got interested in the realization, in terms

of B(−µ), of the random variable AX , which clearly corresponds to

+Z
(−µ)
t ≡ exp

(
−B(−µ)t

)
A
(−µ)
(t,∞), A

(−µ)
(t,∞) =

∫ ∞
t

exp
(
2B(−µ)s

)
ds

under Qω,zt . We call these stochastic processes “forward” and, obviously, it

is also natural to define

+ξ
(−µ)
t ≡ exp

(
−2B

(−µ)
t

)
A
(−µ)
(t,∞).

To insist upon the “forward” and “backward” characters, we denote

Z(−µ) and ξ(−µ) by −Z(−µ) and −ξ(−µ), respectively, in this section.

Then we show the following.

Theorem 14.1. For µ > 0, the processes −Z(−µ) and +Z(−µ) satisfy

the following identity :{(
−Z
(−µ)
t ,+Z

(−µ)
t , A(−µ)∞

)
, t � 0

}
(14.1)

(law)
=
{(
−Z
(µ)
t , exp

(
−B(µ)t

)
Ã(−µ)∞ , Ã(−µ)∞

)
, t � 0

}
,

where Ã
(−µ)
∞ is a copy of A

(−µ)
∞ , independent of

{
B
(µ)
t

}
.

Proof. This is easily obtained from algebraic manipulations of the gen-

eralized Dufresne identity (13.1) and (13.2).

We should note that (14.1) gives a nice probabilistic explanation of

the identity (13.5), since we find the pair of independent random variables(
−Z
(µ)
t , exp

(
−B

(µ)
t

))
and Ã

(−µ)
∞ on the right hand side of (14.1).

As a companion to Theorem 14.1, we have the following.
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Theorem 14.2. Let µ > 0. Then the processes
{
+ξ
(−µ)
t , t � 0

}
and{

−ξ
(µ)
t , t � 0

}
satisfy the following relation:

{
+ξ
(−µ)
t , t � 0

} (law)
=
{
−ξ
(µ)
t + exp

(
−2B

(µ)
t

)
Ã(−µ)∞ , t � 0

}
.(14.2)

Proof. Although (14.2) also follows by elementary algebraic manipu-

lations starting from (14.1), we give a few details. Adding the first two

components on both hand sides of (14.1), we obtain{
exp
(
−B

(−µ)
t

)
A(−µ)∞ , t � 0

}
(14.3)

(law)
=
{
exp
(
−B(µ)t

)(
A
(µ)
t + Ã

(−µ)
∞

)
, t � 0

}
.

Of course, this holds jointly with (14.1).

Now using (14.1) and (14.3) in conjunction, we obtain that
{
+ξ
(−µ)
t =

+Z
(−µ)
t exp

(
−B

(−µ)
t

)
, t � 0

}
is distributed as the right hand side of (14.2).

§15. Extension to Matrices

After the interpretation of Rogers-Pitman result and ours via quadratic

random equations given in Section 13, it does not seem unreasonable to

expect some multi-dimensional extensions (in a different direction from that

suggested by Question 1 given in Part I [19], Section 7), which might be

developed from the identity:

µλ,M,N = µ−λ,M,N ∗Wd(2λ,M
−1).(15.1)

(15.1) is a convolution equation on �d, the set of real symmetric d × d
positive definite matrices (M,N ∈ �d), where Wd(n,Σ) denotes the (two
parameter) family of Wishart laws and µ−λ,M,N denotes the generalized

inverse Gaussian distribution on �d. For details, see Seshadri [22], Exer-

cise 3.11, page 116, Bernadac [5], Terras [23] formula (2.56), page 83, but

the reader should beware of the many typos in these references !

(15.1) is an extension of (13.4). Moreover Letac–Wesolowski ([15], The-

orem 3.1) have shown that, if M = N , then

(X,Y )
(law)
= ((X + Y )−1,X−1 − (X + Y )−1)



84 H. MATSUMOTO AND M. YOR

holds for a generalized inverse Gaussian X and a Wishart random variable

Y under the assumption that they are independent. From this result, it is

easy to deduce

XY −1X +X
(law)
= Y −1,

which is a quadratic equation which extends (13.3).

As a temporary conclusion, we cannot resist quoting the following sen-

tence taken from Terras ([23], page 50), which is a tantalizing invitation to

relate the present Markov process intertwinings with some classical group

representations: “It is also useful to view Bessel and Whittaker functions

in the light of the theory of the operators intertwining pairs of representa-

tions.”
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