ANALYTIC DISCS IN SYMPLECTIC SPACES

LUCA BARACCO and GIUSEPPE ZAMPIERI

Abstract

We develop some symplectic techniques to control the behavior under symplectic transformation of analytic discs A of $X=\mathbb{C}^{n}$ tangent to a real generic submanifold R and contained in a wedge with edge R.

We show that if A^{*} is a lift of A to $T^{*} X$ and if χ is a symplectic transformation between neighborhoods of p_{o} and q_{o}, then A is orthogonal to p_{o} if and only if $\widetilde{A}:=\pi \chi A^{*}$ is orthogonal to q_{o}. Also we give the (real) canonical form of the couples of hypersurfaces of $\mathbb{R}^{2 n} \simeq \mathbb{C}^{n}$ whose conormal bundles have clean intersection. This generalizes [10] to general dimension of intersection.

Combining this result with the quantized action on sheaves of the "tuboidal" symplectic transformation, we show the following: If R, S are submanifolds of X with $R \subset S$ and $\left.p_{o} \in T_{S}^{*} X\right|_{R}$ but $i p_{o} \notin T_{R}^{*} X$, then the conditions $\operatorname{cod}_{T^{\mathrm{C}} S}\left(T^{\mathbb{C}} R\right)=\operatorname{cod}_{T S}(T R)$ (resp. $\operatorname{cod}_{T^{\mathbb{C}} S}\left(T^{\mathbb{C}} R\right)=0$) can be characterized as opposite inclusions for the couple of closed half-spaces with conormal bundles $\chi\left(T_{R}^{*} X\right)$ and $\chi\left(T_{S}^{*} X\right)$ at $\chi\left(p_{o}\right)$.

In $\S 3$ we give some partial applications of the above result to the analytic hypoellipticity of $C R$ hyperfunctions on higher codimensional manifolds by the aid of discs (cf. [2], [3] as for the case of hypersurfaces).

§1. Real symplectic manifolds

Let X be a real manifold and $T^{*} X$ the cotangent bundle to $X,(x, \xi)$ symplectic coordinates, $\alpha=\xi d x$ the canonical one form, σ the two form, H the Hamiltonian isomorphism, ν the Euler vector field, $\chi: T^{*} X \rightarrow T^{*} X$ a real symplectic transformation.

Let D be a C^{1} manifold, D^{*} a C^{1} section of $T^{*} X$ over D. Suppose

and let $p_{o}=\left(x_{o}, \xi_{o}\right), q_{o}=\chi\left(p_{o}\right)=\left(\tilde{x}_{o}, \eta_{o}\right)$.

[^0]Proposition 1. ξ_{o} is orthogonal to $T_{x_{o}} D$ if and only if η_{o} is orthogonal to $T_{\tilde{x}_{o}} \widetilde{D}$

Proof. We have

$$
\begin{aligned}
\left\langle\xi_{o}, T_{x_{o}} D\right\rangle & =\left\langle\xi_{o}, \pi^{\prime} T_{p_{o}} D^{*}\right\rangle=\left\langle\pi^{*} \xi_{o}, T_{p_{o}} D^{*}\right\rangle \\
& =\sigma\left(H \pi^{*} \xi_{o}, T_{p_{o}} D^{*}\right)=\sigma\left(-\nu\left(p_{o}\right), T_{p_{o}} D^{*}\right) \\
& =\sigma\left(-\chi^{\prime} \nu\left(p_{o}\right), \chi^{\prime} T_{p_{o}} D^{*}\right)=\sigma\left(-\nu\left(q_{o}\right), T_{q_{o}}\left(\chi D^{*}\right)\right) \\
& =\sigma\left(H \pi^{*}\left(\eta_{o}\right), T_{q_{o}}\left(\chi D^{*}\right)\right)=\left\langle\pi^{*} \eta_{o}, T_{q_{o}}\left(\chi D^{*}\right)\right\rangle \\
& =\left\langle\eta_{o}, \pi^{\prime} T_{q_{o}} \chi\left(D^{*}\right)\right\rangle=\left\langle\eta_{o}, T_{\tilde{x}_{o}} \widetilde{D}\right\rangle .
\end{aligned}
$$

A Lagrangian submanifolds Λ of $T^{*} X$ is a C^{1} submanifold whose tangent plane $\lambda(p)=T_{p} \Lambda$ verifies $\lambda(p)^{\perp}=\lambda(p), \forall p$ (with \perp denoting the σ-orthogonal). The intersection $\Lambda_{1} \cap \Lambda_{2}$ is said to be clean when it is a manifold and when $T\left(\Lambda_{1} \cap \Lambda_{2}\right)=T \Lambda_{1} \cap T \Lambda_{2}$. All manifolds will be conic i.e. invariant under $\dot{\mathbb{R}}^{+}$.

Fix $p_{o}=\left(x_{o}, \xi_{o}\right) \in \dot{T}^{*} X$:
Proposition 2. Let M_{1}, M_{2} hypersurfaces, p_{o} a point of $T_{M_{1}}^{*} X \cap$ $T_{M_{2}}^{*} X$ and set

$$
R=\pi\left(T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X\right)
$$

Then $T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X$ is clean if and only if R is a manifold and there exist real coordinates $t=\left(t_{1}, t^{\prime}, t^{\prime \prime}\right)$ such that

$$
\left\{\begin{array}{l}
M_{1}=\left\{t_{1}=0\right\} \\
R=\left\{t_{1}=t^{\prime}=0\right\} \\
M_{2}=\left\{t_{1}=Q\left(t^{\prime}\right)+O\left(t^{\prime}\right) o\left(t^{\prime}, t^{\prime \prime}\right)\right\}, \quad Q \text { non degenerate. }
\end{array}\right.
$$

Proof. Since $\left.\pi\right|_{T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X}$ has fiber-dimension $\equiv 1$, then clearly $T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X$ is a manifold if and only if R is so. Take then real coordinates $t=\left(t, t^{\prime}, t^{\prime \prime}\right)$ in $\mathbb{R}^{N} \simeq X$ such that

$$
M_{1}=\left\{t_{1}=0\right\}, \quad R=\left\{t_{1}=0, t^{\prime}=0\right\}, \quad M_{2}=\left\{t_{1}=g\left(t^{\prime}, t^{\prime \prime}\right)\right\}
$$

and $p_{o}=\left(0 ; d t_{1}\right), g(0,0)=0, d g(0,0)=0$. We have

$$
\begin{aligned}
& T_{p_{0}} T_{M_{1}}^{*} X=\left\{\left(u ; t d t_{1}\right) ; u \in T M_{1}, t \in \mathbb{R}\right\} \\
& T_{p_{0}} T_{M_{2}}^{*} X=\left\{\left(u ; t d t_{1}+\operatorname{Hess}(g) u ; u \in T M_{2}, t \in \mathbb{R}\right\}\right.
\end{aligned}
$$

Since $\left.g\right|_{R} \equiv 0$ and $\left.d g\right|_{R} \equiv 0$, then $\operatorname{Hess}(g) u=0$ if $u^{\prime \prime}=0$; therefore $g=Q\left(t^{\prime}\right)+O\left(t^{\prime}\right) o\left(t^{\prime}, t^{\prime \prime}\right)$. Next cleanness is equivalent to the implication: "Hess $(g) u^{\prime}=0$ implies $u^{\prime}=0$ " which is in turn equivalent to nondegeneracy of Q.

Remark 3. When $\operatorname{cod}_{T_{M_{1}}^{*} X}\left(T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X\right)=1$, then Q is necessarily definite (positive or negative). Hence $R=M_{1} \cap M_{2}$ and M_{1}, M_{2} intersect to the order 2 along R. Let M_{1}^{+}, M_{2}^{+}denote the (closed) half-spaces with boundary M_{1}, M_{2} (and inward conormal p). By the above remarks we must then have either $M_{2}^{+} \subset M_{1}^{+}$or $M_{1}^{+} \subset M_{2}^{+}$.

§2. Complex symplectic manifolds

Let X be a complex manifold of dimension $n, T^{*} X$ the cotangent bundle to X with symplectic coordinates $(z, \zeta), \sigma(=d \zeta \wedge d z)$ the canonical 2form on $T^{*} X, R$ a real submanifold of $X, T_{R}^{*} X$ the conormal bundle to R in $X, p_{o}=\left(z_{o}, \zeta_{o}\right)$ a point of $T_{R}^{*} X$ with $i p_{o} \notin T_{R}^{*} X$. In this situation we can identify, by a choice of coordinates, $T_{R}^{*} X_{z_{o}}$ to a totally real plane $\mathbb{R}_{y^{\prime}}^{l} \subset \mathbb{C}^{n} \simeq T_{z_{o}}^{*} X$.

For a vector $\zeta \in \mathbb{C}^{n}$ we shall denote by $|\zeta|$ the Euclidean norm $|\zeta|=$ $\left(\sum_{i}\left|\zeta_{i}\right|^{2}\right)^{1 / 2}$. If $|\Im m \zeta|<|\Re \mathrm{e} \zeta|$ we also define $\|\zeta\|=\left(\sum_{i} \zeta_{i}^{2}\right)^{1 / 2}$ (for the determination of the square root which is positive over $\left.\mathbb{R}^{+}\right)$. If B is a neighborhood of z_{o}, and Γ_{z} for $z \in R \cap B$ is a continuous distribution of cones in $T_{R}^{*} X_{z}$ such that $\Gamma_{z_{o}}$ is conic neighborhood of ζ_{0} in $T_{R}^{*} X_{z_{o}}$, we consider the neighborhood $\Sigma=\left\{\left(z, \Gamma_{z}\right) ; z \in R \cap B\right\}$ of p_{0} and denote by Σ_{ε} its ε-trumcation.

We have an identification

$$
\begin{array}{rlc}
\Sigma_{\varepsilon} & \longrightarrow & W \\
\left(z^{\prime} ; \zeta\right) & \longmapsto & z^{\prime}+\frac{|\zeta| \zeta}{\|\zeta\|} \tag{1}
\end{array}
$$

Here W is a wedge of X with edge R; for an identification $X \simeq \mathbb{C}^{n}$ (in coordinates)

$$
W \supset((R \cap B)+\Gamma) \cap B
$$

with Γ a cone of $\mathbb{R}^{l} \subset X$. In fact we see that if ζ and ζ_{1} belong to Γ_{z} with $\zeta \neq \zeta_{1}$, then $\zeta /\|\zeta\| \neq \zeta_{1} /\left\|\zeta_{1}\right\|$ because $\Gamma_{z} \cap i \Gamma_{z}=\emptyset$. On the other hand the normals issued from different points of the C^{2} manifold R cannot have nontrivial intersection in a neighborhood of R; and this is still true if one replaces normal directions $\zeta /|\zeta|$ by $\zeta /\|\zeta\|$.

In the identification (1) we shall call z^{\prime} the R-components of z and $|\zeta|$ the distance to R. Thus $X \backslash R$ is foliated by the surfaces of fixed distance:

$$
\begin{equation*}
\widetilde{R}_{t}=\left\{z=z^{\prime}+t \frac{\zeta}{\|\zeta\|} ;\left(z^{\prime} ; \zeta\right) \in T_{R}^{*} X \times_{X} B\right\}, \quad t>0 \text { small. } \tag{2}
\end{equation*}
$$

We consider the symplectic transformation $\chi=\chi_{t}$ of $T^{*} X$ into itself:

$$
\chi:(z ; \zeta) \longmapsto\left(z+t \frac{\zeta}{\|\zeta\|} ; \zeta\right)
$$

Let $s_{R}^{ \pm}(p)$ denote the number of respectively positive and negative eigenvalues for the Levi form $L_{R}(p)$ and also set

$$
\gamma_{R}(z)=\operatorname{dim}\left(T_{R}^{*} X_{z} \cap i T_{R}^{*} X_{z}\right)
$$

and

$$
d_{R}(p)=\operatorname{cod}(R)+s_{R}^{-}(p)-\gamma_{R}
$$

Consider now a new manifold $S \supset R$, suppose $p \in R \times{ }_{S} T_{S}^{*} X$ and note that

$$
\begin{equation*}
d_{S} \leq d_{R} \leq d_{S}+\operatorname{cod}_{S} R \tag{3}
\end{equation*}
$$

Also notice that $T_{S}^{*} X \cap T_{R}^{*} X$ is clean. Let $\widetilde{R}=\widetilde{R}_{t}, \widetilde{S}=\widetilde{S}_{t}(t \ll 1)$ be the subspaces defined by (2). Denote by $\widetilde{S}^{+}, \widetilde{R}^{+}$the closed half spaces with boundary $\widetilde{S}, \widetilde{R}$ and inward conormal q_{o}.

Theorem 4. Let $R \subset S \subset X$, and let $p_{o} \in R \times_{S} T_{S}^{*} X$, ip $\neq T_{R}^{*} X$.
(i) Assume

$$
\begin{equation*}
\gamma_{R}=\gamma_{S} \tag{4}
\end{equation*}
$$

Then $\widetilde{R}, \widetilde{S}$ intersect at the order 2 along $\pi\left(T_{\widetilde{S}}^{*} X \cap T_{\widetilde{R}}^{*} X\right)$ with $\widetilde{S}^{+} \subset \widetilde{R}^{+}$.
(ii) Assume

$$
\begin{equation*}
\gamma_{R}-\gamma_{S}=\operatorname{cod}_{S} R \tag{5}
\end{equation*}
$$

Then the same conclusion as in (i) holds but with $\widetilde{S}^{+} \supset \widetilde{R}^{+}$instead of $\widetilde{S}^{+} \subset \widetilde{R}^{+}$.

Proof. Consider

$$
R \subset S_{1} \subset S_{2} \subset \cdots \subset S_{m}=S, \quad \operatorname{cod}_{S_{i+1}}\left(S_{i}\right)=1
$$

We have

$$
\begin{align*}
\mathbb{Z} & =\mu \operatorname{hom}\left(\mathbb{Z}_{S_{i+1}}, \mathbb{Z}_{S_{i}}\right)_{p} \tag{6}\\
& =\mu \operatorname{hom}\left(\mathbb{Z}_{\widetilde{S}_{i+1}}, \mathbb{Z}_{\widetilde{S}_{i}}\right)_{q}\left[\left(d_{\widetilde{S}_{i+1}}-d_{S_{i+1}}\right)-\left(d_{\widetilde{S}_{i}}-d_{S_{i}}\right)\right] \\
& =R \Gamma_{\widetilde{S}_{i+1}^{+}}\left(\mathbb{Z}_{\widetilde{S}_{i}^{+}}\right)\left[\left(d_{\widetilde{S}_{i+1}}-d_{S_{i+1}}\right)-\left(d_{\widetilde{S}_{i}}-d_{S_{i}}\right)\right] .
\end{align*}
$$

Note now that

$$
\begin{equation*}
s_{\widetilde{S}_{i}}^{-}(q)=s_{S_{i}}^{-}(p) \quad \forall i . \tag{7}
\end{equation*}
$$

In fact we have
(8) $\left\{\begin{array}{l}\operatorname{Ker}\left(L_{S_{i}}\right) \underset{\pi^{\prime}}{\sim} T_{p} T_{S_{i}}^{*} X \cap i T_{p} T_{S_{i}}^{*} X \underset{\chi^{\prime}}{\sim} T_{q} T_{\widetilde{S}_{i}}^{*} X \cap i T_{q} T_{\underset{S}{i}}^{*} X \underset{\pi^{\prime}}{\sim} \operatorname{Ker}\left(L_{\widetilde{S}_{i}}\right), \\ \operatorname{dim} T^{\mathbb{C}} \widetilde{S}_{i}-\operatorname{dim} T^{\mathbb{C}} S_{i}=\operatorname{cod}_{X} S_{i}-1-\gamma_{S_{i}},\end{array}\right.$
i.e.

$$
\begin{equation*}
\operatorname{rank}\left(L_{\widetilde{S}_{i}}\right)=\operatorname{rank}\left(L_{S_{i}}\right)+\left(\operatorname{cod}_{\mathbb{C}^{n}} T^{\mathbb{C}} S_{i}-1\right) \tag{9}
\end{equation*}
$$

On the other hand it is easily seen that

$$
\begin{equation*}
s_{\widetilde{S}_{i}}^{+} \geq s_{S_{i}}^{+}+\left(\operatorname{cod}_{\mathbb{C}^{n}} T^{\mathbb{C}} S_{i}-1\right) \tag{10}
\end{equation*}
$$

Thus (9), (10) give (7). It follows from (7):

$$
\begin{equation*}
\left(d_{\widetilde{S}_{i+1}}-d_{S_{i+1}}\right)-\left(d_{\widetilde{S}_{i}}-d_{S_{i}}\right)=\operatorname{cod}_{T^{\mathbb{C}} S_{i+1}}\left(T^{\mathbb{C}} S_{i}\right) \tag{11}
\end{equation*}
$$

(i): Assume (4). Note that

$$
\begin{align*}
\gamma_{R}=\gamma_{S} & \Longleftrightarrow \gamma_{S_{i+1}}=\gamma_{S_{i}} \quad \forall i \tag{12}\\
& \Longleftrightarrow \operatorname{cod}_{T_{S_{i+1}}^{\mathrm{C}}} T^{\mathbb{C}} S_{i}=1 \quad \forall i
\end{align*}
$$

Thus in this case (6) gives:

$$
\begin{equation*}
\mathbb{Z} \simeq R \Gamma_{\widetilde{S}_{i+1}^{+}}\left(\mathbb{Z}_{\widetilde{S}_{i}^{+}}\right)_{\tilde{z}}[1] . \tag{13}
\end{equation*}
$$

We know on the other hand from Proposition 2 that \widetilde{S}_{i} and \widetilde{S}_{i+1} intersect at the order 2 along a 1-codimensional manifold (namely $\pi\left(T_{\widetilde{S}_{i+1}}^{*} X \cap T_{\widetilde{S}_{i}}^{*} X\right)$) with either $\widetilde{S}_{i+1}^{+} \subset \widetilde{S}_{i}^{+}$or $\widetilde{S}_{i+1}^{+} \supset \widetilde{S}_{i}{ }^{+}$. But (13) says that $\widetilde{S}_{i+1}^{+} \subset \widetilde{S}_{i}^{+} \forall i$. Iteration of this inclusion gives the conclusion.
(ii): Assume (5). We have

$$
\begin{align*}
\gamma_{R}-\gamma_{S}=\operatorname{cod}_{S}(R) & \Longleftrightarrow \gamma_{S_{i}}-\gamma_{S_{i+1}}=1 \quad \forall i \tag{14}\\
& \Longleftrightarrow \operatorname{cod}_{T^{\mathbb{C}} S_{i+1}}\left(T^{\mathbb{C}} S_{i}\right)=0 \quad \forall i
\end{align*}
$$

Thus we have in this case

$$
\mathbb{Z} \simeq R \Gamma_{\widetilde{S}_{i+1}^{+}}\left(\mathbb{Z}_{\widetilde{S}_{i}^{+}}\right) \tilde{z}
$$

which obviously implies $\widetilde{S}_{i+1}^{+} \supset \widetilde{S}_{i}$.

§3. Application to analytic discs and symplectic transformations

Let R be a real submanifold of codimension l of a complex manifold X of dimension n in a neighborhood of a point z_{o}. Let us choose complex coordinates such that $T_{R}^{*} X_{z_{o}}$ is the plane $\mathbb{C}_{z_{1}, \ldots, z_{\gamma}}^{\gamma} \times i \mathbb{R}_{y_{\gamma+1}, \ldots, y_{l-\gamma}}^{l-2 \gamma}$ and write $z=\left(z^{\prime}, z^{\prime \prime}\right), z^{\prime}=z_{1}, \ldots, z_{l-\gamma}$. Let us introduce a new complex symplectic transformation, that we still call χ :

$$
\chi:(z ; \zeta) \longmapsto\left(z+\frac{\zeta^{\prime}}{\left\|\zeta^{\prime}\right\|} ; \zeta\right)
$$

from a neighborhood of a conormal $p_{o}=\left(z_{o}, \zeta_{o}\right)$ with $\zeta_{o} \in\left(\mathbb{C}^{l} \times i \mathbb{R}^{l-2 \gamma}\right) \backslash$ $\left(\mathbb{C}^{l} \times\{0\}\right)$ to a neighborhood of $p_{o}=\chi\left(p_{o}\right)$. For this transformation χ all conclusions of $\S 2$ hold without modifications. In particular

$$
\widetilde{R}:=\pi \chi\left(T_{R}^{*} X\right) \text { is a hypersurface. }
$$

We shall deal with analytic discs in X and denote $A=\{A(\tau) ; \tau \in \Delta\}$ (where Δ is the unit disc in \mathbb{C}). We shall say that A is "attached" to R if $\partial A \subset R$. The transformation above defined has the great advantage of giving a rule to interchange analytic discs "attached" to R and \widetilde{R} respectively. Assume that R is defined by a system of equations $r=0\left(r=r_{1}, \ldots, r_{l-\gamma}\right)$ with $\left.\partial r_{j}\right|_{z_{o}}=d z_{j}, j=1, \ldots, \gamma,\left.\partial r_{j}\right|_{z_{o}}=-i d y_{j}, j=\gamma+1, \ldots, l-\gamma$ and that $\zeta_{o}=(\ldots, 0,-i, 0, \ldots)$ where $-i$ is in the $(l-\gamma)$-th position. We write $z=\left(z^{\prime}, z^{\prime \prime}\right), z^{\prime}=\left(z_{1}, \ldots, z_{l-\gamma}\right)$; we similarly write $\zeta=\left(\zeta^{\prime}, \zeta^{\prime \prime}\right), \partial=\left(\partial^{\prime}, \partial^{\prime \prime}\right)$ and so on. Let A be a "small" analytic disc attached to R with $A(1)=z_{o}$. It is easy to prove existence of an $(l-\gamma) \times(l-\gamma)$ matrix G, real on $\partial \Delta$ with $G\left(z_{o}\right)=i d$ such that

To this end it is enough to solve the Bishop equation

$$
\begin{equation*}
G \Im \mathrm{~m} \partial^{\prime} r-T_{1}\left(G \Re \mathrm{e} \partial^{\prime} r\right)=i d_{l-\gamma \times l-\gamma} \quad \text { on } \partial \Delta \tag{15}
\end{equation*}
$$

where T_{1} is the Hilbert transform with $\left.T_{1}(\cdot)\right|_{1}=0$. Note that (15) is solvable, in suitable Banach spaces, by the implicit function theorem, due to $\left|\Re \mathrm{e} \partial^{\prime} r\right| \ll 1$. Let $\lambda=(\ldots, 0,1,0, \ldots) G$ and define

$$
A^{*}=\left(A(\tau) ;\left.\lambda \partial^{\prime} r\right|_{A(\tau)}\right), \quad \widetilde{A}=\left\{A(\tau)+\lambda \frac{\partial^{\prime} r(A(\tau))}{\left\|\lambda \partial^{\prime} r(A(\tau))\right\|}\right\}
$$

It is clear that, if $\pi: T^{*} X \rightarrow X$ is the canonical projection, then

$$
\begin{equation*}
\widetilde{A}=\pi \chi A^{*} \tag{16}
\end{equation*}
$$

It is also obvious that A^{*}, and hence \widetilde{A} are holomorphic discs and that

$$
\partial \widetilde{A} \subset \widetilde{R}
$$

due to $\left.\left.\lambda \partial r\right|_{\partial A} \hookrightarrow T_{R}^{*} X\right|_{\partial A}$. If we apply Proposition 1 to $A^{*} \subset T^{*} X^{\mathbb{R}}$ we get $\Re \mathrm{e}\left\langle\partial_{\tau} \widetilde{A}, \zeta_{o}\right\rangle=0$; if we apply it to $i A^{*} \hookrightarrow T^{*} X^{\mathbb{R}}$ we get $\Im m\left\langle\partial_{\tau} \widetilde{A}, \zeta_{o}\right\rangle=0$ which implies $\partial_{\tau} \widetilde{A} \in T^{\mathbb{C}} \widetilde{R}$.

Let W be a "wedge" with edge R (cf. [8]). For an open cone $\Gamma \subset$ $\left(T_{S} X\right)_{z_{o}}$ the so called "profile" of W, in an identification by coordinates $X \simeq \mathbb{C}^{n}=T_{z_{o}} R \oplus\left(T_{R} X\right)_{z_{o}}$, and for a neighborhood B of z_{o}, W has the form

$$
W=((B \cap R)+\Gamma) \cap B
$$

Let \mathcal{O}_{X} be the sheaf of holomorphic functions on X. Let S be a submanifold of X which contains R and which has ζ_{o} among its conormals at z_{o}. Let $\mathcal{C}_{S \mid X}, \mathcal{B}_{S \mid X}$ be the complexes of $C R$ microfunctions and $C R$ hyperfunctions along S respectively. Let $s p: H^{0}\left(\pi^{-1} \mathcal{B}_{S \mid X}\right) \rightarrow H^{0}\left(\mathcal{C}_{S \mid X}\right)$ be the spectral morphism, and define

$$
S S(u)=\operatorname{supp} \operatorname{sp}(u), \quad u \in \mathcal{B}_{S \mid X}
$$

Note that $S S(u)_{z_{o}}=\{0\}$ if and only if u is a holomorphic function in a neighborhood of z_{o}. Let $\zeta_{o} \in T_{S}^{*} X_{z_{o}}$, take $\Gamma \subset\left\{\Re \mathrm{e}\left\langle z, \zeta_{o}\right\rangle>0\right\}$, and set $W^{ \pm}=((B \cap R) \pm \Gamma) \cap B$.

Theorem 5. Assume
(i) $A \subset R \cup W^{-}\left(\right.$resp. $\left.A \subset R \cup W^{+}\right)$,
(ii) $\gamma_{S}=\gamma_{R}\left(\right.$ resp. $\left.\gamma_{R}-\gamma_{S}=\operatorname{cod}_{S} R\right)$,
(iii) $T_{z_{o}} A \perp \zeta_{o}$,
(iv) $A \not \subset R$ in any neighborhood of z_{o}.

Then for $f \in\left(\mathcal{B}_{S \mid X}\right)_{z_{o}}$ we have $p_{o} \notin S S(b(f))$ (resp. $\left.-p_{o} \notin S S(b(f))\right)$.
Remark 6. It is not necessary to assume $A \not \subset R$ in order to get an analytic disc $\widetilde{A} \subset \widetilde{S}^{\mp} \backslash \widetilde{S}$ which is the only fact we really need in the proof. Here again \widetilde{S}^{\mp} are the closed half spaces with boundary \widetilde{S} and inward conormal $\mp \zeta_{o}$. Thus let $S: r^{\prime}=0, R: r^{\prime}=0, r^{\prime \prime}=0$. Assume for instance there is an analytic "lift" A^{*} i.e. a holomorphic section of $T^{*} X$ over A such that:

$$
\left.A^{*}\right|_{\partial A} \subset T_{R}^{*} X \backslash T_{S}^{*} X
$$

i.e. $A^{*}=(A ; \theta \partial r)$ with $\theta \partial r$ extending holomorphically, θ real over ∂A, $\theta^{\prime \prime} \not \equiv 0$. Then

$$
\partial \widetilde{A} \subset \widetilde{R} \subset \widetilde{S}^{-} \quad \text { but } \quad \partial \widetilde{A} \not \subset \widetilde{S}
$$

Proof. Let $\left\{B_{r}\right\}$ (resp. $\left\{\widetilde{B}_{r}\right\}$) be the family of spheres with center z_{o} (resp. \widetilde{z}_{o}) and radius r. We can find a sequence of subdiscs A_{ν} such that

$$
A_{\nu} \subset A \cap B_{r_{\nu}}, \quad \partial A_{\nu} \not \subset R
$$

(for a sequence $r_{\nu} \rightarrow 0$). Suppose we are proving the statement for p_{o}. By the discussion above, these are interchanged to analytic discs \widetilde{A}_{ν} such that

$$
\partial \widetilde{A}_{\nu} \subset\left(\widetilde{R}^{-} \cap \widetilde{B}_{s_{\nu}}\right) \subset\left(\widetilde{S}^{-} \cap \widetilde{B}_{s_{\nu}}\right) \quad \text { but } \quad \partial \widetilde{A}_{\nu} \not \subset \widetilde{S}
$$

(since $\widetilde{R}^{-} \subset \widetilde{S}^{-}$due to $\gamma_{R}=\gamma_{S}$) for a new sequence $s_{\nu} \rightarrow 0$). By Proposition 1 we also have

$$
\begin{equation*}
T_{\tilde{z}_{o}} \widetilde{A}_{\nu} \subset T_{\tilde{z}_{o}}^{\mathbb{C}} \widetilde{S} \tag{17}
\end{equation*}
$$

We then enter [3, Theorem 1] and conclude that holomorphic functions \tilde{f} in $\widetilde{S}^{\circ} \cap \widetilde{B}_{\nu}$ extend to a full neighborhood of \tilde{z}_{o}; thus germs of holomorphic functions on \widetilde{S}^{-}extend to \mathbb{C}^{n} at \tilde{z}_{0}. Now we introduce a quantization ϕ_{K} of χ by a kernel K. This induces a "microlocal" transformation of \mathcal{O}_{X}. $C R$ hyperfunctions u at z_{o} are transformed into sums of boundary values $b\left(\tilde{f}^{+}\right)+b\left(\tilde{f}^{-}\right)$on \widetilde{S} of germs $\tilde{f}^{ \pm} \in \mathcal{O}_{X}\left(\stackrel{\widetilde{S}}{ }^{ \pm}\right)_{\tilde{z}_{o}}$ in such a way that $p_{o} \notin S S b(f)$ if and only if \tilde{f}^{-}extends at \tilde{z}_{o}. The proof is complete.

If we take $R=S$ in Theorem 5 and consider wedges $W^{ \pm}$with edge S we regain [2, Proposition 7] by a new method of "reduction to a hypersurface". If moreover we assume that A is orthogonal to any conormal $\zeta \in T_{S}^{*} X_{z_{o}}$ (instead of the only ζ_{o}) we get:

Corollary 7. Assume

(i) $A \subset W^{\mp} \cup S$ but $A \not \subset S$ in any neighborhood of z_{o},
(ii) $T_{z_{o}} A \subset T_{z_{o}}^{\mathbb{C}} S$.

Then any $f \in \mathcal{O}_{X}\left(W^{\mp}\right)_{z_{o}}$ extends holomorphically to a full neighborhood of z_{o}.

Proof. We apply Theorem 5 to all $p \in \pm \Gamma^{*}$ and conclude that $\pm \Gamma^{*} \cap$ $S S b(f)=\{0\}$. On the other hand recall that there is an elementary estimate of microsupport; for $f \in \mathcal{O}_{X}\left(W^{\mp}\right)_{z_{o}}$ we have $\operatorname{SSb}(f)_{z_{o}} \subset \pm \Gamma^{*}$. Hence we can conclude $\operatorname{SSb}(f)_{z_{o}}=\{0\}$.

Example 8. In \mathbb{C}^{4} let

$$
\begin{aligned}
& S=\left\{y_{3}=z_{1} z_{2}+\bar{z}_{1} \bar{z}_{2}, y_{4}=0\right\}, \quad \mp p=\mp d y_{3}+\lambda d y_{4}, \\
& R=\left\{y_{2}=0, y_{3}=z_{1} z_{2}+\bar{z}_{1} \bar{z}_{2}, y_{4}=0\right\}, \\
& A=\mathbb{C}_{z_{1}} \times\{0\} \times\{0\} \times\{0\} .
\end{aligned}
$$

We can find a section $\left.\lambda \partial r \in\left(T_{R}^{*} X \backslash T_{S}^{*} X\right)\right|_{\partial A}$ which extends holomorphically. For that just notice that the tangent direction $u=(1,0, \ldots)$ to A verifies $u \in \operatorname{Ker}\left(L_{R}\right)(\lambda \partial r)$. Hence Remark 6 applies and yields $\pm p \notin W F(f)$.

§4. Appendix. Positivity of Lagrangians (cf. [4])

We shall further exploit here the techniques of $\S 2$ to give an extension of the results of [4].

Let X be a complex manifold, R and S real submanifolds of X with $R \subset S$. Recall that $T_{R}^{*} X \cap T_{S}^{*} X$ is clean and that (3) of $\S 2$ holds. Let $p \in R \times_{S} T_{S}^{*} X, i p \notin T_{R}^{*} X$.

Theorem 9. (i) Suppose

$$
\begin{equation*}
d_{R}-d_{S}=\operatorname{cod}_{S} R \tag{18}
\end{equation*}
$$

Then there exists a germ of a homogeneus complex symplectic transformation χ of $T^{*} X$ from a neighborhood of p_{o} to a neighborhood of $q_{o}=\chi\left(p_{o}\right)$ which interchanges

$$
T_{R}^{*} X \xrightarrow{\sim} T_{\widetilde{R}}^{*} X, \quad T_{S}^{*} X \xrightarrow{\sim} T_{\widetilde{S}}^{*} X
$$

for a pair of hypersurfaces $\widetilde{R}, \widetilde{S}$ with $s_{\widetilde{R}}^{-}\left(q_{o}\right)=0$, $s_{\widetilde{S}}\left(q_{o}\right)=0$ and such that $\widetilde{R}, \widetilde{S}$ intersect at the order 2 along $\pi\left(T_{\widetilde{R}}^{*} X \cap T_{\widetilde{S}}^{*} X\right)$ with $\widetilde{R}^{+} \supset \widetilde{S}^{+}$.
(ii) Suppose

$$
\begin{equation*}
d_{R}=d_{S} \tag{19}
\end{equation*}
$$

Then there exists χ such that the same conclusion as in (i) holds but with $\widetilde{S}^{+} \supset \widetilde{R}^{+}$instead of $\widetilde{S}^{+} \subset \widetilde{R}^{+}$.

Remark 10. Generally, the transformation χ of $\S 2$ does not suffice for the conclusion of Theorem 9.

Proof. Consider

$$
R=S_{1} \subset S_{2} \subset \cdots \subset S_{m}=S, \quad \operatorname{cod}_{S_{i+1}} S_{i}=1
$$

Put $\tilde{a}_{i}=d_{\widetilde{S}_{i}}-d_{\widetilde{S}_{i+1}}, a_{i}=d_{S_{i}}-d_{S_{i+1}}$. By the result of $\S 2$ we have

$$
\mathbb{Z} \simeq R \Gamma_{\widetilde{S}_{i+1}^{+}}\left(\mathbb{Z}_{\widetilde{S}_{i}^{+}}\right)_{\tilde{z}}\left[a_{i}-\tilde{a}_{i}\right]
$$

Recall that $0 \leq a_{i} \leq 1$. Thus (18) and (19) are equivalent to $a_{i}=1 \forall i$ and $a_{i}=1 \forall i$ respectively.

We recall that if a submanifold $\Lambda \subset T^{*} X$ is \mathbb{R} Lagrangian (i.e. Lagrangian for $\sigma^{\mathbb{R}}$ the real part of σ) and verifies

$$
\begin{equation*}
\operatorname{dim}\left(T_{p_{o}} \Lambda \cap \mathbb{C} H\left(\zeta_{o} d z\right)\right)=1 \tag{20}
\end{equation*}
$$

then Λ is symplectically equivalent to the conormal bundle to a hypersurface. (Note here that if $\Lambda=T_{R}^{*} X$, then (20) is equivalent to $i p_{o} \notin T_{R}^{*} X$, hence this latter condition characterizes the higher codimensional manifolds R which are "symplectically equivalent" to a hypersurface.) In particular for any family of Lagrangian manifolds $\Lambda_{i}, i=1, \ldots, m$ which satisfy (20) we can find χ such that

$$
\begin{equation*}
\Lambda_{i} \xrightarrow[\chi]{\sim} T_{M_{i}}^{*} X, \quad \operatorname{cod}\left(M_{i}\right)=1 \quad \forall i . \tag{21}
\end{equation*}
$$

Also we can arrange (cf. [6]) that

$$
\begin{equation*}
s_{M_{i}}^{-}\left(q_{o}\right)=0 \quad \text { for at least one } i \tag{22}
\end{equation*}
$$

We shall apply the above remarks for $\Lambda_{i}=T_{S_{i}}^{*} X$.
(i): We take in this case χ such that

$$
T_{S_{i}}^{*} X \xrightarrow{\sim} T_{\widetilde{S}_{i}}^{*} X, \quad \operatorname{cod}\left(\widetilde{S}_{i}\right)=1 \quad \forall i, \quad s_{\widetilde{R}}^{-}\left(q_{o}\right)=0
$$

Assume $s_{\widetilde{S}_{i}}^{-}\left(q_{o}\right)=0$; we show that

$$
\left\{\begin{array}{l}
\widetilde{S}_{i+1}^{+} \subset \widetilde{S}_{i}^{+} \tag{23}\\
s_{\widetilde{S}_{i+1}}^{-}\left(q_{o}\right)=0 \quad \forall i .
\end{array}\right.
$$

In fact we are in the situation

$$
\left\{\begin{array}{l}
\tilde{a}_{i}=-s_{\widetilde{S}_{i+1}}^{-}\left(q_{o}\right), \\
a_{i}=1,
\end{array}\right.
$$

whence $a_{i}-\tilde{a}_{i}=s_{\widetilde{S}_{i+1}}\left(p_{o}\right)+1$ and

$$
\begin{equation*}
\mathbb{Z}=R \Gamma \widetilde{S}_{i+1}\left(\mathbb{Z}_{\widetilde{S}_{i}}\right) \tilde{z}\left[1+s_{\widetilde{S}_{i+1}}^{-}\right] . \tag{24}
\end{equation*}
$$

But since we know from Proposition 2 that $\widetilde{S}_{i}, \widetilde{S}_{i+1}$ intersect at the order 2 along a 1-codimensional submanifold with either of the inclusions $\widetilde{S}_{i+1}^{+} \subset \widetilde{S}_{i}^{+}$ or $\widetilde{S}_{i+1}^{+} \supset \widetilde{S}_{i}^{+}$, then (24) implies (23).

Hence induction applies and gives the conclusion

$$
\left\{\begin{array}{l}
\widetilde{S}^{+} \subset \widetilde{R}^{+} \\
s_{\widetilde{S}}^{-}\left(q_{o}\right)=0
\end{array}\right.
$$

(ii): We take now χ :

$$
\chi: T_{S_{i}}^{*} X \xrightarrow{\sim} T_{\widetilde{S}_{i}}^{*} X, \quad \operatorname{cod}\left(\widetilde{S}_{i}\right)=1 \quad \forall i, \quad s_{\widetilde{S}}^{-}\left(q_{o}\right)=0 .
$$

Assume $s_{\widetilde{S}_{i+1}}^{-}\left(q_{o}\right)=0$; we show that

$$
\left\{\begin{array}{l}
s_{\widetilde{S}_{i}}^{-}\left(q_{o}\right)=0 \tag{25}\\
\widetilde{S}_{i}^{+} \subset \widetilde{S}_{i+1}^{+}
\end{array}\right.
$$

In fact we have

$$
\left\{\begin{array}{l}
\tilde{a}_{i}=+s_{\widetilde{S}_{i}}^{-}\left(q_{o}\right), \\
a_{i}=0
\end{array}\right.
$$

Thus $a_{i}-\tilde{a}_{i}=-s_{\widetilde{S}_{i}}^{-}$and therefore

$$
\mathbb{Z}=R \Gamma_{\widetilde{S}_{i+1}^{+}}\left(\mathbb{Z}_{\widetilde{S}_{i}^{+}}\right)_{\tilde{z}}\left[-s_{\widetilde{S}_{i}}^{-}\right]
$$

which implies (25). The conclusion will follow again by induction.

Remark 11. Recall the semiorder relation of positivity " \succcurlyeq " between Lagrangians in the sense of [5]. Thus we have in fact proved that $T_{R}^{*} X \succcurlyeq$ $T_{S}^{*} X$ in case (i) (resp. $T_{S}^{*} X \succcurlyeq T_{R}^{*} X$ in case (ii)).

References

[1] M. S. Baouendi, L. P. Rothshild and J. M. Trepreau, On the geometry of analytic discs attached to real manifolds, J. Diff. Geometry, 39 (1994), 379-405.
[2] L. Baracco and G. Zampieri, Analytic discs attached to half spaces of \mathbb{C}^{n} and extension of holomorphic functions, J. Fac. Sci. Univ. Tokyo, (2001), to appear.
[3] _, Analytic discs attached to manifolds with boundary, Publ. R.I.M.S. Kyoto Univ., 33 (4) (1997), 687-694.
[4] A. Boggess, CR Manifolds and the tangential Cauchy-Riemann complex, Studies in Adv. Math. CRC Press, 1991.
[5] A. D'Agnolo and G. Zampieri, Microlocal direct images of simple sheaves, Bull. Soc. Math. de France, 23 (1995), 101-133.
[6] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Astérisque Soc. Math. de France, 128 (1985).
[7] J. M. Trepreau, Sur le prolongement holomorphe des fonctions C - R définies sur une hypersurface réelle de classe C^{2} dans \mathbb{C}^{n}, Invent. Math., 83 (1986), 583-592.
[8] A. Tumanov, Connections and propagation of analyticity for CR functions, Duke Math. Jour., 731 (1994), 1-24.
[9] , Extending CR function from manifolds with boundaries, Math. Res. Letters, 2 (1995), 629-642.
[10] G. Zampieri, Simple sheaves along dihedral Lagrangians, Journal d'An. Math. de Jérusalem, 66 (1995), 331-344.
[11] \qquad , Analytic discs attached to the conormal bundles of CR-manifolds, Advances in Math., 128 (1) (1997), 180-185.

Luca Baracco
Dipartimento di Matematica
Università di Padova
via Belzoni 7
35131 Padova
Italy
Giuseppe Zampieri
Dipartimento di Matematica
Università di Padova
via Belzoni 7
35131 Padova
Italy

[^0]: Received October 12, 1998.
 Revised December 22, 1999.
 2000 Mathematics Subject Classification: 32A45, 35C15, 32F10.

