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ON THE EXTENSION OF L
2

HOLOMORPHIC FUNCTIONS V

—EFFECTS OF GENERALIZATION

TAKEO OHSAWA

Abstract. A general extension theorem for L
2 holomorphic bundle-valued

top forms is formulated. Although its proof is based on a principle similar to
Ohsawa-Takegoshi’s extension theorem, it explains previous L

2 extendability
results systematically and bridges extension theory and division theory.

Introduction

We would like to continue the study on the extension of holomorphic

functions with L2 growth conditions. In order to clarify the motivation, let

us recall some of the earlier results. The study started with the following

discovery.

Theorem 1. (cf. [O-T]) Let Ω be a bounded pseudoconvex domain in

C
n, and let Ω′ be the intersection of Ω with the complex hyperplane {z ∈

C
n | zn = 0}. Then there exists a constant C which depends only on the

diameter of Ω such that, for any plurisubharmonic function ϕ on Ω, and

for any holomorphic function f on Ω′ satisfying the condition

∫

Ω′

e−ϕ(z′,0)|f(z′)|2dλz′ <∞

where (z′, zn) = (z1, . . . , zn) and dλz′ denotes the Lebesgue measure, there

exists a holomorphic function F on Ω satisfying F |Ω′ = f and

∫

Ω
e−ϕ(z)|F (z)|2dλz ≤ C

∫

Ω′

e−ϕ(z′,0)|f(z′)|2dλz′ .
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At first, formulation of similar extension theorems in more general situa-

tions has been done in several papers, aiming at a generalization of Theorem

1 for complex manifolds. This was partially done in [O-2, 3], and was more

completely done by L. Manivel [M] as an extension theorem for the sec-

tions of holomorphic vector bundles on weakly 1-complete manifolds from

complex submanifolds of arbitrary codimension. On the other hand, there

remained still a demand for refining the extension theorem for domains in

C
n. Such a need arose from a question of estimating the growth exponent

of the Bergman kernel function. For bounded domains in C
n, we could de-

duce from Theorem 1 that the Bergman kernel explodes near the boundary,

whenever the domain admits a bounded plurisubharmonic exhaustion func-

tion (cf. [O-4]). However, for pseudoconvex domains with smooth boundary,

Theorem 1 did not even slightly improve an estimate previously given in

[D-H-O], whose proof depended on a much more primitive and weaker ex-

tension argument in an earlier work [O-1]. The puzzle was settled in [O-5]

where an improvement of the L2 estimate for the ∂̄ operator was found and

applied to prove the following.

Theorem 2. Let Ω,Ω′ and ϕ be as in Theorem 1. Then, for any

plurisubharmonic function ψ on Ω such that ψ(z)+2 log |zn| is bounded from

above, there exists a constant C depending only on sup(ψ(z)+2 log |zn|) such

that, for any holomorphic function f on Ω′ satisfying
∫

Ω′

e−ϕ(z′,0)−ψ(z′,0)|f(z′)|2dλz′ <∞,

there exists a holomorphic function F on Ω satisfying F |Ω′ = f and
∫

Ω
e−ϕ(z)|F (z)|2dλz ≤ C

∫

Ω′

e−ϕ(z′,0)−ψ(z′,0)|f(z′)|2dλz′ .

As for the above mentioned question on the Bergman kernel, from The-

orem 2 one can deduce that, if z0 is a boundary point of a bounded pseudo-

convex domain Ω ⊂ C
n whose boundary ∂Ω is C∞ smooth and extendable

at z0 in a pseudoconvex way with order ν (cf. [D-H-O]), then the Bergman

kernel function KΩ of Ω satisfies

const.KΩ(z) > |z − z0|−2(1+1/ν)

if n ≥ 2 and z lies on the inner unit normal to ∂Ω at z0. Theorem 2 improves

also the regularity of Bonneau-Diederich’s integral solution operator for the

∂̄ equation, too (cf. [B-D]).
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Furthermore, the L2 estimate in the proof of Theorem 2 provided a

new insight into a few other classical problems in complex analysis, such

as Suita’s conjecture on the comparison between the Bergman kernel and

logarithmic capacity on Riemann surfaces (cf. [St]), and questions in the

theory of interpolation and sampling as developed recently by K. Seip [Sp2].

As for Suita’s conjecture, for instance, the following was obtained by the

same method as in Theorem 2.

Theorem 3. (cf. [O-6]) Let R be a Riemann surface admitting

the Green function, and let KR(z)|dz|2 and cR(z)|dz| be respectively the

Bergman kernel and the logarithmic capacity of R. Then

750πKR(z) > cR(z)2.

Concerning the interpolation, we gave in [O-7] an alternate proof of the

sufficiency part of Seip’s theorem in [Sp2], by formulating a generalization

of Theorem 2 as an L2 extension theorem on Stein manifolds.

Unfortunately, this extension theorem was formulated only for the pur-

pose of generalizing Seip’s theory to several variables, and did not actually

reach the level of a genuinely general theorem. For instance, it is not so easy

to see that Theorem 3 follows directly from it, even putting the constant

750π aside. To state the theorem is already laborious.

Therefore it might be desirable to formulate a general extension theo-

rem in such a way that one can immediately deduce all the earlier results on

the L2 extension. The purpose of the present article is to do it as punctually

as possible.

Let M be a complex manifold and let (E, h) be a holomorphic Hermi-

tian vector bundle over M . Given a positive measure dµM on M , we shall

denote by A2(M,E, h, dµM ) the space of L2 holomorphic sections of E over

M with respect to h and dµM . Let S be a closed complex submanifold

of M and let dµS be a positive measure on S. The measured submani-

fold (S, dµS) is said to be a set of interpolation for (E, h, dµM ), or for the

space A2(M,E, h, dVM ) if there exists a bounded linear operator I from

A2(S,ES, h, dµS) to A2(M,E, h, dµM ) such that I(f)|S = f for any f . I is

called an interpolation operator.

Let n = dimM and let dVM be a continuous volume form on M . Then

we consider a class of continuous functions Ψ fromM to the interval [−∞, 0)

such that

1) Ψ−1(−∞) ⊃ S
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and

2) If S is k-dimensional around a point x, there exists a local coordi-

nate (z1, . . . , zn) on a neighbourhood U of x such that zk+1 = . . . = zn = 0

on S ∩ U and

sup
U\S

∣

∣

∣
Ψ(z) − (n− k) log

n
∑

k+1

|zj |2
∣

∣

∣
<∞.

The set of such functions Ψ will be denoted by #(S). Clearly, the

condition 2) does not depend on the choice of the local coordinate. For

each Ψ ∈ #(S), one can associate a positive measure dVM [Ψ] on S as

the minimum element of the partially ordered set of positive measures dµ

satisfying
∫

Sk

fdµ ≥ lim
t→∞

2(n− k)

σ2n−2k−1

∫

M
fe−ψχR(Ψ,t)dvM

for any nonnegative continuous function f with supp f b M . Here Sk de-

notes the k-dimensional component of S, σm denotes the volume of the unit

sphere in R
m+1, and χR(Ψ,t) denotes the characteristic function of the set

R(Ψ, t) = {x ∈M | − t− 1 < Ψ(x) < −t}.

Clearly dλz[log |zn|2] = dλz′ for z = (z′, zn).

Let Θh be the curvature form of the fiber metric h. We write Θh ≥ 0 if

Θh induces a semipositive quadratic form on T 1,0
M ⊗E. (E, h) is then said to

be semipositive in the sense of Nakano. Let ∆h(S) be the set of functions

Ψ̃ in #(S) such that, for any point x ∈ M , e−Ψ̃h is equal to e−Ψ̂ĥ around

x for some plurisubharmonic function Ψ̂ and some fiber metric ĥ whose

curvature form is semipositive in the sense of Nakano.

Our goal is to prove

Theorem 4. Let M be a complex manifold with a continuous volume

form dVM , let E be a holomorphic vector bundle over M with a C∞ fiber

metric h, let S be a closed complex submanifold of M , let Ψ ∈ #(S) and

let KM be the canonical line bundle of M . Then (S, dVM [Ψ]) is a set of

interpolation for (E⊗KM , h⊗ (dVm)−1, dVM ) if the following are satisfied.

1) There exists a closed subset X ⊂M such that
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a) X is locally negligible with respect to L2 holomorphic functions, i.e.,

for any local coordinate neighbourhood U ⊂ M and for any L2 holo-

morphic function f on U \X, there exists a holomorphic function f̃

on U such that f̃ |U \X = f .

b) M \X is a Stein manifold which intersects with every component of

S.

2) Θh ≥ 0 in the sense of Nakano.

3) (1 + δ)Ψ ∈ ∆h(S) ∩ C∞(M \ S) for some δ > 0.

Under these conditions there exist a constant C and an interpolation oper-

ator from A2(S,E⊗KM |S, h⊗ (dVM )−1|S, dVM [Ψ]) to A2(M,E⊗KM , h⊗
(dVM )−1, dVM ) whose norm does not exceed Cδ−3/2. If Ψ is plurisubhar-

monic, the interpolation operator can be chosen so that its norm is less

than 24π1/2.

It follows immediately from this, that for any bounded pseudoconvex

domain Ω ⊂ C
n satisfying supΩ |zn| < 1, there exists an interpolation oper-

ator from A2(Ω′,Ω′ × C, e−Ψ(z), dλz [log |zn|2]) to A2(Ω,Ω × C, e−Ψ(z), dλz)

whose norm is bounded by 24√π, provided that Ψ is plurisubharmonic and

C∞. Since any plurisubharmonic function ϕ can be approximated by C∞

ones from above on Ω, Theorem 1 is obtained.

Similarly we obtain Theorem 2 by letting

Ψ(z) = ψ(z) + log |zn|2 − sup
Ω

(ψ(z) + log |zn|2),

E = Ω×C, h = e−ϕ(z) and dVM = dλz. As for Theorem 3, it suffices to put

M = R, S = {q} and Ψ( . ) = G( . , q). Here G(p, q) denotes the (negative)

Green function of R. Recalling that

2 log cR(z(p)) = lim
q→p

(G(p, q) − log |z(p) − z(q)|2)

an inequality 28πKR(z) > cR(z)2 is obtained from the equality

dVR[G( . , q)] = cR(0)−2dVR[log |z|2]

which is valid for any continuous volume form dVR on R and for any local

coordinate z around q.
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In Section one we shall prove Theorem 4. In Section two, we shall apply

Theorem 4 to prove an improved version of Skoda’s L2 division theorem.

The point is that we can replace a partial positivity assumption on the

curvature by a genuine semipositivity condition. (See remarks after Theo-

rem 7.) The method of transforming the division problem to the extension

problem seems to be of independent interest.

In Section three, we generalize the notion of pluricomplex Green func-

tion. After discussing some of its elementary properties, we shall formulate

a multidimensional variant of Suita’s conjecture. Finally we shall present

a new proof of an equality between the upper uniform density and the

capacity with respect to the canonical potential function for the complex

plane and the unit disc. To the author’s belief, the approach given here is

more flexible than those in [O-7] and [B-O] and suited for the purpose of

generalizing the theory of interpolation and sampling to several variables.

The author would like to thank the referee for valuable criticisms and

Hajime Tsuji for finding a big error in the manuscript.

§1. Proof of Main Theorem

1.1. The tool

Let (M,g) be a complete Kähler manifold of dimension n and let (E, h)

be a holomorphic Hermitian vector bundle over M . We denote by Cp,q0 (E)

the set of compactly supported C∞(p, q)-forms on M with values in E.

Exterior differentiation of type (0,1) is denoted by ∂̄. ∂̄ is naturally identified

with its maximal closed extension to the L2-completion Lp,q(E) of Cp,q0 (E)

with respect to (g, h). For the proof of main theorem, we need to solve

an equaiton of the form ∂̄(
√
ηu) = v, where u is the unknown and η is a

positive C∞ function. In order to prove the existence of a solution with a

proper L2 norm estimate, we need a variant of Nakano’s equality which was

first established in [O-T]. Let us first recall it.

Let ∂ be the complex exterior derivative of type (1, 0) and ∂∗ its adjoint

with respect to g. Identifying h with an element of C∞(M,Hom(E, Ē∗))

we put ∂h = h−1 ◦ ∂ ◦ h. Let Λ be the adjoint of exterior multiplication

by the fundamental form of g. By an abuse of notation, we shall identify

differential forms with exterior multiplication by them from the left hand

side. In what follows, commutators will always be the graded commutators,

i.e. [S, T ] := ST − (−1)deg S degTTS.
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Lemma 1. For any C∞(0, 1) form θ on M ,

[∂̄, θ∗] + [∂∗, θ̄] = [−
√
−1∂̄θ̄,Λ].

Proof. Since θ∗ = −
√
−1[θ̄,Λ] and ∂∗ = −

√
−1[∂̄,Λ], we have

[∂̄, θ∗] + [∂∗, θ̄] = [∂̄,−
√
−1[θ̄,Λ]] + [−

√
−1[∂̄,Λ], θ̄]

= [−
√
−1[∂̄, θ̄],Λ] = [−

√
−1∂̄θ̄,Λ].

Proposition 2. For any positive C∞ function η on M ,

(†)
∂̄ ◦ η ◦ ∂̄∗h + ∂̄∗h ◦ η ◦ ∂̄ − ∂h ◦ η ◦ ∂∗ − ∂∗ ◦ η ◦ ∂h
= [−

√
−1(ηΘh − ∂∂̄η),Λ] + (∂̄η) ◦ ∂̄∗h

+ ∂̄ ◦ (∂̄η)∗ + ∂∗ ◦ (∂η) + (∂η)∗ ◦ ∂h.

Here ∂̄∗h denotes the adjoint of ∂̄ with respect to (g, h).

Proof. By the Kähler identities we obtain

∂̄ ◦ η ◦ ∂̄∗h + ∂̄∗h ◦ η ◦ ∂̄ − ∂h ◦ η ◦ ∂∗ − ∂∗ ◦ η ◦ ∂h

= η([∂̄, ∂̄∗h] − [∂h, ∂
∗]) + (∂̄η) ◦ ∂̄∗h − (∂̄η)∗ ◦ ∂̄ − (∂η) ◦ ∂∗ + (∂η)∗ ◦ ∂h.

By Lemma 1 we have

−(∂η) ◦ ∂∗ = ∂∗ ◦ (∂η) − ∂̄ ◦ (∂̄η)∗ − (∂̄η)∗ ◦ ∂̄ + [
√
−1∂̄∂η,Λ].

Combining these equalities we obtain the formula.

Proposition 3. For any u ∈ Cn,q0 (E)

‖√η∂̄∗hu‖2 + ‖√η∂̄u‖2 − ‖√η∂∗u‖2

= (
√
−1(ηΘh − ∂∂̄η)Λu, u) + 2Re(∂̄η ∧ ∂̄∗hu, u).

Proof. Applying both sides of (†) to u, we take the inner product with

u. Since ∂η ∧ u = ∂hu = 0 by the type condition for u, we obtain the

required formula by Stokes theorem.
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Corollary 4. For any positive continuous function c on the interval

(0,∞),

‖
√

η + c(η)∂̄∗hu‖2 + ‖√η∂̄u‖2

≥ (
√
−1(ηΘh − ∂∂̄η − c(η)−1∂η ∧ ∂̄η)Λu, u)

for any u ∈ Cn,q0 (E).

Combining this inequality with Hahn-Banach’s theorem, we obtain the

following variant of Kodaira-Nakano’s vanishing theorem.

Theorem 5. Let (M,g) be a complete Kähler manifold of dimension

n and let (E, h) be a holomorphic Hermitian vector bundle over M . If

κ := ηΘh − idE ⊗(∂∂̄η + c(η)−1∂η ∧ ∂̄η) is semipositive in the sense of

Nakano as a quadratic form along the fibres of E ⊗ T 1,0
M , for a positive C∞

function η and a positive continuous function c on (0,∞), then for any

q ≥ 1 and for any ∂̄-closed locally square integrable E-valued (n, q)-form v

with ((
√
−1κΛ)−1v, v) <∞, there exists a u ∈ Ln,q−1(E) satisfying

∂̄(
√

η + c(η)u) = v

and

‖u‖2 ≤ ((
√
−1κΛ))−1v, v).

1.2. The proof

For simplicity we put A2(D) = A2(D,E ⊗KM , h⊗ (dVM )−1, dVM ) for

any open subset D ⊂ M . By the assumption 1, a) the restriction map

A2(M) → A2(M \X) is an isometric isomorphism. Therefore, by 1, b), to

show the existence of an interpolation operator with the required properties

it suffices to prove that, for any relatively compact Stein open subset D ⊂
M\X there exists a bounded linear operator ID from A2(S,Ψ) := A2(S,E⊗
KM |S, h⊗(dVM )−1, dVM [Ψ]) to A2(D) such that ID(f)|S∩D = f |S∩D and

‖ID(f)‖ ≤ 24√π‖f‖ for any f ∈ A2(S,Ψ). Because we shall then obtain an

interpolation operator

I : A2(S,Ψ) −→ A2(M)

as a limit. To be more explicit, we fix a complete orthonormal system

{fj}∞j=1 of A2(S,Ψ) and any increasing family {Dk}∞k=1 of relatively com-

pact Stein open subsets of M \X, and consider the sequence {IDk
(fj)}∞j,k=1.
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Choosing a sequence {kµ}∞µ=1 ⊂ N by the diagonal argument in such a way

that {IDkµ
(fj)}∞µ=1 converges weakly to some f̃j ∈ A2(M) for each j. By

Cauchy’s estimate, an interpolation operator I as above is obtained by

putting I(f) := limµ→∞ IDkµ
(f) for any f ∈ A2(S,Ψ).

Once for all we fix a relatively compact Stein open subset D in M \X.

It suffices to show that, for any f ∈ A2(S,Ψ) one can find an F ∈ A2(D)

satisfying F |D ∩ S = f and ‖F‖ ≤ 24√π‖f‖.
For that we fix a pair (W,ρ), where W is a Stein neighbourhood of

S \ X in M and ρ is a holomorphic retraction from W onto S \ X which

is isotopic to the identity map of W . Such a pair exists in virtue of Siu’s

theorem (cf. [S]). Clearly the retraction naturally induces a linear map,

say Iρ, from A2(S,Ψ) to the space of holomorphic sections of E⊗KM on a

neighbourhood U of S∩D in M \X. (Actually, in virtue of the Oka-Grauert

principle, one may take W as U . For the Oka-Grauert principle, see [H-L]

for instance.)

By the definition of the measure dVM [Ψ] one can find for any f ∈
A2(S,Ψ) and any ε > 0, a positive number t0 such that

‖e−Ψ/2Iρ(f)χR(Ψ,t)‖2 ≤ (π + ε)‖f‖2

holds for all t > t0. Here the L2 norm on the left hand side is measured on U .

Let λ : R → R be any C∞ function satisfying λ(t) = 1 on (−∞, 1), λ(t) = 0

on (2,∞) and 0 ≤ λ(t) ≤ 1 on [1,2]. Then we put

vt =







∂̄(λ(Ψ + t+ 2)Iρ(f)) on D ∩ U

0 on D \ U

by choosing t0 in advance so that {x ∈ D| −∞ ≤ Ψ(x) < −t0} b U .

Since D \S admits a complete Kähler metric (cf. [Gr] or [D-F]), we are

allowed to apply Theorem 5 for D \ S.

For simplicity we shall first prove the result when Ψ is plurisubhar-

monic.

We put then

Gt = log(eΨ + e−t) − 1 − ε

and

ηt = −Gt + log(−Gt) + 1

for t > t0. Since Ψ is negative ηt is well defined, and replacing t0 by a larger

number if necessary, we may assume that Gt < −1.
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We have

∂∂̄Gt =
eΨ∂∂̄Ψ

eΨ + e−t
+
eΨ−t∂Ψ ∧ ∂̄Ψ

(eΨ + e−t)2

−∂∂̄ηt = (1 −G−1
t )2∂∂̄Gt +G−2

2 ∂Gt ∧ ∂̄Gt.

Combining these equalities with assumptions 2) and 3) we obtain

ηtΘh − IdE ⊗∂∂̄ηt − IdE ⊗(η−3
t ∂ηt ∧ ∂̄ηt)

≥ (eΨ + e−t)−2eΨ−t∂Ψ ∧ ∂̄Ψ

+G−2
t ∂Gt ∧ ∂̄Gt −G−2

t (1 −Gt)
−1∂Gt ∧ ∂̄Gt

≥ (eΨ + e−t)−2eΨ−t∂Ψ ∧ ∂̄Ψ (IdE is omitted for simplicity.)

Therefore for any complete Kähler metric g on D \ S,

((
√
−1(ηtΘh − IdE ⊗∂∂̄ηt − IdE ⊗η−3

t ∂ηt ∧ ∂̄ηt)Λ)−1vt, vt)e−Ψh

≤ (((
√
−1 IdE ⊗(eΨ + e−t)−2eΨ−t∂Ψ ∧ ∂̄Ψ)Λ)−1vt, vt)e−Ψh

= ‖(eΨ + e−t)et/2λ′(Ψ + t+ 2)Iρ(f)‖2
e−2Ψh

=

∫

D∩U\S
(eΨ + e−t)2et−2Ψλ′(Ψ + t+ 2)2h(Iρ(f)) ∧ Iρ(f)

≤ (3 + e)

∣

∣

∣

∣

∣

∫

D\S
e−Ψλ′(Ψ + t+ 2)2h(Iρ(f)) ∧ Iρ(f)

∣

∣

∣

∣

∣

≤ (3 + e) sup |λ′|2
∫

D\S
|Iρ(f)|2e−ΨχR(Ψ,t)dVM

≤ (3 + e)(π + ε) sup |λ′|2‖f‖2

if t > t0. (Note that 2m/σ2m−1 ≥ 1/π for all m ∈ N.)

Hence by Theorem 5 there exists a wt ∈ Ln,0(E)e−Ψh satisfying

∂̄(
√

ηt + η3
twt) = vt

and

‖wt‖2
e−Ψh ≤ (3 + e)(π + ε) sup |λ′|2‖f‖2.
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Note that

‖
√

ηt + η3
twt‖2

h ≤ (C0 + ε)‖wt‖2
e−Ψh

holds for sufficiently large t, if we put

C0 = lim
t→∞

sup
D

(ηt + η3
t )e

Ψ.

Since

C0 ≤ sup
s>0

{(2 + s+ log(1 + s)) + (2 + s+ log(1 + s))3}e−s

< sup
s>0

{2(1 + s) + 8(1 + s)3}e−s < 2 + 63e−2 < 25,

choosing ε� 1 and t� 1, we obtain an extension

F = λ(Ψ + t+ 2)Iρ(f) −
√

ηt + η3
twt

with the desired estimate.

If Ψ is not plurisubharmonic, we replace ηt by ηt + δ−1 in the above

argument and obtain an interpolation operator similarly, but with a worse

estimate for the norm.

Remark 1. Condition 1) of the main theorem is satisfied ifM is pseudo-

convex (i.e. M carries a continuous plurisubharmonic exhaustion function)

and holomorphically embeddable into a complex projective space. In fact

one may take as X a generic hyperplane section. Concerning a criterion for

a pseudoconvex manifold to be embeddable into a projective space, see [T].

Remark 2. For many purposes it is desirable to remove the regularity

assumption for Ψ in condition 3). This is possible if rank E = 1. Because,

for any singular fiber metric h of a holomorphic line bundle over a Stein

manifold D, and for any strictly plurisubharmonic function Ψ on D, such

that h is locally of the form e−ϕ for some plurisubharmonic function ϕ,

there exists an increasing family of C∞ fiber metrics hν converging to h

such that

Θhν ≥ −∂∂̄ψ
for all ν. Thus, if rank E = 1, conditions 2) and 3) can be replaced respec-

tively by

2′) iΘh is a positive current



12 T. OHSAWA

and

3′) Ψ ∈ ∆h(S).

Here the definition of #h(S) for the singular fiber metric h is done in an

obvious way.

§2. Extension and division

Let g : E → Q be a surjective morphism between holomorphic vector

bundles, of rank p and q, respectively, over a complex manifold N of di-

mension n, and let L be a holomorphic line bundle over N . Let h and b be

respectively the C∞ fiber metrics of E and L, and let a be the fiber metric

of Q induced from h. In [Sk-3], H. Skoda proved the following.

Theorem 6. Assume that N admits a Kähler metric and a plurisub-

harmonic exhaution function of class C2, (E, h) is semi-positive in the sense

of Griffiths, and Θb−Θdeth − kΘdet a ≥ 0 for some k > inf(n, p− q). Then

the morphism

g∗ : H0(N,E ⊗KN ⊗ L) −→ H0(N,Q⊗KN ⊗ L)

is surjective.

We shall show that the following is a straightforward consequence of

Theorem 7. Under the hypothesis of Theorem 6, assume moreover

that N is holomorphically embeddable into a complex projective space. Then

the morphism g∗ : H0(N,E⊗KN ⊗L) → H0(N,Q⊗KN ⊗L) is surjective.

Proof. Let P (E∗) → N be the projectification of the dual bundle

E∗ → N . Then there exists a diagram

O(1) �

@
@

@R

π∗E - E

?
ξ

?
π

P (E∗) - N

Here the morphism π∗E → O(1) associates v ∈ π∗E the class v + Ker ξ(v)

One has then H0(P (E∗), O(1)) ' H0(N,E). To show that the morphism

g∗ is surjective, it suffices to show that the restriction morphism

H0(P (E∗), O(1)⊗π∗(KN ⊗L)) −→ H0(P (Q∗), O(1)⊗π∗(KN ⊗L)|P (Q∗))
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induced by the injective morphism G∗ : Q∗ → E∗ is surjective.

For M = P (E∗) and S = P (Q∗), condition 1) of is satisfied since we

assume that N is embeddable into a complex projective space. As for 2),

one can see from

O(1) ⊗ π∗(KN ⊗ L)

' KP (E∗) ⊗K∗
P (E∗) ⊗O(1) ⊗ π∗(KN ⊗ L)

' KP (E∗) ⊗O(p) ⊗ π∗(detE∗ ⊗K∗
N ) ⊗O(1) ⊗ π∗(KN ⊗ L)

' KP (E∗) ⊗O(p+ 1) ⊗ π∗(detE∗ ⊗ L)

that 2) is satisfied by the metrized line bundle (O(p+1)⊗π∗(detE∗⊗L), h0)

with respect to the induced metric h0, since

Θb − Θdeth ≥ kΘdet a ≥ 0

by assumption.

Therefore, in view of 3′), the conclusion of Theorem 7 will follow if

∆h0 exp(−ϕ)(P (Q∗)) 6= ∅ for some continuous plurisubharmonic exhaustion

function ϕ on P (E∗).

To proceed, let us assume first that p − q = 1 for the sake of simplic-

ity. Then there is a canonical isomorphism between π∗(Ker g)∗ ⊗O(1) and

the line bundle [P (Q∗)] associated to the divisor P (Q∗) ⊂ P (E∗). Hence

∆e−ϕh0
(P (Q∗)) is nonempty for some ϕ if and only if O(p) ⊗ π∗(detE∗ ⊗

L⊗ Ker g) is semipositive. Since the curvature form of Ker g is given by

Θh|Ker g +A∗ ∧A

in terms of Θh and a Hom(Ker g,Q)-valued (1, 0) form A, where A∗ :=
∑

j A
∗
jdz̄j , if A =

∑

j Ajdzj , detQ⊗ Ker g is semipositive if

(∗) TrA ∧A∗ +A∗ ∧A ≥ 0.

But this is an obvious inequality. Hence we are done if p− q = 1.

If p − q > 1, by appealing to Skoda’s lemma (“Lemma fondamental”

in [Sk-2]) instead of (∗), we obtain the Nakano semipositivity of (detQ)k ⊗
Ker g for any integer k ≥ inf(n, p− q). Therefore, by a similar argument as

above, after reducing the codimension of P (Q∗) to one by blowing up, we

apply Theorem 4. The detail in routine and may well be left to the reader.
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Remarks. We note that the above proof shows that the assumption

Θb − Θdeth − kΘdet a ≥ 0

for some k > inf(n, p− q), can be weakened to

Θb − Θdeth − inf(n, p − q)Θdet a ≥ 0

if p−q = 1 and [P (Q∗)]⊗O(1) is semipositive. Moreover, the extendability of

sections needed in the above proof is still valid even if we drop the projective

embeddability of N . In fact, we could have formulated an extension theorem

which has literally Theorem 6 as a corollary. This minor modification may

well be left to the reader as an exercise.

There exist other variants of division theorem in [Sk-1, 2, 3] and [D].

It seems that not all of them are corollaries of the corresponding extension

theorems.

Lastly, to show another advantage of our approach, we formulate be-

low an analogue of the solution of mixed boundary value problems in real

analysis.

Theorem 8. Let g : E → Q be a surjective morphism between holo-

morphic vector bundles over a pseudoconvex manifold M , let L be a holo-

morphic line bundle over M , and let S be a closed complex submanifold of

M . Assume that M is holomorphically embeddable into a projective space,1

that E and L admit fiber metrics satisfying the conditions of Theorem 6,

and that, with respect to the fiber metric h of E, there exists a continuous

plurisubharmonic exhaustion function ϕ of M such that ∆e−ϕhdeth(S) 6= ∅.
Then the morphism

H0(M,E ⊗KM ⊗ L)

−→ H0(S,E ⊗KM ⊗ L) ×H0(S,Q⊗KM⊗L) H
0(M,Q⊗KM ⊗ L),

induced by the restriction and g, is surjective.

Sketch of Proof. Main theorem is to be applied to P (E∗) \ (P (Q∗) ∩
π−1(S)) and its submanifold P (Q∗) ∪ π−1(S) \ (P (Q∗) ∩ π−1(S)). The rest

is similar as in Theorem 7.

1This can be replaced by the existence of a Kähelr metric on M .
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§3. Generalized pluricomplex Green function

Let Ω be a domain in C
n and let w ∈ Ω. If ∆1({w}) (= ∆1({w},Ω)) is

nonempty, we put

G(z,w) = sup{u(z) : u ∈ ∆1({w})}.

The function g = G/2n is called the pluricomplex Green function with

pole at w. Based on this well known notion we introduce the following new

terminology.

Definition. Let M be a complex manifold, let (E, h) be a holomor-

phic Hermitian vector bundle over M , and let S be a closed complex sub-

manifold of M . The generalized pluricomplex Green function of (E, h) with

poles along S is

Gh(z, S) = sup{u(z) : u ∈ ∆h(S)}

if ∆h(S) 6= ∅, and Gh(z, S) = −∞ if ∆h(S) = ∅.
When E = C ×M and h = 1, Gh(z, S) will be denoted by G(z, S).

Proposition 9. If ψ ∈ ∆h(S), then Gh(z, S)−ψ(z) is locally bounded

on M .

Proof. That Gh−ψ ≥ 0 follows from the definition. To see that Gh−ψ
is bounded from above, we take a local coordinate z around x such that

S ∩ U = {z|z′ := (z1, . . . , zk) = 0}

and u(z) − k log ‖z′‖2 is bounded on U = {z | max |zj | < 1} for any u ∈
∆h(S), where k = codimx S.

Let U ′ = {z ∈ U | ‖z′‖ > 1/2}, and let A be a positive number such

that −Θh + A IdE ⊗∂∂̄‖z‖2 ≥ 0 on U . Then, for each z = (z′, z′′) ∈ U ′,

the function A‖z‖2 + ψ(z) − k log ‖z′‖2 is subharmonic on the disc ∆z :=

{(λz′, z′′) | |λ| < 1}. Since u < 0 we have

sup
U

(u(z) − k log ‖z′‖2) ≤ −k log 4 + nA

by the maximum principle for subharmonic functions. Hence

sup
U

(Gh(z, S) − k log ‖z′‖2) ≤ −k log 4 + nA,

so that Gh − ψ is also bounded from above for any ψ ∈ ∆h(S).
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Proposition 10. If rank E = 1, then Gh(z, S) is continuous as a

function with values in [−∞, 0).

Proof. If rank E = 1 and ψ1, ψ2 ∈ ∆h(S), then max{ψ1, ψ2} also be-

longs to ∆h(S) by a basic property of plurisubharmonic functions. Therefore

Gh( . , S) is, in this case, the limit of an increasing sequence of continuous

functions. Hence Gh( . , S) is lower semicontinuous. Since the upper envelope

of Gh( . , S) is then continuous, it will belong to ∆h(S). By the definition

of Gh, Gh is thus equal to its upper envelope. Therefore Gh itself must be

continuous.

Let dVM be any continuous volume form on M and let {σj}∞j=1 (resp.

{τj}∞j=1) be a complete orthonormal system ofA2(M,KM , dV
−1
M , dVM ) (resp.

A2(S,KM ⊗ S, dV −1
M , dVM [G( . , S)])) and put

κM =

∞
∑

j=1

σj ⊗ σ̄j ∈ Cω(M,KM ⊗ K̄M )

(resp. κM/S =
∞
∑

j=1

τj ⊗ τ̄j ∈ Cω(S,KM ⊗ K̄M )).

Clearly, κM and κM/S do not depend on the choice of dVM .

Conjecture. (πk/k!)κM (x) ≥ κM/S(x) for any x ∈ S, if M is pseu-

doconvex. Here k = codimx S.

If dimM = 1 and S = {x}, we have

κM/S(x) = eγdz ⊗ dz̄|x

where γ = limy→x(G(y, x)− log |z(y)− z(x)|2). Hence the above conjecture

is an extension of (still unsolved) Suita’s conjecture for the Bergman kernel

of Riemann surfaces.

By the main theorem we have 28πκM (x) ≥ κM/S(x) if M satisfies the

condition 1). It is known that the conjecture is true if M is the unit open

ball in C
n and S is a point of M , or if M is an annulus and S is a point.

There is a variational approach to this problem (see [St] and [G-K]).
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§4. Density and capacity

4.1. Notions of density and capacity

Definition. A subset Γ ⊂ C is said to be uniformly discrete if inf{|z−
w| | z,w ∈ Γ, z 6= w} > 0.

For any uniformly discrete subset Γ of C we put

D+(Γ) = lim sup
r→∞

sup
w

#{z ∈ Γ | |z − w| < r}
πr2

D+(Γ) is called the upper uniform density of Γ.

For the simplicity of notation we put

A2
α = A2(C,C × C, e−α|z|

2
, dλz).

Theorem 11. Let Γ be a uniformly discrete subset of C and let δΓ be

the Dirac mass supported on Γ. Then, (Γ, δΓ) is a set of interpolation for

A2
α if and only if α > πD+(Γ).

For the proof the reader is referred to [Sp-W] and [Sp-1].

For the unit disc ∆ = {z ∈ C | |z| < 1} we put

A2
α,∆ = A2(∆,C × ∆, (1 − |z|2)α, dλz).

Definition. A subset Γ ⊂ ∆ is said to be uniformly discrete if

inf

{∣

∣

∣

∣

z − w

zw̄ − 1

∣

∣

∣

∣

∣

∣

∣
z,w ∈ Γ, z 6= w

}

> 0.

we put ρ(z,w) = |z − w/zw̄ − 1| and

D+
∆(Γ) = lim sup

r→1
sup
z

∑

ξ∈Γ
1
2 < ρ(z, ξ) < rlog ρ(z,ξ)

log(1 − r)
.

Theorem 12. Let Γ be a uniformly discrete subset of ∆. Then (Γ, (1−
|z|2)δΓ) is a set of interpolation for A2

α,∆ if and only if α > 2D+(Γ).

For the proof, see [Sp-2].

Definition. For any discrete subset Γ ⊂ C we put

C+(Γ) = inf{α|∆
e−α|z|2 (Γ) 6= ∅}.

C+(Γ) will be called the canonical capacity of Γ. The canonical capacity of

a discrete subset of ∆ is defined by

C+
∆(Γ) = inf{α|∆(1−|z|2)α(Γ) 6= ∅}.
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4.2. Equivalence of the notions

We shall deduce from the main theorem, Theorem 11 and Theorem 12,

that the above mentioned notions of density and capacity coincide.

Theorem 13. For any uniformly discrete subset Γ ⊂ C (resp. Γ ⊂ ∆),

one has πD+(Γ) = C+(Γ) (resp. 2D+(Γ) = C+
∆(Γ)).

Proof. We first prove the inequality C+(Γ) = πD+(Γ) by showing that

∆
e−α|z|2 (Γ) 6= ∅ for any α > πD+(Γ).

Let χε be a C∞ function on R such that

χε(t) = 1 for t ≤ ε

χε(t) = 0 for t > 1 + ε

χ′
ε(t) = −1 for 2ε < t < 1

χ′′
ε(t) ≤ 0 for t ≤ 1/2

and

χ′′
ε(t) ≤ 2/ε for t > 1.

Here ε ∈ (0, 1/100). Then we put

ψεR(z) =
∑

ξ∈Γα

χε

( |z − ξ|2
R2

)

log

∣

∣

∣

∣

z − ξ

(1 + ε)R

∣

∣

∣

∣

2

− 1.

Here Γα = Γ ∪ 1
α (Z +

√
−1Z). It is clear that ψεR ∈ #(Γα). Furthermore

ψεR(z) =
∑

ξ∈Γα

(

Aξ log

∣

∣

∣

∣

z − ξ

(1 + ε)R

∣

∣

∣

∣

2

+Bξ

)

dz ∧ dz̄,

where

Aξ =
|z − ξ|2
R4

χ′′
ε

( |z − ξ|2
R2

)

+
1

R2
χ′
ε

( |z − ξ|2
R2

)

and

Bξ =
2

R2
χ′
ε

( |z − ξ|2
R2

)

.

We have

∑

ξ∈Γα

|z − ξ|2
R4

χ′′
ε

( |z − ξ|2
R2

)

log

∣

∣

∣

∣

z − ξ

(1 + ε)R

∣

∣

∣

∣

2
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≥ −
∑

ξ∈Γα
R≤|z−ξ|≤(1+ε)R

|z − ξ|2
R4

2

ε
log(1 + ε)2

≥ −8εα

for R� 1. On the other hand, for any δ > 0,

∑

ξ∈Γα

1

R2
χ′

( |z − ξ|2
R2

)

log

∣

∣

∣

∣

z − ξ

(1 + ε)R

∣

∣

∣

∣

2

≥ α− δ

2

if we choose ε� 1 and R� 1/ε, because
∫ 1
0 | log t|dt = 1. Clearly

∑

ξ∈Γα
Bξ

≥ −2α− δ/2 if ε� 1 and R� 1/ε. Hence we have

ψεR(z) ∈ ∆
e−(α+δ)|z|2(Γα)

if R� 1/ε� 1. Hence ∆
e−α′|z|2 (Γα) 6= ∅ for any α′ > α > πD+(Γα). Since

∆
e−α′|z|2 (Γ) ⊃ ∆

e−α′|z|2 (Γα)

we have ∆
e−α′|z|2 (Γ) 6= ∅ for any α > πD+(Γ). Hence πD+(Γ) ≥ C+(Γ).

On the other hand, let α > C+(Γ). Then, by Hörmander’s method of

solving the ∂̄ equation, it is easily seen that there exists a constant C such

that for any ξ ∈ Γ there exists a holomorphic function fξ ∈ A2
α satisfying

fξ|Γ = 0, f ′ξ(ξ) = 1 and |fξ(z)|2e−α|z|
2 ≤ C everywhere on C. This obviously

means that the generalized Green function Gα = G
e−α|z|2 ( . ,Γ) satisfies that

dλz[Gα] ≤ e−α|z|2

C δΓ.

Hence (Γ, δΓ) is a set of interpolation for A2
α by the main theorem.

Therefore, by Theorem 11 one has α > πD+(Γ). This proves the inequality

C+(Γ) ≥ πD+(Γ).

Proof of the equality 2D+(Γ) = C+(Γ) is similar. Namely, to prove that

2D+(Γ) ≥ C+(Γ) we put

ψεr(z) =
∑

ξ∈Γ∗

χε(log(1− ρ(z, ξ)2)/ log(1 − r2)) log ρ(z, ξ)2.

Here Γ∗ is the union of Γ and a noneuclidean lattice. We shall leave the

detail to the reader. The converse inequality follows from the Hörmander’s

L2 theorem and Theorem 12 in a similar way as above.

Remark. It seems to be a fruitful task to generalize the above equalities

between densities and capacities to higher dimensions.
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