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ITERATION OF ANALYTIC MULTIFUNCTIONS

MACIEJ KLIMEK

Abstract. It is shown that iteration of analytic set-valued functions can be used
to generate composite Julia sets in CN . Then it is shown that the composite
Julia sets generated by a finite family of regular polynomial mappings of degree
at least 2 in CN , depend analytically on the generating polynomials, in the
sense of the theory of analytic set-valued functions. It is also proved that every
pluriregular set can be approximated by composite Julia sets. Finally, iteration
of infinitely many polynomial mappings is used to give examples of pluriregular
sets which are not composite Julia sets and on which Markov’s inequality fails.

§1. Introduction

Let P : CN → CN be a polynomial mapping of degree d and let

P = Pd + · · · + P0 be the expansion of P into homogeneous polynomial

mappings, where Pj is homogeneous of degree j. We say that P is regular

if P−1
d (0) = {0}. This class of mappings was originally studied in [5] (see

also [8]) in connection with invariance of L-regularity of sets and recently

has re-emerged in the context of complex dynamics.

The symbol L = L(CN ) denotes the Lelong class of plurisubharmonic

functions: u ∈ L if and only if u ∈ PSH(CN ) and

sup
z∈CN

(
u(z) − log+ ‖z‖

)
< ∞.

If E ⊂ CN , we define its pluricomplex Green function VE by the formula

VE(z) = sup{u(z) : u ∈ L and u ≤ 0 on E}, z ∈ CN ,

and we say that E is L-regular or pluriregular if VE is continuous at every

point of E. In particular, if E is compact, pluriregularity of E implies that

the function VE is continuous. Furthermore, if E is compact, then both

E and its polynomially convex hull Ê have the same pluricomplex Green
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function. (For more details see e.g. [8].) By R we will denote the family of

all compact polynomially convex L-regular subsets of CN . It can be shown

(see [9]), that the formula

Γ(E,F ) = max{‖VE‖F , ‖VF ‖E}, E, F ∈ R,

defines a metric on R and that this metric space is complete. (If φ is a

complex-valued function on a set S, then the symbol ‖φ‖S denotes the

supremum of |φ| on S.) Note that Γ(E,F ) is well defined for all pluriregular

compact sets E,F and Γ(E,F ) = Γ(Ê, F̂ ).

Let P1, . . . , Pk be regular polynomial mappings of degree at least 2. We

know that P−1
j (E) ∈ R for any E ∈ R and that

VP−1

j
(E) =

1

deg Pj
(VE ◦ Pj), j = 1, . . . , k.

(See [5] or [8] for more information.) Consequently (see [9]), the mapping

E 7→




k⋃

j=1

P−1
j (E)




∧

,

where ∧ denotes the polynomial hull, is a contraction of the complete

space (R, Γ). The unique fixed point of this contraction is denoted by

K+[P1, . . . , Pk] and is called the composite Julia set of the mappings P1, . . . ,

Pk.

The internal structure of the set K+[P1, . . . , Pk] can be described in

terms of orbits. Define

Σk = {σ = (σ1, σ2, . . .) : σj ∈ {1, . . . , k}} .

If z ∈ CN and σ ∈ Σk, we define the σ-orbit of z as the sequence (Pσn ◦
· · · ◦Pσ1

)(z), where n ≥ 1. Let S+
σ [P1, . . . , Pk] be the set of all points in CN

whose σ-orbits are bounded and let

S+[P1, . . . , Pk] =
⋃

σ∈Σk

S+
σ [P1, . . . , Pk].

It is not difficult to check that the set S+[P1, . . . , Pk] is compact (see [12]).

It was shown in [10] that the composite Julia set K+[P1, . . . , Pk] is equal

to the polynomially convex hull of S+[P1, . . . , Pk]. In the case of a single
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regular mapping P , the set K+[P ] = S+[P ] is simply the filled-in Julia set

of P .

In fact, the above results remain true for a more general class of proper

polynomial mappings (see [10] for details) and, as we will show below, they

can be generalized in a satisfactory way to the case of set-valued analytic

mappings.

If (X,d) is a metric space then the symbol K(X) will denote the set of

all (non-empty) compact subsets of X endowed with the Hausdorff metric

χd(E,F ) = max{‖δE‖F , ‖δF ‖E},

where δL(x) = dist (x,L) for x ∈ X and L ∈ K(X). Let Ω1 and Ω2 be

open subsets of CN1 and CN2 , respectively. According to S lodkowski [21]

a mapping f : Ω1 → K(Ω2) is said to be an analytic multifunction or an

analytic set-valued function if the following two conditions are satisfied:

• f is upper semicontinuous, i.e., for any z0 ∈ Ω1 the function z 7→
‖δf(z0)‖f(z) is upper semicontinuous in the usual sense;

• if z0 ∈ Ω1 and u is a plurisubharmonic function in a neighbourhood

of the set {z0} × f(z0), then the function

z 7→ max u ({z} × f(z))

is plurisubharmonic in a neighbourhood of z0.

The family of all such functions will be denoted by AMF(Ω1, Ω2). We say

that f ∈ AMF(Ω1, Ω2) is open at a point a ∈ Ω1 if f(a) is contained in

the interior of f(U) for some neighbourhood U of a. By |f | we will denote

the non-negative plurisubharmonic function z 7→ max{|w| : w ∈ f(z)}. If

S ⊂ Ω1, then f(S) =
⋃

z∈S f(z).

Note that a more restrictive definition of analyticity also exists [22] and

multifunctions such as above are then called weakly analytic. (For further

information about analytic multifunctions see also [17], [18], [23], [6], [7]).

If u ∈ PSH(CN ), we define the growth function of u by the formula

M(u, r) = sup u
(
B̄(0, r)

)
for all r > 0. (Here, and in other places, the

symbol B̄(a, r) will denote the closed ball with centre at a and radius r.)

The function r 7→ M(u, er) is convex and increasing. We define the order

%(u) of u as

ρ(u) = lim sup
r→∞

logM(u+, r)

log r
.
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Because of Liouville’s theorem the order of an entire plurisubharmonic func-

tion is always non-negative. Note that if α > 0, then αρ(eu) = ρ(eαu). Note

also that if ρ′ > ρ (exp(u)), then

sup
z∈CN

(
u(z) − ρ′ log+ ‖z‖

)
< ∞.

Consequently (see e.g. Proposition 5.2.1 in [8]), if u ∈ PSH(CN ) and ρ =

ρ (exp(u)) > 0, then ρ−1u ∈ L.

Observe that if P1, . . . , Pk are regular polynomial mappings, then the

set-valued function

z 7→ P−1
1 (z) ∪ · · · ∪ P−1

k (z)

is analytic, open (at every point) and the order of its modulus is 1/ min{d1,

. . . , dk}. Just as in the case of regular mappings, if one wants to iterate

analytic multifunctions one has to ask about the set-valued analytic func-

tions with the property that images of pluriregular sets are pluriregular.

The following result provides an answer to this question thus generalizing

earlier results by Plesniak, Nguyen Thanh Van, Sadullaev and the author

(see [14], [4], [5], [13], [19]). Recall that if E ⊂ Ω ⊂ CN , where Ω is open,

then the relative extremal function uE,Ω is defined by the formula

uE,Ω(z) = sup{u(z) : u ∈ PSH(Ω), u ≤ −1 on E, u ≤ 0 in Ω}

for all z ∈ Ω (see e.g. [8]).

Theorem 1. Let f : Ω1 → K(Ω2) be an analytic multifunction, where

Ω1 ⊂ CN1 and Ω2 ⊂ CN2 are open sets, and let E ⊂ Ω1.

(i) If f is open almost everywhere in Ω1, then

max u∗
f(E),Ω2

(f(z)) ≤ u∗
E,Ω1

(z), z ∈ Ω1.(1)

(ii) If Ω1 = Ω2 = CN and |f | is of finite order, then

max Vf(E) (f(z)) ≤ ρ(|f |)VE(z), z ∈ CN .(2)

(iii) If Ω1 = Ω2 = CN , |f | is of finite order, f is open almost everywhere,

and E is compact, then

max V ∗
f(E) (f(z)) ≤ ρ(|f |)V ∗

E(z), z ∈ CN .(3)
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The above result allows us to iterate analytic multifunctions almost

exactly like in the case of regular polynomials. The necessary terminology

and the main result (Theorem 4) are deferred to Section 3.

Apart from the set-valued functions given by finite families of proper

polynomial mappings we can have more general analytic multifunctions that

are relevant in this context. Let P∗
d denote the family of all regular poly-

nomial mappings P : CN → CN of degree d. The family of all polynomial

mappings P : CN → CN of degree not greater than d will be denoted

by Pd. If ν(d) denotes the number of coefficients of a polynomial mapping

(from CN to CN ) of degree d, then P∗
d can be regarded as an open subset

of Cν(d) = Pd. In what follows, the polynomial map P regarded as an el-

ement of Cν(d) will also be denoted by P — the appropriate meaning will

be determined by the context. In Section 4 we show that composite Julia

sets depend analytically on the generating polynomials. This, in particular,

provides further examples of families of multifunctions of the type described

in Theorem 4. We prove the following.

Theorem 2. If d1, . . . , dk ≥ 2 are integers and σ ∈ Σk, then the set-

valued functions

(P1, . . . , Pk) 7→ S+
σ [P1, . . . , Pk]

and

(P1, . . . , Pk) 7→ K+[P1, . . . , Pk],

are analytic multifunctions in P∗
d1

× · · · × P∗
dk

. If H1 ∈ P∗
d1

, . . . ,Hk ∈ P∗
dk

are homogeneous, then the plurisubharmonic function

(P1, . . . , Pk) 7→ sup
{
‖z‖ : z ∈ K+[H1 + P1, . . . ,Hk + Pk]

}
,(4)

defined on Pd1−1 × · · · × Pdk−1, is of order one.

When n = 1 and k = 1 the analyticity of P 7→ K+[P ] follows from a

result of Baribeau and Ransford [1] combined with the upper semicontinuity

property shown by Douady [2].

In Section 5 we show that every pluriregular set can be approximated by

composite Julia sets (generated by finite families of quadratic polynomials).

Theorem 3. The family of all composite Julia sets in CN is a proper

dense subset of the metric space (R, Γ).
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The fact that not all sets in R are composite Julia sets follows from an

example given by Plesniak [15] and is related to two important properties

of compact sets: Markov’s inequality and the Hölder Continuity Property.

We say that a compact set E ⊂ CN has Markov’s Property if there exist

positive constants M and r such that for every polynomial p : CN → C

‖grad p‖E ≤ M(deg p)r‖p‖E .

We say that E has the Hölder Continuity Property if there exist positive

constants C, κ such that

VE(z) ≤ Cdist(z,E)κ, if dist(z,E) ≤ 1.

It follows from Cauchy’s estimates that the Hölder Continuity Property

implies Markov’s Property. Plesniak has constructed an example of a Cantor

set K ⊂ R which is regular but does not have Markov’s property (see

Propositions 1 and 2 in [15]). Consequently, VK does not satisfy the Hölder

Continuity Property and so K cannot be a composite Julia set (see [12]).

In the last section of the paper we construct new examples of plurireg-

ular sets without Markov’s Property. The novelty element is the fact that

these sets are obtained by polynomial iteration, except that we have to

iterate infinitely many polynomials.

Most of the paper was written in May 1998 while the author was a

visiting professor at the Laboratoire de Mathematiques Emil Picard, Uni-

versité Paul Sabatier in Toulouse, France. The author wishes to thank that

institution for its hospitality. The author is also grateful to Marta Kosek

and Zbigniew S lodkowski for helpful observations.

§2. Invariance of pluriregularity

The goal of this section is to prove Theorem 1.

Proof. The inequality in (1), but without the upper semicontinuous

regularization on the left side, is a direct consequence of the definition of

the relative extremal functions. Consequently, if v = uf(E),Ω2
and RHS

stands for the right-hand side of (1), we can write that

g(w) := [z 7→ max v (f(z))]∗ (a) ≤ RHS(w), w ∈ Ω1.

Note that the functions g and h(z) := max v∗ (f(z)) are plurisubharmonic

in Ω1 and hence, to complete the proof of Theorem 1, it suffices to show
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that h ≤ g almost everywhere in Ω1. If f is open at a ∈ Ω1, then

h(a) ≤ lim
r→0

(sup{v(z) : z ∈ f (B(a, r))})

= lim
r→0

(sup{max v (f(z)) : z ∈ B(a, r)})

= g(a).

Consider first the case when |f | is bounded. Then, by Liouville’s the-

orem for multifunctions (see [17]), the multifunction z 7→ f̂(z) is constant

which implies that the left-hand side of (2) vanishes. Moreover f could not

be open at any point because of compactness of f(E), and so ρ(|f |) > 0 in

(3). On the other hand, if |f | is not bounded, then the convex non-decreasing

function h(r) = M(log+ |f |, er), r > 0, satisfies the inequality h(s) < h(t)

for some s < t. Let g(r) = ar + b be an affine function such that g ≤ h and

g(t) = h(t). Then

0 < a = lim sup
r→∞

g(r)

r
≤ lim sup

r→∞

h(r)

r
= ρ(|f |).

If ρ(|f |) > 0, u ∈ L(CN ), and u ≤ 0 on f(E), then define

v(z) =
1

ρ(|f |)
max u(f(z)), z ∈ CN .

Obviously v ∈ L(CN ) and v ≤ 0 on E, and this gives (2).

Clearly (2) implies (3), but without the upper semicontinuous regular-

ization on the left-hand side. If E is pluripolar, then the right-hand side is

identically +∞ an so we obtain (3). If E is not pluripolar, we can repeat

the reasoning from the beginning of the proof but with v = Vf(E) and RHS

denoting the right-hand-side of (3).

Corollary 1. Let f ∈ AMF(CN ,CN ) be open almost everywhere

in CN and such that |f | is of finite order. If E ∈ K(CN ) is pluriregular,

then so is f(E).

§3. Iteration of set-valued functions

When the set Σk (defined in the introduction) is endowed with the

metric

d(σ, τ) =

∞∑

j=1

|σj − τj |

kj
,
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it is often referred to as the Cantor set of k symbols. Let σ = (σ1, σ2, . . .) ∈
Σk and let z0 ∈ CN . Let fj : CN → 2CN

be set-valued functions for j =

1, . . . , k. A sequence {zj}j≥0 of points in CN is said to be a backward σ-orbit

of z0 (with respect to {f1, . . . , fk}), if zj ∈ fσj+1
(zj+1) for j = 0, 1, 2, . . .. Of

course z0 may have more than one backward σ-orbit. By S−
σ [f1, . . . , fk] we

will denote the set of points whose all backward σ-orbits are bounded.

If gj : CN → CN are functions, where j = 1, . . . , k, then by a forward

σ-orbit of z0 (with respect to {gj}j=1,...,k) we mean the recursively defined

sequence: zj+1 = gσj+1
(zj) for j = 0, 1, . . . . By S+

σ [g1, . . . , gk] we will denote

the set of all points whose forward σ-orbits are bounded. Note that if the

mappings gj are surjective, then a backward σ-orbit of a point z0 with

respect to {z 7→ g−1
j (z)}j=1,...,k is uniquely determined by that point and

is exactly the same as the forward σ-orbit of z0 with respect to {z 7→
gj(z)}j=1,...,k. If k = 1, we drop the letter σ from the above definitions.

Let f : CN → 2CN

be a set-valued function such that f(CN) = CN .

We define the multivalued inverse of f to be the function f−1 : CN → 2C
N

given by the formula

f−1(w) = {z ∈ CN : w ∈ fj(z)}, w ∈ CN .

Clearly (f−1)−1 = f and

f−1(S) = {z ∈ CN : S ∩ f(z) 6= ∅}, S ∈ 2CN

.

Recall that an iterated function system on a complete metric space

(X,d) is a family {f1, f2, . . . , fk} of contractions of X (see [3]). Any such

family generates the mapping H : K(X) → K(X) given by the formula

H(K) = f1(K) ∪ f2(K) ∪ . . . ∪ fk(K), K ∈ K(X).

Since the mapping H is a contraction of the complete metric space

(K(X), χd), it has a unique fixed point Fix (H). Furthermore, Fix (H) is

the closure of the set of fixed points of the contractions fσj
◦ · · · ◦ fσ2

◦ fσ1
,

where σi ∈ {1, 2, . . . , k} for i = 1, 2, . . . , j and j = 1, 2, . . . (see [3]). We will

refer to H as the Hutchinson mapping associated with the iterated function

system {f1, . . . fk}. The set Fix(H) is sometimes called the attractor of the

system {f1, . . . fk}.

Theorem 4. Suppose that f1, . . . , fk ∈ AMF(CN ,CN ) are such that

ρ (|fj|) < 1 and that fj(R) ⊂ R for j = 1, . . . , k.
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(i) For any σ ∈ Σk there exists R > 0 such that the sequence

fσ1
(fσ2

(. . . (fσj
(B(0,R))) . . .))

is decreasing (with respect to inclusion) and

S−
σ [f1, . . . , fk] =

∞⋂

j=1

fσ1
(fσ2

(. . . (fσj
(B(0,R))) . . .)).

(ii) For any σ ∈ Σk and any positive integer m, the mapping fσm ◦ fσm−1
◦

· · · ◦ fσ1
: R → R is a contraction with the contraction ratio equal to

the product of the orders of the functions |fσm |, |fσm−1
|, . . . , |fσ1

| and

with the unique fixed point S−[fσm ◦ · · · ◦ fσ1
] ∈ R.

(iii) For any σ∈Σk and E∈R, the sequence {fσ1
(fσ2

(. . . (fσj
(E)) . . .))}j≥1

converges in (R, Γ) to S−
σ [f1, . . . , fk]. Moreover, for any set E ∈ R

Γ
(
S−

σ [f1, . . . , fk], fσ1
(fσ2

(. . . (fσj
(E)) . . .))

)
(5)

≤
ρj

1 − ρ
max
1≤i≤k

{Γ(E, fi(E))},

where ρ = max{ρ (|fj|) : j = 1, . . . , k}. In particular, the mapping

σ 7→ S−
σ [f1, . . . , fk]

is continuous.

(iv) For each σ ∈ Σk

S−
σ [f1, . . . , fk] = lim

m→∞
S−[fσm ◦ · · · ◦ fσ1

].

(v) The family {E 7→ fj(E)}j=1,...,k is an iterated function system on

(R, Γ) whose attractor is the set

{S−
σ [f1, . . . , fk] : σ ∈ Σk} ∈ Comp (R).

(vi) For every E ∈ R define F(E) to be the polynomially convex hull of set

f1(E) ∪ · · · ∪ fk(E). Then F is a contraction of (R, Γ) and its unique

fixed point is the polynomially convex hull of the set

⋃

σ∈Σk

S−
σ [f1, . . . , fk].
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Proof. The first two statements follow directly from the definition of

ρ(|fj |), Formula (2) and the fact that (R, Γ) is complete (see [9]).

To show the third one fix σ ∈ Σk and E ∈ R. Define

Ej = fσ1
(fσ2

(. . . (fσj
(E)) . . .))

and

C = max
1≤i≤k

{Γ(E, fi(E))}.

First we will show that {Ej}j≥1 is a Cauchy sequence in (R, Γ). Since the

mappings fi : R → R are contractions with the contraction ratio ρ, we have

the following estimates.

Γ(Ej+m, Ej) ≤
m−1∑

i=0

Γ(Ej+i, Ej+i+1) ≤ C
m−1∑

i=0

ρj+i = C
ρj(1 − ρm)

1 − ρ
.(6)

This shows that {Ej}j≥1 is a Cauchy sequence in the complete metric

space (R, Γ). Note that the limit depends on σ but not on the choice of

E. Indeed, if F ∈ R and Fj = fσ1
(fσ2

(. . . (fσj
(F )) . . .)), then Γ(Ej , Fj) ≤

ρjΓ(E,F ) → 0 as j → ∞. In particular, we can take the sequence from the

first part of the theorem. Letting m go to ∞ in (6), we obtain (5).

The continuity of the mapping σ 7→ S−
σ [f1, . . . , fk] is a direct conse-

quence of the following observation. If σ, τ ∈ Σk and d(σ, τ) < k−j , then

(σ1, . . . , σj) = (τ1, . . . , τj) and — according to (5) —

Γ(S−
σ [f1, . . . , fk], S−

τ [f1, . . . , fk])

≤ Γ
(
S−

σ [f1, . . . , fk],Kj

)
+ Γ

(
S−

τ [f1, . . . , fk],Kj

)

≤ 2
ρj

1 − ρ
max
1≤i≤k

{Γ(E, f−1
i (E)),

where Kj = fσ1
(fσ2

(. . . (fσj
(E)) . . .)) = fτ1(fτ2(. . . (fτj

(E)) . . .)).

It is clear that periodic sequences are dense in Σk. Moreover, if σ is ob-

tained as a periodic repetition of the block (σ1, . . . , σj), then S−
σ [f1, . . . , fk]

= S−[fσj
◦ · · · ◦ fσ1

]. Therefore the third part of the theorem follows from

the continuity of the mapping σ 7→ S−
σ [f1, . . . , fk].

The next statement is a direct consequence of Hutchinson’s result men-

tioned above.
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Now we will verify the last part of the theorem. Let H : K(R) → K(R)

be the Hutchinson mapping associated with the iteration function system

{E 7→ fj(E)}j=1,...,k. We know that

H1({Fix(F)}) = {fσ1
(Fix(F)) : σ1 ∈ {1, . . . , k}}

H2({Fix(F)}) = {(fσ1
◦ fσ2

)(Fix(F)) : σ1, σ2 ∈ {1, . . . , k}}

. . . . . . . . . . . . . . .

Hp({Fix(F)}) =
{

(fσ1
◦ · · · ◦ fσp)(Fix(F)) : σ1, . . . , σp ∈ {1, . . . , k}

}
.

Note that if E1, E2, . . . , Em ∈ R are such that

Fix(F) =




m⋃

j=1

Ej




∧

,

then

Fix(F) = F (Fix(F)) =




k⋃

i=1

m⋃

j=1

fi(Ej)




∧

.

Therefore, by induction,
(⋃

Hp({Fix(F)})
)∧

= Fix(F), p = 1, 2, . . . .

Furthermore

lim
p→∞

χΓ (Hp({Fix(F)}),Fix(H)) = 0.

Take ε > 0. Choose p so that

χΓ (Hp({Fix(F)}),Fix(H)) < ε.

The set Hp({Fix(F)}) is finite and its elements, say B1, . . . , Bl ∈ R, satisfy

the equality Fix(F) = (B1 ∪ B2 ∪ · · · ∪ Bl)
∧ (see above). It follows from

the definition of the Hausdorff metric that the Γ-distance of these sets

from Fix(H) is less than ε. Therefore we can find A1, . . . , Al ∈ Fix(H)

such that Γ(Aj, Bj) < ε for j = 1, . . . , l. In view of Corollary 2 in [9],

Γ(Fix(F),
⋃

Aj) < ε. But since ε can be arbitrarily small and
⋃

Aj ⊂
⋃

Fix(H) ⊂ Fix(F),

we can conclude that

Γ
(⋃

Fix(H), Fix(F)
)

= 0.

In other words, the two sets have the same polynomially convex hull as

required.
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§4. Analyticity of families of composite Julia sets

The proof of the Theorem 2 will be based on several lemmas.

Let P : CN → CN be a regular polynomial mapping. We say that

r > 0 is an escape radius for P if for any point z ∈ CN the inequality

‖z‖ > r implies that the forward orbit of z under P escapes to infinity,

that is limn→∞ ‖Pn(z)‖ = ∞. First we show an escape radius formula for

regular polynomial mappings. The formula is a direct generalization of its

well-known one variable counterpart.

For any P ∈ P∗
d we define the floor of P as the number

bP c = inf
‖z‖=1

‖Pd(z)‖ > 0,

where Pd is the homogeneous part of P of degree d.

Lemma 1. Let

P = Pd + Pd−1 + · · · + P0 : CN −→ CN

be a regular polynomial mapping, where Pj denotes the homogeneous part

of P of degree j and d ≥ 2. Then the formula

r(P ) =
1 + bPdc + ‖Pd−1‖ + · · · + ‖P0‖

bPdc

gives an escape radius of P which depends continuously on P . Furthermore

‖P (z)‖ ≥
1 + bPdc

r(P )
‖z‖d if ‖z‖ ≥ r(P ).

In particular, if R ≥ r(P ), then P−1
(
B(0, (1 + bPdc)R)

)
⊂ B(0,R).

Proof. If ‖z‖ ≥ r(P ), then (by the triangle inequality and the definition

of r(P )) we have:

‖P (z)‖

‖z‖d
≥ bPdc −

‖Pd−1‖ + · · · + ‖P0‖

r(P )
=

1 + bPdc

r(P )
.

In particular, if ‖z‖ > R ≥ r(P ), then, since d ≥ 2, we have ‖P (z)‖ >

(1 + bPdc)R and thus ‖Pn(z)‖ > (1 + bPdc)
nR → ∞ as n → ∞.

The next lemma comes from [2].
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Lemma 2. Let X and Y be metrizable topological spaces. Assume that

X is locally compact and f : X → K(Y ) is a set-valued mapping. Define

the graph of f as the set

Graph(f ) = {(x, y) ∈ X × Y : y ∈ f(x)}.

The following conditions are equivalent.

• The mapping f is upper semicontinuous.

• Graph(f ) is closed in X×Y and the natural projection πX :Graph(f )→
X is proper.

• Graph(f ) is closed in X × Y and every point in X has a neigh-

bourhood V such that πY (π−1
X (V )) is relatively compact in Y , where

πY : Graph(f ) → Y is the natural projection.

Lemma 3. If P : CN → CN is a regular mapping and a ∈ CN , then

P 7→ P−1(a) is an analytic multifunction on P∗
d .

Proof. Without loss of generality we may suppose that a = 0. Then

P−1(0) ⊂ B(0, r(P )) for every P . We use Lemma 2 with X = P∗
d , Y = CN

and f(P ) = P−1(0). The set Graph(f ) is an analytic subvariety of P∗
d ×CN .

Moreover

Graph(f ) ⊂ P∗
d × B(0, r(P )),

and thus the last condition in Lemma 2 is satisfied. Hence πX is a branched

covering and so for any u ∈ L the function

P 7→ sup u
(
{P} × P−1(0)

)

is plurisubharmonic. This implies analyticity of f (see e.g. [7]).

Lemma 4. If P : CN → CN is a regular mapping, then P 7→ P−1(B(0,

1)) is an analytic multifunction on P∗
d .

Proof. If u ∈ L, then

sup u
(
{P} × P−1(B(0, 1))

)
= sup

‖a‖≤1
sup u

(
{P} × P−1(a)

)
.

Consequently it suffices to show that

f : P∗
d −→ K(CN ), P 7→ P−1(B(0, 1)),
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is upper semicontinuous. But this follows from Lemma 2 because

Graph(f ) ⊂ P∗
d × B(0, r(P )).

Proof of Theorem 2. Consider the following set-valued mappings:

fσ,n : P∗
d1

× · · · × P∗
dk

−→ R,(P1, . . . , Pk) 7→ (Pσ1
◦ · · · ◦ Pσn)−1

(
B(0, 1)

)
;

fσ : P∗
d1

× · · · × P∗
dk

−→ R,(P1, . . . , Pk) 7→ S+
σ [P1, . . . , Pk];

f : P∗
d1

× · · · × P∗
dk

−→ R,(P1, . . . , Pk) 7→ K+[P1, . . . , Pk],

where σ = (σ1, σ2, . . .) ∈ Σk. Lemma 4 tells us that fσ,n is analytic. In view

of [10],

lim
n→∞

fσ,n(P1, . . . Pk) = fσ(P1, . . . Pk)

with respect to Γ. Observe that if v ∈ L and E,F ∈ R, then

| sup v(E) − sup v(F )| ≤ Γ(E,F ).

As a consequence, analyticity of the function fσ will follow if we show

upper semicontinuity. We are going to use the last condition in Lemma

2. First observe that Graph(fσ) is closed because it is the complement in

P∗
d1

× · · · × P∗
dk

× CN of the set

⋃

n≥1

{(P1, . . . , Pk, z) : ‖(Pσn ◦ · · · ◦ Pσ1
)(z)‖ > R} ,

where R ≥ max{r(P1), . . . , r(Pk)}. Secondly

Graph(fσ) ⊂ P∗
d1

× · · · × P∗
dk

× B(0,R),

and thus Lemma 2 implies upper semicontinuity of fσ.

Consider

g : P∗
d1

× · · · × P∗
dk

−→ K(CN ), (P1, . . . , Pk) 7→
⋃

σ∈Σk

S+
σ [P1, . . . , Pk].

Using the same argument as in the proof of Proposition 4.4 in [12], we can

show that Graph(g) is closed in P∗
d1

× · · · × P∗
dk

× CN . Since

Graph(g) ⊂ P∗
d1

× · · · × P∗
dk

× B(0, max{r(P1), . . . , r(Pk)}),
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Lemma 2 gives us upper semicontinuity of g. This, in turn, implies upper

semicontinuity of f . (Given a neighbourhood V of K = f(P1, . . . , Pk), there

exists a Runge domain D such that K ⊂ D ⊂ V . Since g is upper semicon-

tinuous, there is a neighbourhood U of (P1, . . . , Pk) such that g(Q) ∈ D for

any Q ∈ U . Hence f(Q) ∈ D for any Q ∈ U .)

Now it suffices to observe that if u is a function of class L on

Cν(d1)+...+ν(dn)+N and Q = (P1, . . . , Pk), then

sup u ({Q} × f(Q)) = sup u ({Q} × g(Q)) = sup
σ∈Σk

sup u ({Q} × fσ(Q)) .

Now we will check the last statement of Theorem 2. Recall that if

u ∈ PSH(CN ) then the order of u is the number

ρ(u) = lim sup
r→∞

log (sup {max{0, u(z)} : ‖z‖ ≤ r})

log r
.

Let u denote the function given by (4). The fact that the order of u is not

greater than one follows directly from the escape radius formula because

K+[H1 + P1, . . . ,Hk + Pk] ⊂ B(0, max{r(H1 + P1), . . . , r(Hk + Pk)}).

Since K+[H1 +P1, . . . ,Hk +Pk] contains all K+[Hj +Pj] = S+[Hj +Pj ], it

suffices to show equality for k = 1. So suppose a homogeneous polynomial

mapping H ∈ P∗
d is fixed. Let v ∈ CN be a vector of norm one. Then nv

is a fixed point for the polynomial mapping Qn : z 7→ H(z − nv) + nv. So

nv ∈ K+[Qn] and

1 ≤ lim sup
n→∞

log (sup{‖z‖ : z ∈ K+[Qn]})

log n
≤ ρ(u),

as required.

Example 1. Let Pj , Qj : CN → CN be regular polynomial mappings

of degree at least two and assume that Pj(0) = 0 for j = 1, . . . , k. Define

the analytic multifunctions fj : CN → R by the formula

c 7→ Q−1
j

(
K+[Pj + c]

)
, c ∈ CN , j = 1, 2, . . . , k.

Then the functions f1, . . . , fk satisfy the assumptions of Theorem 4.
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Example 2. Fix σ ∈ Σk and homogeneous polynomials H1 ∈ P∗
d1

, . . . ,

Hk ∈ P∗
dk

, where d1, . . . , dk ≥ 2. Define g : Pd1−1 × · · · × Pdk−1 → R by the

formula:

g(P1, . . . , Pk) = S+
σ [H1 + P1, . . . ,Hk + Pk].

We claim that

VGraph(g)(P1, . . . , Pk, z)

= VS+
σ [H1+P1,...,Hk+Pk](z)

= lim
j→∞

1

dσ1
+ · · · + dσk

log+
∥∥((Hσj

+ Pσj
) ◦ · · · ◦ (Hσ1

+ Pσ1
)
)

(z)
∥∥,

for (P1, . . . , Pk, z) from the complement of Graph(g) and that the con-

vergence is locally uniform. Note that if we can show that the function

VS+
σ [H1+P1,...,Hk+Pk](z) is plurisubharmonic and of class L, then the first of

the two equalities will follow.

Assume that R > max{r(H1 + P1), . . . , r(Hk + Pk)}. Let

Ej [P1, . . . , Pk] =
(
(Hσj

+ Pσj
) ◦ · · · ◦ (Hσ1

+ Pσ1
)
)−1 (

B(0,R)
)
.

Then

VEj [P1,...,Pk](z)

=
max

{
0, log

∥∥((Hσj
+ Pσj

) ◦ · · · ◦ (Hσ1
+ Pσ1

)
)

(z)
∥∥ − log R

}

dσ1
+ . . . + dσk

.

Clearly the function (P1, . . . , Pk, z) 7→ VEj [P1,...,Pk](z) is in

L(Cν(d1−1)+···+ν(dk−1)+N ). Moreover, it was shown in [10] (see also (5)),

that if δ = min{d1, . . . , dk}, then

Γ(S+
σ [H1 + P1, . . . ,Hk + Pk], Ej [P1, . . . , Pk])

≤
1

δj−1(δ − 1)
max
1≤i≤k

log
‖Hi + Pi‖B(0,R)

R
,

which justifies our claim.
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§5. Density of families of composite Julia sets

In this section we show that every pluriregular set can be approximated

in the sense of the metric Γ by composite Julia sets. In fact these sets will

be generated by quadratic polynomials. In what follows P (a, r) will denote

the closed polydisc with centre at a and radius r.

Proof of Theorem 3. Since all composite Julia sets have Markov’s prop-

erty [12] and there are pluriregular sets without Markov’s property [15],

what remains to be shown is density of Julia sets in R.

Suppose that E ∈ R and ε > 0. We may assume that the interior of E

is non-empty and E = int(E), for otherwise we may replace E by a finite

union E1 ∪ . . . ∪ El of closed polydiscs, with radii so small that

E ⊂ E1 ∪ · · · ∪ El ⊂ {z ∈ CN : VE(z) < ε}.

Then

Γ (E1 ∪ · · · ∪ El, E) = Γ
(
(E1 ∪ · · · ∪ El)

∧, E
)

< ε.

Let δ > 0 be chosen so that the δ-dilation of E (with respect to

the polydisc norm) is contained in {z ∈ CN : VE(z) < ε}. Let a =

(a1, . . . , aN ) ∈ int(E) and let R > 0 be such that E ⊂ P (a,R). For ev-

ery b = (b1, . . . , bN ) ∈ E we define

Pb : CN −→ CN

by the formula

Pb(z1, . . . , zN ) =

(
R

δ2
(z1 − b1)2 + a1, . . . ,

R

δ2
(zN − bN )2 + aN

)
.

Then

b ∈ P−1
b (int(E)) ⊂ P−1

b

(
P (a,R)

)
= P (b, δ).

Since E is compact, we can find a finite number of points b1, b2, . . . , bk such

that

E ⊂
k⋃

j=1

P−1
bj (int(E)) ⊂ (δ − dilation of E).

Hence

Γ


E,

k⋃

j=1

P−1
bj (int(E))


 = Γ


E,

k⋃

j=1

P−1
bj (E)


 < ε.
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Let P : R −→ R be defined by the formula

P(F ) =




k⋃

j=1

P−1
bj (F )




∧

, F ∈ R.

Clearly P is a contraction with respect to Γ with the contractivity factor

1/2. Consequently we have

Γ (E,Pn(E)) ≤
n−1∑

j=0

Γ
(
Pj(E),Pj+1(E)

)

≤ Γ(E,P(E))

(
1 +

1

2
+ · · · +

1

2m−1

)

≤ 2ε.

This completes the proof of Theorem 3.

§6. Pluriregular sets without Markov’s property

Our construction of pluriregular sets on which Markov’s estimate fails

will be based on the following elementary observation.

Proposition 1. Let Pn : CN → CN be a regular mapping of degree

dn ≥ 2, for n = 1, 2, . . .. Let K ∈ R. Define

En = (Pn ◦ · · · ◦ P1)−1(K)

for n = 1, 2, . . . . If
∞∑

n=1

Γ
(
P−1

n+1(K),K
)

d1d2 · · · · · dn
< ∞(7)

then the sequence {En} is convergent in (R, Γ) to a set E. Any other choice

of K ∈ R for which the condition (7) is satisfied, results in the same limit

E. If we assume that P−1
n (K) ⊂ K for all n, then the sequence {En} is

decreasing and

E =
⋂

n≥1

En = {z ∈ K : (Pn ◦ · · · ◦ P1)(z) ∈ K for all n ≥ 1}.(8)
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Proof. The mapping P = (Pn ◦ · · · ◦ P1) is regular hence

Γ (En+1, En) = Γ
(
P−1

(
P−1

n+1(K)
)
, P−1(K)

)
≤

Γ
(
P−1

n+1(K),K
)

dn . . . d1
.

Consequently, the first conclusion of the theorem follows from the complete-

ness of R.

If K1,K2 ∈ R satisfy (7) and Ej
n = (Pn ◦ · · · ◦ P1)−1(Kj) for j = 1, 2,

then

Γ(E1
n, E2

n) ≤
1

d1 . . . dn
Γ(K1,K2),

and hence limn→∞ E1
n = limn→∞ E2

n.

Assume now that P−1
n (K) ⊂ K for all n. Clearly K ⊃ En ⊃ En+1

and since VEn ≤ VEn+1
we get the first equality in (8). The second equality

follows from the first one and the definition of En.

Two examples of pluriregular sets without Markov’s property are given

in the form of corollaries from the above proposition.

Corollary 2. For a positive number λ the logistic function is defined

as

fλ(z) = λz(1 − z), z ∈ C.

Suppose that (λn) is a sequence of numbers such that λn > 4,

∞∑

n=1

log λn

2n
< ∞.(9)

and

lim sup
n→∞

(λ1λ2 . . . λn)1/n = ∞.(10)

Let

En = (fλn
◦ · · · ◦ fλ1

)−1 ([0, 1]), n = 1, 2, . . . .

Then the sequence (En) converges in (R, Γ) to a set which does not have

Markov’s property.

Proof. Let λ > 4. If x ∈ R, then (see e.g. [8])

V[−1,1](x) = log
∣∣∣x + (x2 − 1)1/2

∣∣∣ , x ∈ R \ (−1, 1).
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Hence

V[0,1](x) = log
∣∣∣2x − 1 + 2(x2 − x)1/2

∣∣∣ , x ∈ R \ (0, 1).

Moreover the function V[0,1] is monotone in the intervals (−∞, 0],[1,∞) and

its graph is symmetric with respect to the vertical line x = 1/2. Because of

this, the function

Vf−1

λ
([0,1])(x) =

1

2
V[0,1] (fλ(x))

attains is maximum in [0, 1] at the point x = 1/2. Consequently

Γ
(
f−1

λ ([0, 1]), [0, 1]
)

=
1

2
V[0,1]

(
λ

4

)

=
1

2
log

(
λ

2
− 1 +

(
λ

(
λ

4
− 1

))1/2
)

≤ log λ.

Consequently Proposition 1, with Pn = fλn
and K = [0, 1], implies the first

conclusion.

Let E = limn→∞ En. To see that E does not have Markov’s property

we can proceed as follows. Define

qn = fλn
◦ · · · ◦ fλ1

.

Note that 0 is a fixed point of fλ and thus 0 ∈ E. Moreover q′n(0) =

λ1λ2 . . . λn and ‖qn‖E ≤ 1. If Markov’s condition were satisfied, then in

particular we would have

λ1λ2 . . . λn ≤ M2nr

for some M, r > 0 and for all n. But this would contradict our assumption.

Corollary 3. For a positive number λ define

fλ(z) = λz3 − (λ − 1), z ∈ C.

Suppose that (λn) is a sequence of numbers greater than 2 satisfying the

conditions (9) and (10). Let

En = (fλn
◦ · · · ◦ fλ1

)−1 (D(0, 1)), n = 1, 2, . . . .
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Then the sequence (En) converges in (R, Γ) to a set which does not have

Markov’s property.

Proof. The proof goes along the same lines as the previous one.

Examples of sequences (λn) satisfying the conditions in the above corol-

laries are easy to find. We can take, for instance, λn = n + 4 or λn = en+1.

Due to a recent result of Kosek [12], mentioned in the introduction, the

limit sets obtained above are not composite Julia sets.
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