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ON THE UNRAMIFIED COMMON DIVISOR

OF DISCRIMINANTS OF INTEGERS

IN A NORMAL EXTENSION

SATOMI OKA

Abstract. Let F be an algebraic number field of a finite degree, and K be
a normal extension over F of a finite degree n. Let p be a prime ideal of F
which is unramified in K/F , P be a prime ideal of K dividing p such that
NK/F P = pf , n = fg. Denote by δ(K/F ) the greatest common divisor of
discriminants of integers ofK with respect to K/F . Then, p divides δ(K/F ) if
and only if Σd|fµ( f

d
)Npd < n.

§1. Introduction

Let F be an algebraic number field of a finite degree, and K be an

extension over F of a finite degree. A basic theorem in the general theory of

algebraic number fields says that the greatest common divisor of differents

of integers of K with respect to K/F is equal to the different d(K/F ) of

K/F . Therefore, the greatest common divisor δ(K/F ) of discriminants of

integers of K with respect to K/F , as an ideal of F , is divisible by the

discriminant d(K/F ) = NK/F d(K/F ). It is known, however, that d(K/F )

is not always equal to δ(K/F ). In the present paper, we assume that K/F

is a normal extension, and will give a necessary and sufficient condition for

a prime ideal p, which is unramified in K/F , to divide δ(K/F ). The main

theorem is in Section 3.

A prime divisor of δ(K/F ) which does not divide d(K/F ) was called

“Ausserwesentlicher Diskriminantenteiler” (Dedekind [1]).

§2. Preliminaries

1. Throughout the paper, we use standard terminology of number the-

ory as in [2] and [3].

Let F be an algebraic number field of a finite degree, and K be an

extension over F of a finite degree n. The different d(α,K/F ) of an element
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α of K with respect to F is then defined by f ′(α) = d(α,K/F ) where

f(X) is the characteristic polynomial of α = α(1) with respect to K/F . If

α(1), α(2), · · · , α(n) are conjugates of α with respect to K/F , the equality

d(α,K/F ) =
∏

i6=1(α
(1) − α(i)) holds. Furthermore,

d(α,K/F ) =

∣

∣

∣

∣

∣

∣

∣

∣

1 α(1) · · · α(1)n−1

1 α(2) · · · α(2)n−1

. . . . . . . . . . .

1 α(n) · · · α(n)n−1

∣

∣

∣

∣

∣

∣

∣

∣

2

=
∏

i>j

(α(i) − α(j))2

= (−1)n(n−1)/2
∏

i6=j

(α(i) − α(j))

= (−1)n(n−1)/2NK/F d(α,K/F )

implies the relation

d(α,K/F ) = (−1)n(n−1)/2NK/F d(α,K/F )

between the different of α and the relative discriminant d(α,K/F ) of α with

respect to K/F .

2. We insert here some elementary facts concerning finite fields.

Let K1 be a finite field, and Kf be an extension of K1 of degree f .

Then, the Galois group Z of Kf/K1 is cyclic of order f , and, for a divisor d

of f , there is a unique subfield Kd of Kf of degree d over K1. Denote by Cd

the set of elements γ of Kf such that K1(γ) = Kd, and by cd the number

of elements of Cd. Then, ∪d|fCd = Kf implies
∑

d|f cd = qf , where q = c1

is the number of elements of K1. Thus, Möbius’ inversion formula yields

cf =
∑

d|f

µ

(

f

d

)

qd.

Every f elements of Cf are mutually conjugate under the action of the

Galois group Z. So, denoting the set of such conjugacy classes of Cf by C̃f ,

the number of elements of C̃f is cf/f = M(q, f) with

M(q, f) =
1

f

∑

d|f

µ

(

f

d

)

qd.(1)
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§3. Main theorem

In this article, we assume that K/F is normal with G = Gal(K/F ).

Here, as before, F is an algebraic number field of a finite degree, and K

is an extension over F of a finite degree n. Let now oK and oF be ring of

integers of K and F , respectively, p a prime ideal of F which is unramified

in K, and P be a prime ideal of K dividing p. Moreover, let Z be the

decomposition group of P, f be the order of Z, and σ1, σ2, · · · , σg be a

system of representatives of Z\G fixed once for all with fg = n. We then

apply (1) to the case where Kf = oK/P and K1 = oF /p. We write C(P)

for Cf and C̃(P) for C̃f and can see that

M(Np, f) =
1

f

∑

d|f

µ

(

f

d

)

Npd(2)

is the number of elements of C̃(P). Since P is an arbitrary divisor of p in

K, C(Pσ) and C̃(Pσ) for any σ ∈ G are as well-defined as C(P) and C̃(P),

and the number of element of C̃(Pσ) is equal to that of C(P) given by (2).

Our main theorem is stated as follows:

Theorem. Let F be an algebraic number field of a finite degree, and

K be a normal extension over F of a finite degree n. Let p be a prime ideal

of F which is unramified in K/F , P be a prime ideal of K dividing p such

that NK/F P = pf , n = fg. Denote by δ(K/F ) the greatest common divisor

of discriminants of integers of K with respect to K/F , and M(Np, f) be as

in (2). Then, p divides δ(K/F ) if and only if M(Np, f) < g, or equivalently

if and only if
∑

d|f µ(f
d )Npd < n.

Proof. Meanings of symbols Z and σi being as above, we say that a

residue classes represented by αi mod Pσi and by αj mod Pσj , (αi, αj ∈

oK), are conjugate, when there exists an element σ of G = Gal(K/F ) such

that Pσiσ = Pσj and ασ
i ≡ αj (mod Pσj ). In this situation, σ ∈ σ−1

i Zσj

necessarily holds. For each σi, the sets C(Pσi) and C̃(Pσi) are as well-

defined as C(P) and C̃(P) above, and the set of all C(Pσi) is divided

into M(Np, f) conjugacy classes. In particular, the set of conjugacy classes

of one C(Pσi) coincides with C̃(Pσi), and this set consists of M(Np, f)

elements either.

Assume now M ≥ g. Then, there are integers α1, α2, · · · , αg in oK such

that the residue class αi mod Pσi belongs to C(Pσi) and that αi mod Pσi
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and αj mod Pσj are not conjugate whenever i 6= j. Using these integers, we

find an integer α ∈ oK satisfying simultaneously

α ≡ αi (mod Pσi), (i = 1, 2, · · · , g).

Suppose that

ασ ≡ α (mod Pσj )(3)

holds for an element σ ∈ G, (σ 6= 1), and for some j. Then, taking σi with

σiσ = ξσj, (ξ ∈ Z), we have

α
σ−1

i
ξσj

i ≡ αj (mod Pσj ),

contrary to the choice of α1, α2, · · · , αg. Thus, α−ασ is not divisible by any

Pσj , and therefore is prime to p. From this follows that p does not divide

δ(K/F ).

Assume conversely M < g. Then (3) should hold for σ = σ−1
i ξσj with

some σi, σj , (i 6= j) and ξ ∈ Z, whenever α is an integer in oK such that

α mod Pi belongs to C(Pσi) for every i. This means that the discriminant

of such an α with respect to K/F is divisible by p. If α is an integer in oK ,

and α mod Pσi does not belong to C(Pσi) for some i, then

ασ−1

i
ξσi ≡ α (mod Pσi)

holds with an element ξ of Z, (ξ 6= 1), which implies (3) with σ = σ−1
i ξσi 6=

1. From all these arguments, we can conclude that the discriminant of an

integer α in oK is divisible by p regardless of its residue class mod p. Hence,

p divides δ(K/F ).

Corollary 1. Assume that the prime ideal in the Theorem decom-

poses completely in K. Then, p divides δ(K/F ) if and only if Np < n.

Proof. In this case, f = 1, and
∑

d|f µ(f
d )Npd = Np.

Corollary 2. If the prime ideal p in the Theorem satisfies Np ≥ n,

then p dose not divide δ(K/F ).

Proof. Put Np = q. Then,

∑

d|f

µ

(

f

d

)

qd ≥ qf −
∑

d|f,d<f

qd ≥ qf − (qf−1 + qf−2 + · · · + q)

= q − q
qf−1 − 1

q − 1
≥ qf − q(qf−1 − 1) = q ≥ n.
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§4. Examples

1. Let K be a composite of a finite number (> 1) of quadratic fields

over Q = F in which 2 is unramified. Then, the degree f of a prime factor

of 2 in K is either 1 or 2, and n = (K : Q) ≥ 4. If f = 1, then Corollary 1

shows that 2 divides δ(K/Q). If f = 2, then the number M(Np, f) in

the Theorem is 1
2 (22 − 2) = 1. Since g = n

2 ≥ 2, the Theorem implies

that 2 divides δ(K/Q). Namely, 2 always divides δ(K/Q), whenever K is

a composite of quadratic fields in which 2 is unramified.

2. Let p be a prime number, and l be a prime number dividing p3 − 1.

Then, p decomposes completely in the subfield K of the cyclotomic field

Q(e(2πi)/l) with the property (K : Q) = 1
3(l−1). If here moreover 1

3(l−1) >

p, then it follows from Corollary 1 that p divides δ(K/Q).

A few actual numerical examples are:

p 3 5 7 11 13

l 13 31 - - 61

3. Let K/Q be normal of degree 4. If K/Q is not cyclic and 2 is unram-

ified, then example 1 shows that 2 divides δ(K/Q). Even if K/Q is cyclic,
∑

d|f µ(f
d )2d is 2 for f = 1 and 2. Therefore, 2 divides δ(K/Q), unless 2

remains prime in K. If 3 is completely decomposed in K, then Corollary 1

implies that 3 divides δ(K/Q). But, if 3 is not completely decomposed and

unramified, then
∑

d|f µ(f
d )3d = 34 − 32 or 32 − 3, and is bigger than 4. So,

by the Theorem, 3 does not divide δ(K/Q). The unramified primes bigger

than 3 do not divide δ(K/Q) as a consequence of Corollary 2.
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