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VECTOR FIELD ENERGIES AND CRITICAL

METRICS ON KÄHLER MANIFOLDS

TOSHIKI MABUCHI

Abstract. Associated with a Hamiltonian holomorphic vector field on a com-
pact Kähler manifold, a nice functional on a space of Kähler metrics will be
constructed as an integration of the bilinear pairing in [FM] contracted with the
Hamiltonian holomorphic vector field. As applications, we have functionals µ̂, ν̂

whose critical points are extremal Kähler metrics or “Kähler-Einstein metrics”
in the sense of [M4], respectively. Finally, the same method as used by [G1] al-
lows us to obtain, from the convexity of ν̂, the uniqueness of “Kähler-Einstein
metrics” on nonsingular toric Fano varieties possibly with nonvanishing Futaki
character.

§1. Introduction

The purpose of this paper is to define, with applications to the study

of critical metrics, some functional associated with a Hamiltonian holomor-

phic vector field (see the key observation stated below). Throughout this

paper, we fix once and for all an n-dimensional compact complex connected

manifold M with a Kähler class κ ∈ H1,1(M,R). The Albanese map of M to

the Albanese variety Alb(M) induces a complex Lie group homomorphism

aM : Aut0(M) −→ Aut0(Alb(M))(∼= Alb(M))

between the identity components of the groups of holomorphic automor-

phisms of M and Alb(M). Then the identity component G := Ker0 aM of

the kernel of aM is a linear algebraic group (see [Fj]). Let K be the set of

all Kähler metrics on M in the Kähler class κ, where a Kähler metric and

the associated Kähler form are used interchangeably. For each ω ∈ K, we

write ω as

ω =
√
−1

∑

α,β

gαβ̄dz
α ∧ dzβ̄
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in terms of a system (z1, z2, . . . , zn) of holomorphic local coordinates on M .

Put Aκ :=
∫
M ωn = κn[M ]. To each complex-valued smooth function ϕ on

X, we associate a complex vector field gradC

ω ϕ on M of type (1, 0) by

gradC

ω ϕ :=
1√
−1

∑

α,β

gβ̄α
∂ϕ

∂zβ̄
∂

∂zα
.

Consider the complex Lie subalgebra g of H0(M,O(TM)) corresponding to

the complex Lie subgroup G of Aut0(M). Let g̃ω be the space of all complex

smooth functions ϕ ∈ C∞(M)C on M such that gradC

ω ϕ is a holomorphic

vector field on M and that
∫
M ϕωn/Aκ = 0. Then we have an isomorphism

of complex Lie algebras

ιω : g̃ω ∼= g, ϕ←→ ιω(ϕ) := gradC

ω ϕ,

where g̃ω has a natural structure of a complex Lie algebra in terms of the

Poisson bracket by ω. Put k̃ω := {ϕ ∈ g̃ω;ϕ is real-valued on M} and kω :=

ιω(k̃ω). Then the real Lie subgroup Kω of G generated by the Lie subalgebra

kω of g is nothing but the identity component of the group of the isometries

in G of the compact Kähler manifold (M,ω). Put KV := {ω ∈ K;V ∈ kω},
V ∈ g. Fix an element ω in KV by assuming KV 6= ∅. Put

ωψ := ω +
√
−1 ∂∂̄ψ, ψ ∈ C∞(M)R.

By sending ψ to ωψ, we have a surjection of K̃V := {ψ ∈ K̃;ωψ ∈ KV } onto

KV , where K̃ denotes the set of all ψ ∈ C∞(M)R such that ωψ ∈ K. Given

a one-parameter family ψt ∈ K̃V , a ≤ t ≤ b, we say that {ψt; a ≤ t ≤ b} is

a smooth path in K̃V , if the map of M × [a, b] to R sending (x, t) to ψt(x)

is C∞. For such a smooth path {ψt; a ≤ t ≤ b}, we put ψ̇t := (∂/∂t)(ψt) for

simplicity. A key observation is1

Proposition A. Let V be a holomorphic vector field belonging to g

such that KV 6= ∅. Then there exists a functional ηV : KV → R satisfying

the equality
d

dt
ηV (ωt) =

∫

M
ϕtψ̇tω

n
t /Aκ, a ≤ t ≤ b,(1.1)

for every smooth path {ψt; a ≤ t ≤ b} in K̃V , where we set ωt := ωψt, and

the functions ϕt ∈ k̃ωt , a ≤ t ≤ b, on M are such that V = gradC

ωt ϕt.

1My sincere gratitude is due to Prof. Ryoichi Kobayashi who invited me to present
this key observation in a lecture at Nagoya University in 1997. Arguments as in the proof
of this were also used independently by [GC].
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For W1, W2 ∈ g, we put (W1,W2)ω :=
∫
M ι−1

ω (W1)ι
−1
ω (W2)ω

n/Aκ,

which is independent of the choice of ω in K, and will be denoted also

by (W1,W2)κ (cf. [FM]). Such independence plays a crucial role in [FM],

and Proposition A above gives some explanation for this independence (see

(3.3)). Moreover, for V as above, ηV satisfies (cf. §3)

d

dt
{ηV (g∗t ω

′)} = 2 Im (V,W )K, for all W ∈ z(V ) and ω′ ∈ KV .(1.2)

where z(V ) is the centralizer {W ∈ g; [W,V ] = 0} of V in g, and for any

z ∈ C, Re z and
√
−1 Im z denote the real part and the imaginary part of

z = Re z +
√
−1 Im z, respectively. Let K denote the nonempty subset of

K consisting of all ω ∈ K such that Kω is maximal compact in G. Then

Proposition A allows us to construct functionals, µ̂V : KV → R, µ̂ : K → R

and ν̂ : K → R, such that2

(1) all critical points for µ̂V and µ̂ are both extremal Kähler metrics;

(2) the set of the critical points for ν̂ consists all “Kähler-Einstein metrics”

on M ,

where for the functional µ̂, the pair (M,κ) is assumed to be quantized

(cf. §5), and for the functional ν̂, the cohomology class κ is assumed to

be 2πc1(M)R. Note also that, in (2) above, M possibly has nonvanishing

Futaki character, where the terminology “Kähler-Einstein metric” is used

in the sense of [M4]. We also have (see Propositions 5.7 and 6.5 and nearby

arguments):

Theorem B. The functionals µ̂ and ν̂ are G-invariant.

From moduli-theoretic points of view, this G-invariance would be one of

the most important properties featuring the functionals µ̂ and ν̂ above. By

the convexity of ν̂, the method used by Guan in [G1] for extremal Kähler

metrics now implies

Theorem C. (see [M5] for a more general case) Let M be a nonsin-

gular toric Fano variety, defined over C, possibly with nonvanishing Futaki

character. Then “Kähler-Einstein metrics” (cf. [M4]) on M in the class

2πc1(M)R is unique, if any, up to the action of G = Aut0(M).

2An important point is that both µ̂ and ν̂ are defined “globally” on K without speci-
fying any maximal compact subgroup of G. Such a condition of globality has never been
studied seriously by any other authors.
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§2. Proof of Proposition A

For each V ∈ g, let VR denote the real vector field V + V̄ on M corre-

sponding to the holomorphic vector field V on M . Then the one-parameter

group exp(tVR), t ∈ R, on M generated by the vector field VR comes

from the action on M of the one-parameter group exp tV , t ∈ R, in G.

Hence, if there is no fear of confusion, we use exp tV and exp(tVR) inter-

changeably. Assuming KV 6= ∅, let ω ∈ KV . Then the one-parameter group

PV := {exp(tVR); t ∈ R} has a compact closure P̄V in G, since P̄V is closed

in the compact group Kω. Therefore

K̃V = {ψ ∈ K̃ ;VRψ = 0} = {ψ ∈ K̃ ;ψ is P̄V -invariant}.(2.1)

For ω as above, let σ(ω) and �ω be respectively the corresponding scalar

curvature and the Laplacian on functions defined by

σ(ω) :=
∑

α,β

gβ̄αRαβ̄, �ω =
∑

α,β

gβ̄α
∂2

∂zα∂zβ̄
,

where
∑

α,β Rαβ̄dz
α ∧ dzβ̄ denotes the Ricci form R(ω) :=

√
−1∂̄∂ logωn

for ω. For each ωψ ∈ KV , its scalar curvature σ(ωψ) and Laplacian �ωψ are

denoted sometimes by σ(ψ) and �ψ respectively. To each pair (ψ1, ψ2) ∈
K̃V × K̃V , we associate EV (ψ′, ψ′′) ∈ R by

EV (ψ′, ψ′′) :=

∫ b

a

(∫

M
ϕtψ̇tω

n
ψt/Aκ

)
dt,(2.2)

where {ψt; a ≤ t ≤ b} is an arbitrary piecewise smooth path in K̃V satisfying

ψa = ψ′ and ψb = ψ′′, and the functions ϕt ∈ k̃ωt , a ≤ t ≤ b, on M are such

that

V = gradC

ωt ϕt

with ωt := ωψt . Now by setting ηV (ωψ) := EV (0, ψ), we can easily reduce

the proof of Proposition A to showing the following theorem:

Theorem 2.3. EV (ψ′, ψ′′) above is independent of the choice of the

path {ψt; a ≤ t ≤ b}, in K̃V , and therefore well-defined. In particular,

EV (ψ,ψ′) + EV (ψ′, ψ′′) + EV (ψ′′, ψ) = 0 for all ψ,ψ′, ψ′′ ∈ K̃V ;(2.4)

EV (ψ,ψ +C) = 0 for all ψ ∈ K̃V and all C ∈ R.(2.5)
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In view of the assumption ω ∈ KV , we have V = gradC

ω φ for φ :=

ι−1
ω (V ) ∈ k̃ω. Then the following lemma is essential in the proof of Theorem

2.3:

Lemma 2.6. (cf. [FM;p.208]) The equality ϕt = φ+
√
−1V ψt holds for

all a ≤ t ≤ b.

By using this lemma, we shall now prove Theorem 2.3.

Proof of Theorem 2.3. Define a map Ψ = Ψ(s, t) of the rectangle R :=

[0, 1]× [a, b] to K̃V by Ψ(s, t) := sψt for (s, t) ∈ [0, 1]× [a, b]. Since {ψt; a ≤
t ≤ b} is piecewise smooth, there exists a partition a = a0 < a1 < a2 <

. . . < ar = b of the interval [a, b] such that {ψt; ai−1 ≤ t ≤ ai} is smooth

for each i ∈ {1, 2, . . . , r}. We then divide the proof of Theorem 2.3 into the

following two steps:

Step 1: For simplicity, put ωs,t := ωΨ(s,t) for each (s, t) ∈ R. Then by

Lemma 2.6, we have V = gradC

ωs,t
Φ(s, t), where Φ = Φ(s, t) is defined by

Φ(s, t) := φ+
√
−1VΨ(s, t) ∈ k̃ωs,t . Here, Φ(1, t) = φ+

√
−1 V ψt = ϕt. The

purpose of this step is to show that

∫ a
i

a
i−1

(∫

M
ϕtψ̇tω

n
Ψ/Aκ

)
dt =

∫ 1

0

(∫

M
Φ
∂Ψ

∂s
ωnΨ/Aκ

)
ds

∣∣∣∣
t=a

i

t=a
i−1

.(2.7)

Let Θ :=
(∫
M ΦΨsω

n
Ψ/Aκ

)
ds +

(∫
M ΦΨtω

n
Ψ/Aκ

)
dt, where Ψs := ∂Ψ/∂s

and Ψt := ∂Ψ/∂t. Moreover, we put Φs := ∂Φ/∂s and Φt := ∂Φ/∂t. For

a suitable orientation of the rectangle R, its boundary ∂R is written as a

sum γ1 + γ2 − γ3 − γ4, where

γ1 := {(s, ai−1); 0 ≤ s ≤ 1}, γ2 := {(1, t); ai−1 ≤ t ≤ ai},
γ3 := {(s, ai); 0 ≤ s ≤ 1}, γ4 := {(0, t); ai−1 ≤ t ≤ ai}.

Then by the Stokes theorem,
∫
R dΘ =

∫
∂R Θ =

∫
γ1+γ2−γ3−γ4

Θ. Moreover,

the pullback of Θ to γ4 vanishes. Hence,
∫
R dΘ is just

−
∫

γ3−γ1

Θ +

∫

γ2

Θ = −
∫ 1

0

(∫

M
ΦΨsω

n
Ψ/Aκ

)
ds

∣∣∣∣
t=a

i

t=a
i−1

+

∫ a
i

a
i−1

(∫

M
ϕtψ̇tω

n
Ψ/Aκ

)
dt.
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Thus the proof of (2.7) is reduced to showing the vanishing dΘ = 0 on

the rectangle R. In terms of a system of holomorphic local coordinates

(z1, z2, . . . , zn), we write the Kähler metric ωΨ = ωΨ(s,t) = ωs,t in the form

ωΨ =
√
−1
∑

α,β

gΨαβ̄dz
α ∧ dzβ̄ .

Then for ζ1, ζ2 ∈ C∞(M)C, we can define the Poisson bracket [ζ1, ζ2]Ψ of ζ1
and ζ2 relative to the Kähler metric ωΨ by

[ζ1, ζ2]Ψ :=
√
−1
∑

α,β

gβ̄αΨ

(
∂ζ1
∂zα

∂ζ2

∂zβ̄
− ∂ζ1

∂zβ̄
∂ζ2
∂zα

)
.

Let ( , )Ψ : Aq(M)C × Aq(M)C → C∞(M)C be the pointwise Hermitian

pairing associated with the Kähler metric ωΨ, where Aq(M)C denotes the

space of all complex-valued smooth q-forms on M . By a straightforward

computation,

dΘ = ds ∧ dt
∫

M

{
∂

∂s
(ΦΨtω

n
Ψ/Aκ)−

∂

∂t
(ΦΨsω

n
Ψ/Aκ)

}

= ds ∧ dt
∫

M
{(ΦsΨt − ΦtΨs) + ΦΨt (�ΨΨs)− ΦΨs (�ΨΨt)}ωnΨ/Aκ

=
√
−1ds ∧ dt

∫

M
{Ψt (VΨs)−Ψs (VΨt)}ωnΨ/Aκ

+ds ∧ dt
∫

M

{
−
(
∂̄ (ΦΨt) , ∂̄Ψs

)
Ψ

+
(
∂̄ (ΦΨs) , ∂̄Ψt

)
Ψ

}
ωnΨ/Aκ.

On the other hand, by V = gradC

ω Φ, we obtain

−
(
∂̄ (ΦΨt) , ∂̄Ψs

)
Ψ

+
(
∂̄ (ΦΨs) , ∂̄Ψt

)
Ψ

=
√
−1Φ[Ψs,Ψt]Ψ −

(
Ψt∂̄Φ, ∂̄Ψs

)
Ψ

+
(
Ψs∂̄Φ, ∂̄Ψt

)
Ψ

=
√
−1{Φ[Ψs,Ψt]Ψ −Ψt(VΨs) + Ψs(VΨt)}.

These together with VRψt = 0 (see (2.1)) show the vanishing of dΘ as

follows:

dΘ =
√
−1ds ∧ dt

∫

M
Φ[Ψs,Ψt]Ψω

n
Ψ/Aκ

=
√
−1ds ∧ dt

∫

M
[Φ,Ψs]ΨΨtω

n
Ψ/Aκ
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=
√
−1ds ∧ dt

∫

M
(VRΨs)Ψtω

n
Ψ/Aκ

=
√
−1ds ∧ dt

∫

M
(VRψt)Ψtω

n
Ψ/Aκ = 0.

Step 2: Consider the equality (2.7) for i = 1, 2, . . . , r. By adding them up,

we obtain

∫ b

a

(∫

M
ϕtψ̇tω

n
ψt/Aκ

)
dt =

∫ 1

0

(∫

M
Φψtω

n
Ψ/Aκ

)
ds

∣∣∣∣
t=b

t=a

.

Therefore, the left-hand side is independent of the choice of the piecewise

smooth path {ψt; a ≤ t ≤ b} in K̃V , as long as ψa = ψ′ and ψb = ψ′′.

Then (2.4) is now immediate. For (2.5), let ψt := ψ + tC, where t ∈ [0, 1].

Put ωt := ωψt for simplicity. For each t, consider the associated ϕt ∈ k̃ωt
satisfying V = gradC

ωt ϕt. Then,

E(ψ,ψ + C) =

∫ 1

0

∫

M
ϕtψ̇tω

n
ψt/Aκ = C

∫ 1

0

(∫

M
ϕtω

n
t /Aκ

)
= 0.

§3. An application to the study of the bilinear pairing ( , )κ on kC

Let V ∈ g be such that ω ∈ KV 6= ∅. We put V g := (g−1)∗V =

Ad(g−1)V for all g ∈ G. Let ω0 and ω1 be arbitrary elements in KV . We

choose a smooth path {ψt ∈ K̃V ; a ≤ t ≤ b} in K̃V such that the corre-

sponding path ωt := ωψt , a ≤ t ≤ b, connecting ω0 and ω1 in KV satisfies

∫

M
ψ̇tω

n
t /Aκ = 0 for all t.

For each t, we can write V = gradC

ωt ϕt for some unique ϕt ∈ k̃ωt . On the

other hand, for every g ∈ G, we see that g∗ω0, g
∗ω1 ∈ KV g , because the con-

dition V ∈ kω always implies V g ∈ kg∗ω. Now, g∗ωt = g∗ω +
√
−1∂∂̄(g∗ψt),

a ≤ t ≤ b, is a path in KV g connecting the metrics g∗ω0, g
∗ω1 and satisfying∫

M (g∗ψ̇t)g
∗ωnt /Aκ = 0 for all t. In view of V g = gradC

g∗ωt g
∗ϕt ∈ k̃g∗ωt , we

see that

EV g(g
∗ω0, g

∗ω1) =

∫ b

a

(∫

M
g∗ϕt g

∗ψ̇tg
∗ωnt /Aκ

)
dt(3.1)

=

∫ b

a

(∫

M
ϕt ψ̇t ω

n
t /Aκ

)
dt = EV (ω0, ω1).
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Consider the algebraic subgroup Z(V ) := {g ∈ G;V g = V } of G. Obviously,

Z(V ) has the Lie algebra z(V ). We now claim that

Lemma 3.2. EV (ω0, g
∗ω0) = EV (ω1, g

∗ω1) for all g ∈ Z(V ) and ω1,

ω2 ∈ KV .

Proof. By g ∈ Z(V ), we have V g = V . Hence by (3.1), EV (g∗ω0, g
∗ω1)

= EV (ω0, ω1) = EV (ω0, g
∗ω0) + EV (g∗ω0, g

∗ω1) − EV (ω1, g
∗ω1). Then the

required equality EV (ω0, g
∗ω0) = EV (ω1, g

∗ω1) follows immediately.

For a maximal compact subgroup K of G, let ω0, ω1 ∈ KK , where

KK denotes the set of all K-invariant elements in K. Let k denote the Lie

subalgebra of g corresponding to the Lie subgroup K of G. Then kω0
=

kω1
= k. Let V , W ∈ t, where t is a maximal toral subalgebra of k. We first

observe that ω0, ω1 ∈ KV . Moreover, we can write

V = gradC

ωi vi and W = gradC

ωi wi, i = 0, 1,

for some vi, wi ∈ k̃ωi . Put gt := exp(t
√
−1 W ) = exp{t(

√
−1 W )R}. This

gt belongs to Z(V ) for all t ∈ R. Write g∗t ωi = ωi +
√
−1 ∂∂̄ψi,t for some

smooth one-parameter families {ψi,t; t ∈ R} of real-valued C∞ functions on

M . Note that

(ψ̇i,t)|t=0 = 2wi + Ci, i = 0, 1,

for some constants Ci ∈ R. Now by Lemma 3.2, EV (ω0, g
∗
t ω0) =

EV (ω1, g
∗
t ω1) for all t. Differentiating this with repect to t at t = 0, we

obtain ∫

M
v0w0ω

n
0 /Aκ =

∫

M
v1w1ω

n
1 /Aκ.(3.3)

Recall that the identity (3.3) is the key point in proving the well-definition

of the bilinear pairing kC× kC 3 (V,W ) 7→ (V,W )κ ∈ C (cf. [FM];§1), where

kC denotes the complexification of k in g.

Remark. Let W ∈ z(V ) and V ∈ g with KV 6= ∅. Let ω be an arbitrary

element of KV . Put gt := exp tWR and ωt := g∗t ω, t ∈ R. Then we can write

V = gradC

ωt vt, and W = gradC

ωt wt

for some vt ∈ k̃ωt and wt ∈ g̃ωt . Write ωt = ω+
√
−1 ∂∂̄ψt for some smooth

one-parameter family {ψt; t ∈ R} of real-valued C∞ functions on M . Then

ψ̇t = 2 Imwt + Ct
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for some real constant Ct. Then by the definition of the functional ηV , we

have the following equality (see also (1.2)), which is an important ingredient

of the proof of (3.3):

d

dt
ηV (g∗t ω) = 2 Im

∫

M
vtwtω

n
t /Aκ = 2 Im(V,W )κ, t ∈ R.

Remark. Let V ∈ g be such that ω ∈ KV 6= ∅, and let R+ de-

note the multiplicative group of all positive real numbers. Put eV (g) :=

exp(EV (ω, g∗ω)). Then eV : Z(V ) → R+ defines a character of real Lie

groups as follows:

log(eV (g1g2)) = EV (ω, (g1g2)
∗ω) = EV (ω, g∗2g

∗
1ω)

= EV (ω, g∗1ω) + EV (g∗1ω, g
∗
2g

∗
1ω) = EV (ω, g∗1ω) + EV (ω, g∗2ω)

= log eV (g1) + log eV (g2),

i.e., eV (g1g2) = eV (g1)eV (g2) for all g1, g2 ∈ Z(V ). Thus, eV : Z(V )→ R+

is a group character of real Lie groups.

§4. Functional µ̂V whose critical points are extremal Kähler

metrics

In this section, we fix an element ω in K. Then the group Kω (see §1)

is maximal compact in G. The extremal Kähler vector field Vω ∈ kω (cf.

[FM]) is defined by

Vω = gradC

ω(prω σ(ω)),

where prω : L2(M,ω)
R
→ R⊕ k̃ω is the orthogonal projection from the space

L2(M,ω)R of all real-valued L2-functions on the Kähler manifold (M,ω)

onto its finite-dimensional subspace R⊕ k̃ω := {ϕ ∈ C∞(M)R; gradC

ω ϕ ∈ g}.
Then the orthogonal complement (R⊕ k̃ω)⊥ of R⊕ k̃ω in L2(M,ω)R is exactly

the kernel of prω. In this section, we fix an element ω in K, and put

V := Vω.

Then ω belongs to KV obviously. Let KC
ω be the reductive algebraic sub-

group of G obtained as the complexification of Kω in G. The corresponding

Lie subalgebra of g will be denoted by kC
ω. Obviously, V ∈ kω ⊂ kC

ω ⊂ z(V ).

We first observe that

Lemma 4.1. Z(V ) is connected.
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Proof. By the Chevalley decomposition of G, we write G as a semi-

direct product KC
ω n U , where U is the unipotent radical of G. Let u be

the Lie subalgebra of g corresponding to U . Then every element of Z(V ) is

written as k(expW ) for some k ∈ KC
ω and W ∈ u. By KC

ω ⊂ Z(V ), we see

that expW ∈ Z(V ), i.e., V = {exp ad(W )}V . Then Jordan’s normal form

of the linear map ad(W ) of g onto itself allows us to obtain W ∈ z(V ). Now,

k exp(tW ) ∈ Z(V ) for all 0 ≤ t ≤ 1. Thus, Z(V ) is connected.

We now put HV := {ω′ ∈ K;Vω′ = V }, where Vω′ ∈ kω′ denotes the

extremal Kähler vector field of ω′. Then HV is a nonempty subset of K
satisfying

ω ∈ {ω′ ∈ K; kω′ = kω} ⊂ HV ⊂ KV .
Let H̃V denote the set of all ψ ∈ K̃V such that ωψ ∈ HV . By a piecewise

smooth path in H̃V , we mean a piecewise smooth path in K̃V sitting in H̃V .

For each ψ ∈ H̃V , we take an arbitrary piecewise smooth path {ψt; a ≤ t ≤
b} in H̃V such that ψa = 0 and ψb = ψ. Then the restriction to HV of the

K-energy map µ : K → R (cf. [M1]) is given by

µ(ωψ) := −
∫ b

a

{∫

M
(σ(ωt)− Cκ)ψ̇tωnt /Aκ

}
dt, ψ ∈ H̃V ,(4.2)

where we put ωt := ωψt for simplicity, and Cκ is the real constant∫
M σ(ω)ωn/Aκ. The set of the critical points for µ just consists of all Kähler

metrics in KV of constant scalar curvature. Define µ̂V : HV → R by

µ̂V := µ+ ηV ,(4.3)

where ηV is as in the introduction. For each t, we write V = gradC

ωt ϕt for

some unique ϕt ∈ k̃ωt . By prωt σ(ωt) = Cκ + ϕt, we see from the equalities

(1.1), (4.2), (4.3) that

µ̂V (ωψ)(4.4)

= −
∫ b

a

(∫

M

{
σ(ωt)− prωt σ(ωt)

}
ψ̇tω

n
t /Aκ

)
dt, ψ ∈ H̃V ,

for {ψt; a ≤ t ≤ b} as above. Let ω′ ∈ HV . Since σ(ω′) − prω′ σ(ω′) is

a Kω′-invariant function, ω′ can be perturbed in HV to the form ω′ +√
−1ε ∂∂̄{σ(ω′) − prω′ σ(ω′)}, where ε > 0 is sufficiently small. Since the

equality σ(ω′) = prω′ σ(ω′) holds if and only if ω′ is an extremal Kähler

metric, (4.4) above implies that
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Proposition 4.5. An element ω′ of HV is a critical point for the func-

tional µ̂V : HV → R if and only if ω′ is an extremal Kähler metric.

Remark. The functional µ̂V above was obtained by the author in 1994,

though the result was unpublished. A little afterwards, Simanca (see [S1])

obtained a similar result. Guan [G1] studied such a functional independently

and successfully, applying it to the uniqueness (modulo connected group

actions) of extremal Kähler metrics in a Kähler class of a nonsingular toric

variety.

§5. Functional µ̂ : K → R for a quantized pair (M,κ)

Throughout this section, we assume that the pair (M,κ) is quantized ,

i.e., there exists a holomorphic line bundle L over M such that

(1) the Kähler class κ in the introduction is 2πc1(L)R;

(2) the G-action on M lifts to a holomorphic G-action on L preserving

set-theoretically the image of the zero section of L.

For instance, if M is a Fano manifold, then the pair (M, c1(M)R) is

quantized by choosing the anticanonical bundle K−1
M as L. The main pur-

pose of this section is to define a functional µ̂ : K → R for each quantized

pair (M,κ) from the functionals µ̂V g : HV g → R, g ∈ G, (cf. §4) glued

together.

Let u be the Lie subalgebra of g corresponding to the unipotent radical

U of G, where we write G as a semi-direct product KC
ω n U . Take a C-

basis {Y1,Y2, . . . ,Ym} for u. Furthermore, let {X1,X2, . . . ,X`} be an R-

basis for kω, which is naturally regarded as a C-basis for kC
ω. We choose

1 � k ∈ Z such that L⊗k is very ample. Let {σ0, σ1, . . . , σr} be a C-basis

for S := H0(M,L⊗k). Note that, via the U -action on L, the unipotent

group U acts naturally on S, which induces an infinitesimal action of u on

S. Since U is unipotent, we may assume that

Yjσλ =

{
0 if 1 ≤ j ≤ m and λ = 0;
∑λ−1

µ=0 bj,λ,µ σµ if 1 ≤ j ≤ m and 1 ≤ λ ≤ r,
for some complex numbers bj,λ,µ ∈ C. To each real number 0 < ε � 1, we

associate a Hermitian metric hε on L by

hε :=
{ r∑

λ=0

ε2λσλσ̄λ

}−1
=
{ r∑

λ=0

(ελσλ)(ε
λσ̄λ)

}−1
.
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Let ω(ε) denote the Ricci form R(hε) :=
√
−1∂̄∂ log hε for (L, hε). We then

have ω(ε) ∈ K. The infinitesimal action of Yj on hε is given by

Yjhε = −h2
ε

{ r∑

λ=0

ε2λ(Yjσλ)σ̄λ
}

(5.1)

= −εh2
ε

{ r∑

λ=1

λ−1∑

µ=0

ελ−µ−1bj,λ,µ(ε
µσµ)(ε

λσ̄λ)
}
.

For each i ∈ {1, 2, . . . , `} and j ∈ {1, 2, . . . ,m}, consider the functions ξi ∈
k̃ω(ε) and ηj ∈ g̃ω(ε) such that gradC

ω(ε) ξi = Xi and gradC

ω(ε) ηj = Yj. Then ξi

is real-valued, where ηj is possibly complex-valued. By gradC

ω(ε) h
−1
ε (Yjhε) =√

−1Yj (cf. [M3]),

√
−1 ηj = h−1

ε (Yjhε) −
∫

M
h−1
ε (Yjhε){ω(ε)}n/Aκ.(5.2)

Put vλ := ελσλ and C0 :=
∑m

j=1{
∑r

λ=1

∑λ−1
µ=0 |bj,λ,µ|2}1/2. Moreover, let

aj,λ,µ denote the complex number ελ−µ−1bj,λ,µ or 0, according as λ > µ or

λ ≤ µ. We then put wj,λ :=
∑r

µ=0 aj,λ,µvµ. In view of (5.1), the Cauchy-

Schwarz inequality allows us to estimate the absolute value |h−1
ε (Yjhε)| of

h−1
ε (Yjhε) as follows:

|h−1
ε (Yjhε)|2 = ε2

|∑r
λ=1 wj,λv̄λ|2

(
∑r

λ=0 vλv̄λ)
2
≤ ε2

(
∑r

λ=1 wj,λw̄j,λ)(
∑r

λ=1 vλv̄λ)

(
∑r

λ=0 vλv̄λ)
2

≤ ε2
∑r

λ=1wj,λw̄j,λ∑r
λ=0 vλv̄λ

≤ ε2
r∑

λ=1

r∑

µ=0

|aj,λ,µ|2 ≤ (C0ε)
2.

This together with (5.2) implies |ηj | ≤ 2C0ε for all j. Now for i ∈
{1, 2, . . . , `} and j, j′ ∈ {1, 2, . . . ,m}, the bilinear pairings (Xi,Yj)κ,
(Yj ,Yj′)κ on g (cf. [FM]; p.208) are estimated by

|(Xi,Yj)κ|2 =

∣∣∣∣
∫

M
ξiηj{ω(ε)}n/Aκ

∣∣∣∣
2

≤
∫

M
ξ2i {ω(ε)}n/Aκ

∫

M
|ηj |2{ω(ε)}n/Aκ

≤ (Xi,Xi)κ
∫

M
|ηj |2{ω(ε)}n/Aκ ≤ 4C2

0ε
2(Xi,Xi)κ,

|(Yi,Yj′)κ| =
∣∣∣∣
∫

M
ηjηj′{ω(ε)}n/Aκ

∣∣∣∣ ≤
∫

M
|ηjηj′ |{ω(ε)}n/Aκ ≤ 4C2

0ε
2,
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where (Xi,Xi)κ =
∫
M ξ2i {ω(ε)}n/Aκ > 0 is independent of the choice of

ε (cf. [FM;p.208]). By letting ε → 0, we have (Xi,Yj)κ = (Yj ,Yj′)κ = 0.

Hence,

Theorem 5.3. u = { Z ∈ g; (Z,W )κ = 0 for all W ∈ g }.
Remark. Let gq+1 3 (W0,W1, . . . ,Wq) 7→ (W0,W1,W2, . . . ,Wq)κ ∈ C

be the symmetric C-multilinear form as defined in [FM; p.209], where q is

an arbitrary positive integer. Then by the same argument as above, we can

easily show that u = {Z ∈ g; (Z,W1, . . . ,Wq)κ = 0 for all (W1, . . . ,Wq) ∈
gq}.

For each ω′ ∈ K, let fω′ denote the real-valued C∞ function on M such

that σ(ω′) − Cκ = �ω′fω′ . The associated Futaki character Fκ : g → C is

defined by

Fκ(W ) := (
√
−1)−1

∫

M
(Wfω′)ω′n/Aκ, W ∈ g.

This Fκ depends only on κ and is independent of the choice of ω′ in K.

Each element W in g is written as gradC

ω′ φ for some unique φ ∈ g̃ω′ . Then

Fκ(W ) =

∫

M
(σ(ω′)− Cκ)φω′n/Aκ,(5.4)

in view of the computation in [FM; (2.1)] (see also [LS]). We now consider a

one-parameter subgroup gt := exp(tZR), t ∈ R, of G, under the assumption

that

ω′ ∈ K and Z ∈ z(V ).(5.5)

Since g is a direct sum kC

ω′ ⊕ u as a vector space, Z is written as a sum

X + Y for some X ∈ kC

ω′ and Y ∈ u, where there uniquely exist ξ ∈ k̃C

ω′

and η ∈ g̃ω′ such that X = gradC

ω′ ξ and Y = gradC

ω′ η. Note also that

ωt := g∗t ω
′ is written uniquely as ωψt for some smooth path {ψt; t ∈ R} in

K̃ satisfying
∫
M ψ̇tω

n
t = 0 for all t ∈ R. Then ψ̇t = 2 Im(ξ + η) at t = 0.

Since σ(ω′)− prω′ σ(ω′) ∈ (R⊕ k̃ω′)⊥, we obtain
(∫

M

{
σ(ωt)− prωt σ(ωt)

}
ψ̇tω

n
t /Aκ

)

|t=0

= 2 Im

(∫

M

{
σ(ω′)− prω′ σ(ω′)

}
(ξ + η)ω′n/Aκ

)

= 2 Im

(∫

M

{
σ(ω′)− prω′ σ(ω′)

}
ηω′n/Aκ

)
.
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On the other hand, by Theorem 5.3,
∫
M prω′ σ(ω′)ηω′n/Aκ = 0. Further by

(5.4) and [N1],
∫
M σ(ω′)ηω′n/Aκ =

∫
M (σ(ω′) − Cκ)ηω′n/Aκ = Fκ(Y) = 0.

Hence, (∫

M

{
σ(ωt)− prωt σ(ωt)

}
ψ̇tω

n
t /Aκ

)

|t=0

= 0.(5.6)

Let V and µ̂V : HV → R be as in the previous section. For each g ∈ G,

the extremal Kähler vector field for g∗ω is V g := (g−1)∗V = Ad(g−1)V .

Replacing V by V g in the definition of HV , we obtain

HV g := {ω′ ∈ K;Vω′ = V g},

which is just the pullback g∗HV of HV via g. Then the corresponding func-

tional which replaces µ̂V will be denoted by µ̂g : HV g → R. We can actually

define µ̂g : HV g → R by

µ̂g(g∗ω′) := µ̂V (ω′) for all ω′ ∈ HV ,

where by (3.1), the functionals µ̂g and µ̂V g := µ + ηV g on HV g differ just

by a constant. Hence, if V g1 = V g2 for some g1, g2 ∈ G, the corresponding

functionals µ̂g1 , µ̂g2 differ by a constant. Obviously, µ̂e is just µ̂V if e is the

unit of G. Note that HV g1 ∩HV g2 = ∅ if V g1 6= V g2 . In view of

K =
⋃

g∈G

HV g ,

the functionals µ̂g : HV g → R, g ∈ G, glue together to define a G-invariant

functional µ̂ : K → R on K satisfying the equality

µ̂|HV g
= µ̂g, for all g ∈ G,

if we can show Proposition 5.7 below. Here, the G-invariance of µ̂ means

that the equality µ̂(g∗ω′) = µ̂(ω′) holds for all pairs (g, ω′) in G×K.

Proposition 5.7. If g ∈ Z(V ), then µ̂g = µ̂V .

Proof. If g ∈ Z(V ), then V g = V , and hence HV g = HV . Let θ be an

arbitrary element of HV . It then suffices to show µ̂V (g∗θ) = µ̂V (θ) for all

g ∈ Z(G). Take an arbitrary element X in z(V ), and we put ht := exp(tXR)
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and ωt := (ht)
∗θ for each t ∈ R. Since Z(V ) is connected, the proof is

reduced to showing the following infinitesimal equality:

d

dt
µ̂V (ωt)|t=0 = 0.

For some smooth path {ψt; t ∈ R} in K̃ satisfying
∫
M ψ̇tω

n
t /Aκ = 0, t ∈ R,

the Kähler form ωt above is written as ωψt for each t. Moreover, we write

X as gradC

ωt φt for some φt ∈ g̃ωt . Then by (4.4) and (5.6), we have the

following identity as required:

d

dt
µ̂V (ωt)|t=0 = −

(∫

M

{
σ(ωt)− prωt σ(ωt)

}
ψ̇tω

n
t /Aκ

)

|t=0

= 0.

For every quantized pair (M,κ), we can thus define a G-invariant func-

tional µ̂ : K → R as above. By [C1], all extremal Kähler metrics in the

cohomology class κ belong to K. On the other hand, the definition of µ̂

shows that

Theorem 5.8. An element ω′ of K is a critical point for the functional

µ̂ : K → R if and only if ω′ is an extremal Kähler metric.

Remark. In this remark, we delete the assumption that the pair (M,κ)

is quantized. Suppose that the Kähler class κ admits an extremal Kähler

metric ω. Let V := Vω be the associated extremal Kähler vector field. Then

by [C1; (3.9)]3, the subgroups Z(V ) and KC
ω of G coincide. Hence, in this

case, the functionals µ̂g : HV g → R, g ∈ G, glue together to define a G-

invariant functional µ̂ : K → R such that Theorem 5.8 above is valid even

when the pair (M,κ) is not necessarily quantized.

§6. Functional ν̂ whose critical points are “Kähler-Einstein

metrics”

Throughout this section this section, we assume that the Kähler class

κ in the introduction is 2πc1(M)R. Moreover, the anticanonical line bundle

K−1
M of M is chosen as the line bundle L in §5. Since the G-action on M

naturally lifts to a G-action on KM , the pair (M,κ) is quantized in the

3In the decomposition h = a ⊕ k′ ⊕ m ⊕
∑

λ>0
hλ = a ⊕ h′

0 ⊕
∑

λ>0
hλ in [C1;

(3.9)], note that the vector spaces k′ ⊕m⊕
∑

λ>0
hλ, h′

0, k
′ ⊕m are respectively g, z(V ),

kω ⊕
√
−1kω = kC

ω in our notation.
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sense of §5. By ∅ 6= K ⊂ K, we fix first of all an element ω in K. Then we

have a unique element θ of K such that R(θ) = ω. As in [BM1] (see also

[BM2] ), we assign to each pair (θ′, θ′′) ∈ K×K a real number N(θ′, θ′′) ∈ R

by

N(θ′, θ′′) :=

∫ b

a

{∫

M
(�θt u̇t) R(θt)

n/Aκ

}
dt,

where {ut; a ≤ t ≤ b} is an arbitrary piecewise smooth path in K̃ such that

the associated path θt := ωut , a ≤ t ≤ b, in K satisfies θ′ = θa and θ′′ = θb.

Let Dω : K̃ → R be the functional in [D1] (see also [DT] ) defined by

Dω(ψ) :=
√
−1

n−1∑

i=0

n− i
n+ 1

∫

M
∂ψ ∧ ∂̄ψ ∧ ωn−1−i ∧ ωiψ/Aκ

−
∫

M
ψωn/Aκ − log

(∫

M
efω−ψωn/Aκ

)
,

where for each ω′ ∈ K, the function fω′ ∈ C∞(M)
R

is defined by the

equalities R(ω′) = ω′ +
√
−1∂∂̄fω′ and

∫
M (1 − efω′ )ω′n/Aκ = 0. For each

ψ ∈ K̃, let θψ denote the unique element in K defined by R(θψ) = ωψ. It is

easy to check that

Dω(ψ) = N(θ, θψ).

Define a functional ν : K → R by setting ν(ωψ) := Dω(ψ) = N(θ, θψ) for

each ψ ∈ K̃. Given a pair (ω′, ω′′) ∈ K × K, let us consider an arbitrary

smooth path {ψt; a ≤ t ≤ b} in K̃ such that ω′ = ωa and ω′′ = ωa, where

we set ωt := ωψt, a ≤ t ≤ b, for simplicity. Then

d

dt
ν(ωt) = −

∫

M
(1− efωt )ψ̇tωnt /Aκ, a ≤ t ≤ b,(6.1)

and the set of the critical points for ν consists of all Kähler-Einstein metrics

on M . Let W ∈ g and ω′ ∈ K. Then W = gradC

ω′ φ for some φ ∈ g̃ω′ . By

the same computation as in [M4; §2], we obtain

∫

M
(1− efω′ )φω′n/Aκ =

∫

M
(σ(ω′)− n)φω′n/Aκ = Fκ(W ),(6.2)

where for κ as above, we have Cκ = n. As in the last section, let V denote the

extremal Kähler vector field Vω of (M,ω). Define a functional ν̂V : HV → R

by

ν̂V := ν + ηV .



VECTOR FIELD ENERGIES 57

Then by [M4; 2.1], we see that V = gradC

ωt prωt σ(ωt) = gradC

ωt prωt(1−efωt ).
It now follows from (1.1) and (6.1) that

d

dt
ν̂V (ωt) = −

∫

M
{(1− efωt )− prωt(1− efωt )}ψ̇tωnt /Aκ,(6.3)

for all a ≤ t ≤ b. Recall that an element ω′ of K is called a “Kähler-Einstein

metric” if 1− efω′ ∈ k̃ω′ (cf. [M4]). We now obtain

Proposition 6.4. An element ω′ of HV is a critical point for the

functional ν̂V : HV → R if and only if ω′ is a “Kähler-Einstein metric” in

the sense of [M4].

For each g ∈ G, the extremal Kähler vector field for g∗ω is V g :=

(g−1)∗V = Ad(g−1)V . Furthermore, HV g = {ω′ ∈ K;Vω′ = V g} = g∗HV .

In view of (3.1), we can define the corresponding functional ν̂g : HV g → R

by

ν̂g(g∗ω′) := ν̂V (ω′) for all ω′ ∈ HV .
Then ν̂g depends smoothly on g ∈ G, where ν̂g coincides with ν̂V if g is the

unit e of G. Moreover, if V g1 6= V g2 , then HV g1 ∩HV g2 = ∅. In view of

K =
⋃

g∈G

HV g ,

the functionals ν̂g : HV g → R, g ∈ G, glue together to define a G-invariant

functional ν̂ : K → R on K in such a way that

ν̂|HV g
= ν̂g, for all g ∈ G,

if we can show Proposition 6.5 below, where the G-invariance of ν̂ means

that the equality ν̂(g∗ω′) = ν̂(ω′) holds for all pairs (g, ω′) in G×K.

Proposition 6.5. If g ∈ Z(V ), then ν̂g = ν̂V .

Proof. Let X ∈ z(V ) and θ ∈ HV . Put ωt := (exp tXR)∗θ, t ∈ R. As in

the proof of Proposition 5.7, it suffices to show

d

dt
ν̂V (ωt)|t=0 = 0.

Here, ωt is written as ωψt for some smooth path {ψt; t ∈ R} in K̃, where∫
M ψ̇tω

n
t /Aκ = 0 for all t. Moreover, write X as gradC

ωt φt for some φt ∈ g̃ωt .
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By (6.2), the arguments deducing (5.6) is valid even when we replace σ(ω′)

and σ(ωt) respectively by 1− efω′ and 1− efωt . Therefore,

(∫

M

{
(1− efωt )− prωt(1− efωt )

}
ψ̇tω

n
t /Aκ

)

|t=0

= 0.(6.6)

Then by (6.3) and (6.6), we obtain the following required identity:

d

dt
ν̂(ωt)|t=0 = −

(∫

M

{
(1− efωt )− prωt(1− efωt )

}
ψ̇tω

n
t /Aκ

)

|t=0

= 0.

Recall that all “Kähler-Einstein metrics” in the cohomology class κ

belong to K (cf. [M4;§4]). From the definition of the functional ν̂ above, we

further obtain:

Theorem 6.7. An element ω′ of K is a critical point for the functional

ν̂ : K → R if and only if ω′ is a “Kähler-Einstein metric” in the sense of

[M4].

§7. Convexity of ν̂ applied to the proof of Theorem C

For each maximal compact subgroup K of G, let KK and K̃K denote

the set of all K-invariant elements in K and K̃, respectively (cf. §3). Then

K is written in the form

K = ∪K KK ,
where the union is taken over all maximal compact subgroups K of G. For

such a K, we always have KK 6= ∅, and there exists an element ω of K such

that Kω = K. Let k be the Lie subalgebra of g corresponding to the Lie

subgroup K of G. Then

KK = {ωψ;ψ ∈ K̃K} = {ω′ ∈ K; kω′ = k} ⊂ HV ⊂ K,

where V := Vω is the extremal Kähler vector field of the Kähler manifold

(M,ω). Note that, on KK , the functionals ν̂ and ν̂V coincide. We induce

connections on KK and K̃ respectively from the connections (cf. [M2]) on

K and K̃. The purpose of this section is to show that the functional ν̂ is

convex when restricted to KK . As an application of the convexity, we also

show the uniqueness of “Kähler-Einstein metrics” (see [M4]) for toric Fano

manifolds, modulo connected group actions, by the method as used by [G1]

for extremal Kähler metrics.
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Fix an arbitrary element ω0 of KK . Let ζ be a K-invariant element

in C∞(M)R such that
∫
M ζ ωn0 /Aκ = 0. For an 0 < ε � 1, choose a

smooth path ψ = {ψt;−ε ≤ t ≤ ε} in K̃K such that ψ̇t|t=0 = ζ and that∫
M ψ̇tω

n
t /Aκ = 0 for all t, where the associated path

ωt := ωψt , −ε ≤ t ≤ ε,(7.1)

in KK passes through ω0 at t = 0. We now consider the smooth one-

parameter family ψ̇ of C∞ functions on M defined by

ψ̇ := {ψ̇t;−ε ≤ t ≤ ε}.

Let us write ωt =
∑

α,β(gt)αβ̄dz
α ∧ dzβ̄ by using a system (z1, . . . , zn) of

holomorphic local coordinates on M . To each smooth one-parameter family

η = {ηt;−ε ≤ t ≤ ε} of C∞ functions on M , we put

(
D

∂t
η)t = η̇t −

1

2

∑

α,β

(gt)
β̄α

(
∂ψ̇t
∂zα

∂ηt

∂zβ̄
+

∂ψ̇t

∂zβ̄
∂ηt
∂zα

)
, −ε ≤ t ≤ ε.

Then D
∂tη = {(D∂tη)t;−ε ≤ t ≤ ε} is the smooth one-parameter family of

C∞ functions on M obtained as the covariant derivative of η along the path

ψ (cf. [M2]). In tangential directions of KK , the Hessian Hess ν̂ of ν̂ at ω0

is given by

(Hess ν̂)ω0
(ζ, ζ) =

d2

dt2
ν̂V (ωt)|t=0(7.2)

+

∫

M
{(1− efω0 )− prω0

(1− efω0 )}(D
∂t
ψ̇)t=0ω

n
0 /Aκ.

For required convexity, it now suffices to show that (Hess ν̂)ω0
(ζ, ζ) above is

always nonnegative. For smooth one-parameter families ξ = {ξt;−ε ≤ t ≤
ε}, η = {ηt;−ε ≤ t ≤ ε} of C∞ functions on M , we define

〈〈ξ, η〉〉t =

∫

M
ξtηt ω

n
t ,

where ωt, −ε ≤ t ≤ ε, are as in (7.1). For the extremal Kähler vector field

V , there exists a one-parameter family φ = {φt;−ε ≤ t ≤ ε} of real-valued

C∞ functions on M such that
∫
M φtω

n
t /Aκ = 0 for all t, and that

V = gradC

ωt φt, −ε ≤ t ≤ ε.
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Then by [FM],we have φt = φ0 +
√
−1 V ψt. Since ψt is a K-invariant

function, and since V ∈ k, it follows that (V + V̄ )ψ̇t = VRψ̇t = 0, and

therefore

φ̇t =
√
−1 V ψ̇t(7.3)

=
1

2

∑

α,β

(gt)
β̄α

(
∂ψ̇t
∂zα

∂φt

∂zβ̄
+

∂ψ̇t

∂zβ̄
∂φt
∂zα

)
, i.e.,

D

∂t
φ = 0,

(see [G1]). On the other hand, by ωt ∈ KK , we have V = gradC

ωt prωt(1 −
efωt ). It is now easy to check that φt = prωt(1−efωt ) for all t. For simplicity,

let 1 − ef denote the one-parameter family {1 − efωt ;−ε ≤ t ≤ ε} of C∞

functions on M . Then by (6.3),

d

dt
ν̂V (ωt) = −〈〈1− ef − φ, ψ̇〉〉t.(7.4)

We now put ϕt := ψt + Ct, where each Ct ∈ R is a constant depending

smoothly on t such that
∫
M ϕ̇tω̃

n
t = 0 for all t. Here, ω̃nt := efωtωnt /Aκ. We

also let

�̃t := �ωt +
∑

α,β

(gt)
β̄α ∂fωt
∂zα

∂

∂zβ̄
.

Consider the smooth one-parameter family ϕ̇ := {ϕ̇t;−ε ≤ t ≤ ε} of C∞

functions on M . Then by 〈〈1 − ef − φ, ψ̇〉〉t = 〈〈1 − ef − φ, ϕ̇〉〉t, replacing

ψ̇ by ϕ̇ in (7.4) and differentiating this with respect to t, we obtain

d2

dt2
ν̂V (ωt) = − 〈〈1− ef − φ, D

∂t
ϕ̇〉〉t − 〈〈

D

∂t
(1− ef − φ), ϕ̇〉〉t.(7.5)

Therefore, it follows from (7.2), (7.3) and (7.5) that

(Hess ν̂)ω0
(ζ, ζ) =

d2

dt2
ν̂V (ωt)|t=0 + 〈〈1− ef − φ, D

∂t
ψ̇〉〉t=0

=
d2

dt2
ν̂V (ωt)|t=0 + 〈〈1− ef − φ, D

∂t
ϕ̇〉〉t=0

= −〈〈D
∂t

(1− ef − φ), ϕ̇〉〉t=0 = −〈〈D
∂t

(1− ef ), ϕ̇〉〉t=0.

For simplicity, we put ft := fωt . Recall that ḟt = −�ωtϕ̇t− ϕ̇t+Bt for some

constant Bt ∈ R (cf. [F1]). Let Re(. . .) denote the real part. Then by

−〈〈D
∂t

(1− ef ), ϕ̇〉〉t
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=

∫

M



ḟt −

1

2

∑

α,β

(gt)
β̄α

(
∂ψ̇t
∂zα

∂ft

∂zβ̄
+
∂ψ̇t

∂zβ̄
∂ft
∂zα

)
 ϕ̇tω̃

n
t

and by
∫
M ϕ̇tω̃nt = 0, we now obtain

−〈〈D
∂t

(1− ef ), ϕ̇〉〉t =

∫

M

{
−Re(�̃tϕ̇t)− ϕ̇t

}
ϕ̇tω̃

n
t

= Re

{∫

M
−
(
�̃tϕ̇t + ϕ̇t

)
ϕ̇tω̃nt

}
≥ 0,

since the eigenvalues of −�̃t are all real, and its first positive eigenvalue is

bouded from below by 1 (cf. [F2]). Thus (Hess ν̂)ω0
(ζ, ζ) ≥ 0, as required.

Remark. Let M be a nonsingular toric variety defined over C. By the

convexity of µ̂V along KK , [G1] shows that the extremal Kähler metrics

in each Kähler class are unique up to the action of G = Aut0(M). By

the convexity of ν̂ along KK shown just above, we can similarly prove

in (7.6) the uniqueness of “Kähler-Einstein metrics” up to the action of

G = Aut0(M) when M is a nonsingular toric Fano variety.

(7.6) Proof of Theorem C. Let E be the set of all “Kähler-Einstein

metrics” (cf. [M4]) in the class 2πc1(M)R. It then suffices to show that

E is connected. Let ω0, ω1 ∈ E . Replacing ω1 by g∗ω1 for some g ∈ G if

necessary, we may assume that both ω0 and ω1 belong to KK for some

maximal compact subgroup K of G. Since M is toric, the arguments as in

[G1] allows us to connect ω0 and ω1 by a geodesic ωt, 0 ≤ t ≤ 1, in KK . In

view of the convexity of ν̂ along KK , we have

d

dt
ν̂(ωt)|t=0 =

d

dt
ν̂(ωt)|t=1 = 0;

d2

dt2
ν̂(ωt) ≥ 0, 0 ≤ t ≤ 1.

Therefore, ν̂(ωt) is constant on the closed interval {0 ≤ t ≤ 1}. Then

it is easily seen that ν̂(ωt) is a critical point of ν̂ for all t, and hence E is

connected. (In fact, the geodesic ωt, 0 ≤ t ≤ 1, can be written as4

ωt = {exp(tZR)}∗ω0

4In relation to this expression, we here note that Theorem 3.5 in [M2] is true under

the additional assumption that Y is in the center of kC
ω , though it is incorrect without

any such assumption.
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for some Z ∈
√
−1 z(k), where z(k) denotes the center of k. )
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