ON A REGULARITY PROPERTY AND A PRIORI ESTIMATES FOR SOLUTIONS OF NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES

HARUO NAGASE

Abstract

In this paper we consider the following nonlinear parabolic variational inequality; $u(t) \in D(\Phi)$ for all $t \in I,\left(u_{t}(t), u(t)-v\right)+\left\langle\Delta_{p} u(t), u(t)-v\right\rangle+$ $\Phi(u(t))-\Phi(v) \leqq(f(t), u(t)-v)$ for all $v \in D(\Phi)$ a.e. $t \in I, u(x, 0)=u_{0}(x)$, where Δ_{p} is the so-called p-Laplace operator and Φ is a proper, lower semicontinuous functional. We have obtained two results concerning to solutions of this problem. Firstly, we prove a few regularity properties of solutions. Secondly, we show the continuous dependence of solutions on given data u_{0} and f.

§1. Introduction

Let Ω be a bounded domain in R^{n} with coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$. The boundary Γ of Ω is assumed to be of class C^{1}. For any positive number T we denote the open interval $(0, T)$ by I and the cylinder $\Omega \times I$ by G, i.e. $G=\{(x, t) ; x \in \Omega, t \in I\}$. The usual Sobolev space $W^{1, p}(\Omega)$ is defined as follows: $W^{1, p}(\Omega)=\left\{v \in L^{p}(\Omega) ; D_{j} v \in L^{p}(\Omega), j=1, \ldots, n\right\}$ with the norm $|v|_{1, p}=\left(|v|_{p}^{p}+|D v|_{p}^{p}\right)^{1 / p}(1 \leqq p<\infty)$. Here $D_{j} v=\partial v / \partial x_{j}, D v=$ $\left(D_{1} v, D_{2} v, \ldots, D_{n} v\right)$ and $|v|_{p}=\|v\|_{L^{p}(\Omega)}$.

Let S be a compact C^{1} manifold of $(n-2)$-dimension contained in Γ. We assume that S divides Γ into two relatively open subsets Γ_{1}, Γ_{2} such that $\Gamma_{1} \neq \emptyset$, more precisely, $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup S, \Gamma_{1} \cap \Gamma_{2}=\emptyset$. Next let $C_{(0)}^{\infty}(\bar{\Omega})$ be the family of all infinitely differentiable functions in $\bar{\Omega}$ vanishing in each neighborhood of $\overline{\Gamma_{1}}$. The completion of $C_{(0)}^{\infty}(\bar{\Omega})$ with respect to the norm | $\left.\right|_{1, p}$ is denoted by V. We denote the norm in V by $\left|\left.\right|_{V}\right.$, the dual space of V by V^{\prime}, the pairing between V and V^{\prime} by \langle,$\rangle and the inner product$ of $L^{2}(\Omega)$ by (,).

For any Banach space X and any $s(1 \leqq s<\infty)$ let us denote by $L^{s}(I, X)$ the space of equivalent classes of functions $v(t)$ from I to X, which are L^{s}-integrable on I. It is a Banach space with the norm $\|v\|_{L^{s}(I, X)}=$

[^0]$\left(\int_{I}|v(t)|_{X}^{s} d t\right)^{1 / s}$, where $|\quad| X$ is the norm in X. In the case of $s=\infty$, $L^{\infty}(I, X)$ means the set of all measurable functions $v ; I \rightarrow X$, satisfying $\|v\|_{L^{\infty}(I, X)}=\operatorname{ess} . \sup _{I}|v(s)|_{X}<\infty$.

A functional $\Phi ; X \rightarrow(-\infty, \infty]$ is said to be proper if $\Phi \not \equiv \infty$. And a proper functional Φ is said to be lower semicontinuous if

$$
\Phi\left(v_{0}\right) \leqq \liminf _{v \rightarrow v_{0}} \Phi(v) \text { for any } v_{0} \in X
$$

For a proper lower semicontinuous functional Φ on X we set $D(\Phi)=\{v \in$ $X ; \Phi(v)<\infty\}$.

We consider the nonlinear parabolic variational inequality

$$
\left\{\begin{align*}
u(t) \in D(\Phi) & \text { for all } \quad t \in I \tag{1.1}\\
\left(u_{t}(t), u(t)-v\right) & +\left\langle\Delta_{p} u(t), u(t)-v\right\rangle+\Phi(u(t))-\Phi(v) \\
& \leqq(f(t), u(t)-v) \quad \text { for all } v \in D(\Phi) \text { a.e. } t \in I
\end{align*}\right\}
$$

where $\left\langle\Delta_{p} u, v\right\rangle=\sum_{j=1}^{n}\left(|D u|^{p-2} D_{j} u, D_{j} v\right)$. In the above Φ is supposed to be proper, convex lower semicontinuous on V. Throughout this paper we assume that $1<p \leqq 2$, if $n=1,2$, and $2 n /(n+2)<p \leqq 2$, if $3 \leqq n$.

In this paper we denote by the same C any positive constant which does not depend on u, u_{0} and f.

The first aim of this paper is to show the following
Theorem A. It is assumed that the inequality

$$
\begin{equation*}
\left\langle\Delta_{p} u_{0}, u_{0}-v\right\rangle+\Phi\left(u_{0}\right)-\Phi(v) \leqq\left(f(0), u_{0}-v\right) \quad \text { for any } \quad v \in D(\Phi) \tag{1.2}
\end{equation*}
$$

holds, where $u_{0} \in D(\Phi), f \in L^{2}\left(I, L^{2}(\Omega)\right)$ and $f_{t} \in L^{2}\left(I, L^{2}(\Omega)\right)$. Then, for any solution u of (1.1) it holds that $(D u)_{t} \in L^{2}\left(I, L^{p}(\Omega)\right)$ and

$$
\left\|(D u)_{t}\right\|_{L^{2}\left(I, L^{p}(\Omega)\right)} \leqq \sigma^{1 / p}\left(u_{0}, f\right)
$$

where $\sigma\left(u_{0}, f\right)=C\left(\left|D u_{0}\right|_{p}^{p}+\left\|f_{t}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2}\right)$.
It is easy to deduce the follwoing corollary from Theorem A:
Corollary. Under the same assumptions as in Theorem A it holds that $(D u)_{t} \in L^{p}(G)$ and

$$
\left\|(D u)_{t}\right\|_{L^{p}(G)} \leqq \sigma\left(u_{0}, f\right)
$$

Secondly, we give a priori estimates which assure the continuous dependence of solutions of (1.1) on the given data u_{0} and f.

Theorem B. Let $u_{1}\left(\right.$ resp. $\left.u_{2}\right)$ be any solution of (1.1) with $u_{1}(x, 0)=$ $u_{1,0}\left(\right.$ resp. $\left.u_{2}(x, 0)=u_{2,0}\right)$ and $f=f_{1}\left(\right.$ resp. $\left.f_{2}\right)$. Let the condition (1.2) be satisfied for $u_{i, 0}$ and $f_{i}, i=1,2$. Under the condition that $u_{1,0}, u_{2,0} \in D(\Phi)$, $f_{1}, f_{2} \in L^{2}\left(I, L^{2}(\Omega)\right)$ and $\left(f_{1}\right)_{t},\left(f_{2}\right)_{t} \in L^{2}\left(I, L^{2}(\Omega)\right)$ the followings hold: for any $t \in I$

$$
\begin{equation*}
\left|\left(u_{1}-u_{2}\right)(t)\right|_{2} \leqq C\left(\left|u_{1,0}-u_{2,0}\right|_{2}+\left\|f_{1}-f_{2}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|D\left(u_{1}-u_{2}\right)\right\|_{L^{2}\left(I, L^{p}(\Omega)\right)} & \leqq\left(\sigma\left(u_{1,0}, f_{1}\right)+\sigma\left(u_{2,0}, f_{2}\right)\right)^{(2-p) / 2 p} . \tag{2}\\
\left(\mid u_{1,0}\right. & \left.-\left.u_{2,0}\right|_{2}+\left\|f_{1}-f_{2}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}\right) .
\end{align*}
$$

Under the same conditions on p as this paper we have proved some decay properties of solutions for (1.1) in [N5], where we have replaced Φ by the indicator function I_{K} of a closed onvex subset K of V and I by $R_{1}^{+}=(0, \infty)$.

In [N2] we considered the nonlinear parabolic variational inequality

$$
\left\{\begin{array}{l}
u(t) \in D(\Phi) \quad \text { for all } \quad t \in I, \tag{1.3}\\
\begin{array}{rl}
\left(u_{t}(t), u(t)-v\right) & +\langle A(t) u(t), u(t)-v\rangle+\Phi(u(t))-\Phi(v) \\
& \leqq(f(t), u(t)-v) \quad \text { for all } v \in D(\Phi) \text { a.e. } t \in I
\end{array} \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

In the above the operator $A(t) ; V \rightarrow V^{\prime}$ is defined in such a way that

$$
\begin{equation*}
\langle A(t) v, w\rangle=\sum_{j=1}^{n}\left(a_{j}(., t, D v), D_{j} w\right) \quad \text { for any } \quad v, w \in V \tag{1.4}
\end{equation*}
$$

Here the nonlinear functions $a_{j}(x, t, \eta), j=1, \ldots, n$, satisfy the following
Assumption (I). For $(x, t) \in G, \eta \in R^{n}-\{0\}, \xi \in R^{n}$ and $j, 1 \leqq j \leqq$ n,

1-1

$$
a_{j}(x, t, \eta) \in C^{0}\left(\Omega \times I \times R^{n}\right) \cap C^{1}\left(\Omega \times I \times\left(R^{n}-\{0\}\right)\right)
$$

$$
\sum_{i, j=1}^{n}\left(\partial / \partial \eta_{i}\right) a_{j}(x, t, \eta) \xi_{i} \xi_{j} \geqq \gamma|\eta|^{p-2}|\xi|^{2}
$$

1-3

$$
\left|(\partial / \partial t) a_{j}(x, t, \eta)\right| \leqq \Lambda|\eta|^{p-1}
$$

Here γ, Λ are some positive constants.
It is easy to see that the operator Δ_{p} satisfies the Assumption (I). However, it is assumed that $2 \leqq p$ in [N2]. In such a case we considered the existence and the regularity of solutions of (1.3) under the following assumptions in [N2]:

Assumption (II). The function $u_{0}(x)$ in (1.3) belongs to $D(\Phi)$ and there exists an element $z_{0}(x)$ in $L^{2}(\Omega)$ such that the inequality

$$
\begin{equation*}
\left(z_{0}, v-u_{0}\right)+\left\langle A(0) u_{0}, v-u_{0}\right\rangle+\Phi(v)-\Phi\left(u_{0}\right) \geqq\left(f(0), v-u_{0}\right) \tag{1.5}
\end{equation*}
$$

holds for all $v \in D(\Phi)$.
Assumption (III). There exists v_{0} in $D(\Phi)$ such that for any $t \in I$

$$
\begin{equation*}
\left\{\left\langle A(t) v, v-v_{0}\right\rangle+\Phi(v)\right\} /|v|_{V} \rightarrow \infty \text { uniformly as }|v|_{V} \rightarrow \infty \tag{1.6}
\end{equation*}
$$

Concerning with the regularity of solutions of (1.3), we obtained the following results in [N2, p.276]: let the Assumptions (I), (II) and (III) be satisfied. If $f, f_{t} \in L^{2}\left(I, L^{2}(\Omega)\right)$, it holds that $\left\|\left(|D u|^{(p-2) / 2} D u\right)_{t}\right\|_{L^{2}(G)}^{2}$, $\left\|\left(a_{j}(., ., D u)\right)_{t}\right\|_{L^{p^{\prime}}(G)}^{p^{\prime}}$ and $\left\|\left(|D u|^{(p-2)} D u\right)_{t}\right\|_{L^{p^{\prime}(G)}}^{p^{\prime}} \leqq \gamma\left(u_{0}, z_{0}, f\right)$ for any solution u of (1.3). Here p^{\prime} is the adjoint number of p, i.e., $p^{\prime}=p /(p-1)$, and $\gamma\left(u_{0}, z_{0}, f\right)=C\left(1+\left|z_{0}\right|_{2}^{2}+\left|u_{0}\right|_{2}^{2}+\left|D u_{0}\right|_{p}^{p}+\|f\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2}+\left\|f_{t}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2}\right)$. In [N2] we have treated (1.3) when the operator A has a nonlinear perturbed term of lower order.

In [N4] we considerd the nonlinear parabolic equation

$$
\begin{cases}u \in L^{\infty}\left(I, W_{0}^{1, p}(\Omega)\right) \cap C\left(I, L^{2}(\Omega)\right), u_{t} \in L^{2}\left(I, L^{2}(\Omega)\right) \tag{1.7}\\ \left(u_{t}(t), v\right)+\langle A(t) u(t), v\rangle=\langle f(t), v\rangle \\ & \text { for all } v \in W_{0}^{1, p}(\Omega) \text { a.e. } t \in I \\ u(x, 0)=u_{0} & \end{cases}
$$

under the following assumptions:

Assumption (IV). $f \in L^{p^{\prime}}\left(I, W^{1, p^{\prime}}(\Omega)\right)$ and $f_{t} \in L^{2}\left(I, L^{2}(\Omega)\right)$.
Assumption (V). $u_{0} \in W^{1, p}(\Omega)$ and $D u_{0} \in L^{2}(\Omega)$. Further, there exists a function $z_{0} \in L^{2}(\Omega)$ such that the equality

$$
\left(z_{0}, v\right)+\left\langle A(0) u_{0}, v\right\rangle=\langle f(0), v\rangle \quad \text { for all } v \in W_{0}^{1, p}(\Omega)
$$

holds

In [N4, p.51, p.62] we obtained the following results concerned to the regularity of any solution u of (1.7): under the Assumptions (I), (IV) and (V) it holds that (1) if $2(n+1) /(n+3)<p \leqq 2$, then $D^{2} u \in L^{k\left(p_{\infty}\right)}\left(I^{\prime}, L_{\text {loc }}^{k\left(p_{\infty}\right)}(\Omega)\right)$, $(D u)_{t} \in L^{k\left(p_{\infty}\right)}\left(\Omega \times I^{\prime}\right)$ and $D^{2} u \in L^{m\left(p_{\infty}\right)}\left(\Omega \times I^{\prime}\right),(2)$ if $2 n /(n+2)<$ $p \leqq 2(n+1) /(n+3)$, then $D^{2} u \in L^{p}\left(I, L_{\mathrm{loc}}^{p}(\Omega)\right),(D u)_{t} \in L^{p}\left(\Omega \times I^{\prime}\right)$ and $D^{2} u \in L^{2 p /(4-p)}(G)$. Here $D^{2} u=D_{i} D_{j} u, 1 \leqq i, j \leqq n, I^{\prime}=(a, b)$ with any $a, b, 0<a<b<T, k\left(p_{\infty}\right)=4(n+1)(p-1) /((n+3) p-4)$ and $m\left(p_{\infty}\right)=2(n+1)(p-1) /(2 p+n-3)$. It is easy to see that $p<k\left(p_{\infty}\right)$ (resp. $\left.p>k\left(p_{\infty}\right)\right)$, if $2(n+1) /(n+3)<p \leqq 2($ resp. $1<p \leqq 2(n+1) /(n+3))$.

The other results on the regularity of solutions for nonlinear parabolic variational inequalities and nonlinear parabolic differential equations are referred to [N2] and [N4].

In the abstract framework of a Hilbert triple $\left\{V, H, V^{\prime}\right\}$ G. Savaré has considered (1.3) when $A(t), t \in I$, is a family of linear continuous coercive operators from V to V^{\prime} and Φ is a proper convex lower semicontinuous functional on V. In [Sa] he obtained the estimate $\left\|u_{1}-u_{2}\right\|_{i(I)}^{2} \leqq C\left(\mid u_{1,0}-\right.$ $\left.\left.u_{2,0}\right|_{H} ^{2}+\left(\left\|f_{1}\right\|_{S(I)}+\left\|f_{2}\right\|_{S(I)}\right)\left\|f_{1}-f_{2}\right\|_{S(I)}\right)$, where u_{1} (resp. u_{2}) is any solution of (1.3) with $f=f_{1}$ (resp. f_{2}) and $u_{0}=u_{1,0}$ (resp. $u_{2,0}$). Here $i(I)=$ $L^{2}(I, V) \cap L^{\infty}(I, H)$ and $S(I)=L^{2}\left(I, V^{\prime}\right)+L^{1}(I, H)+B_{21}^{-1 / 2}(I, H)$ with the norm $\|v\|_{i(I)}=\|v\|_{L^{2}(I, V)}+\|v\|_{L^{\infty}(I, H)}$ and $\|v\|_{S(I)}=\inf \left(\left\|v_{1}\right\|_{L^{2}\left(I, V^{\prime}\right)}+\right.$ $\left.\left\|v_{2}\right\|_{L^{1}(I, H)}+\left\|v_{3}\right\|_{B_{21}^{-1 / 2}(I, H)}\right)$, where the infimum is taken for $v=v_{1}+v_{2}+$ v_{3} such that $v_{1} \in L^{2}\left(I, V^{\prime}\right), v_{2} \in L^{1}(I, H)$ and $v_{3} \in B_{21}^{-1 / 2}(I, H)$. The definition and the properties of the space $B_{21}^{-1 / 2}(I, H)$ are referred to [Sa].

At last we refer to the results in [C]. In [C] Y. Cheng considered the nonlinear elliptic equation with the Dirichlet boundary condition; $-\operatorname{div}\left(|D u|^{p-2} D u\right)=f$ in Ω and $u=0$ on Γ in the weak sense that

$$
\begin{equation*}
\left\langle\Delta_{p} u, \phi\right\rangle=(f, \phi) \text { for all } \phi \in C_{0}^{\infty}(\Omega) \tag{1.8}
\end{equation*}
$$

Y. Cheng obtained the followings for solutions of (1.8) in [C]: (1) when $2 \leqq p$, it holds that $\left|u_{1}-u_{2}\right|_{1, p} \leqq C\left|f_{1}-f_{2}\right|_{-1, p^{\prime}}^{1 /(p-1)}$, and (2) when $1<p<2$, it holds that $\left|u_{1}-u_{2}\right|_{1, p} \leqq C\left(\left|f_{1}\right|_{-1, p^{\prime}}+\left|f_{2}\right|_{-1, p^{\prime}}\right)^{(2-p) /(p-1)}\left|f_{1}-f_{2}\right|_{-1, p^{\prime}}$. Here u_{1} (resp. u_{2}) is any solution of (1.8) for $f=f_{1}$ (resp. f_{2}).

This paper is constructed as follows: in Section 2 we prepare some lemmas and a proposition, which play important roles in the proof of our theorems. In Section 3 we give the proofs of our theorems.

§2. Lemmas

Lemma 2.1. ([C, p.736, Theorem 3]) There exists a positive constant γ_{0} depending only on p such that the following inequality holds:

$$
\begin{equation*}
\sum_{j=1}^{n}\left(|\xi|^{p-2} \xi_{j}-|\eta|^{p-2} \eta_{j}\right)\left(\xi_{j}-\eta_{j}\right) \geqq \gamma_{0}(|\xi|+|\eta|)^{p-2}|\xi-\eta|^{2} \tag{2.1}
\end{equation*}
$$

for any ξ and $\eta \in R^{n}$, where the right-hand side is defined to be 0 , if $\xi=\eta=0$.

We can show easily the following lemma by Hölder's inequality:
Lemma 2.2. Let $0<r<1$ and $r^{\prime}=r /(r-1)$. If $F(x) \in L^{r}(Q)$, $F(x) H(x) \in L^{1}(Q)$ and $\int_{Q}|H(x)|^{r^{\prime}} d x<\infty$, then it holds that

$$
\begin{equation*}
\left(\int_{Q}|F(x)|^{r} d x\right)^{1 / r} \leqq\left(\int_{Q}|F(x) H(x)| d x\right)\left(\int_{Q}|H(x)|^{r^{\prime}} d x\right)^{-1 / r^{\prime}} \tag{2.2}
\end{equation*}
$$

Here Q is any bounded domain in R^{m}.
By the same way as in [N1, p.77, Lemma 1.4] we can show the following
Lemma 2.3. Let v be a distribution in Q and let $\left\{v_{j}\right\}_{j=1}^{\infty}$ be a sequence in a reflexive Banach space X, where $C_{0}^{\infty}(Q)$ is dense. Let norms $\left|v_{j}\right|_{X}$ be uniformly bounded. If $\left(v_{j}, \psi\right) \rightarrow(v, \psi)$ as $j \rightarrow \infty$ for any $\psi \in C_{0}^{\infty}(Q)$, then v belongs to X and the sequence v_{j} converges weakly to v in X as $j \rightarrow \infty$.

Next, we prepare a priori estimates for solutions of (1.1).
Proposition 2.1. Under the assumptions in Theorem A there exists a unique solution u of (1.1) with the following properties:

$$
\begin{align*}
& u \in L^{\infty}(I, V) \cap C\left(I, L^{2}(\Omega)\right), \quad u_{t} \in L^{\infty}\left(I, L^{2}(\Omega)\right) \tag{1}\\
& \left|u_{t}(t)\right|_{2}^{2},|u(t)|_{V}^{p} \leqq \sigma\left(u_{0}, f\right) \text { uniformly in } t \in I . \tag{2}
\end{align*}
$$

For solutions of (1.3) the assertions of the above proposition were proved in [N2, p.275, Theorem 1] under the Assumptions (I), (II) and (III) when $2 \leqq p$. In the cases that $1<p \leqq 2$, if $n=1,2$, and $2 n /(n+2)<p \leqq 2$, if $3 \leqq n$ we can show the same results as [N2] by the similar way to [N2] with slight modifications. Moreover, the above proposition was proved by J. Kacur in [K3, p.116, Theorem 5.2.3]. In [K3] the operator Δ_{p} was replaced by a genral nonlinear elliptic operator which was independent of t.

Remark 2.1. We extend $u(t)$ and $f(t)$ outside I in such a way that

$$
\begin{array}{lll}
u(t)=u(T), & f(t)=f(T) \quad \text { for } \quad t>T \tag{2.3}\\
u(t)=u_{0}, & f(t)=f(0) \quad \text { for } \quad t<0
\end{array}
$$

Lemma 2.4. Under the assumptions in Theorem A the inequality

$$
\begin{equation*}
\left|\left(u(h)-u_{0}\right) / h\right|_{2} \leqq C\left\|f_{t}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)} \quad(h \neq 0) \tag{2.4}
\end{equation*}
$$

holds for any solution u of (1.1). Here the positive constant C depends only on T.

Proof. By Remark 2.1 it is easy to see that the estimate (2.4) is valid for $h<0$. Therefore, we may assume that $0<h$ from now on.

For any solution u of (1.1) and a.e. $t \in I$ let us take $v=u_{0}$ in (1.1). After this we take $v=u(t)$ in (1.2). Adding these two inequalities, we get

$$
\begin{align*}
\left(u_{t}(t)-\left(u_{0}\right)_{t}, u(t)-u_{0}\right) & +\left\langle\Delta_{p} u(t)-\Delta_{p} u_{0}, u(t)-u_{0}\right\rangle \tag{2.5}\\
& \leqq\left(f(t)-f(0), u(t)-u_{0}\right) \quad \text { a.e. } t \in I
\end{align*}
$$

Using the fact that $0 \leqq\left\langle\Delta_{p} u(t)-\Delta_{p} u_{0}, u(t)-u_{0}\right\rangle$, we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left|u(t)-u_{0}\right|_{2}^{2} \leqq\left(f(t)-f(0), u(t)-u_{0}\right) \quad \text { a.e. } t \in I \tag{2.6}
\end{equation*}
$$

Integrating the above over $(0, h)$ for any $h>0$, we have

$$
\begin{equation*}
\left|u(h)-u_{0}\right|_{2}^{2} \leqq 2 \int_{0}^{h}\left(f(t)-f(0), u(t)-u_{0}\right) d t \tag{2.7}
\end{equation*}
$$

Dividing (2.7) by h^{2} and using Hölder's inequality, we get

$$
\begin{equation*}
\left|\left(u(h)-u_{0}\right) / h\right|_{2}^{2} \leqq \frac{2}{h^{2}} \int_{0}^{h}\left|\left(f(t)-f(0), u(t)-u_{0}\right)\right| d t \tag{2.8}
\end{equation*}
$$

$$
\begin{aligned}
& \leqq 2 \int_{0}^{h}|(f(t)-f(0)) / h|_{2}\left|\left(u(t)-u_{0}\right) / t\right|_{2} d t \\
& \leqq \int_{0}^{h}|(f(t)-f(0)) / h|_{2}^{2} d t+\int_{0}^{h}\left|\left(u(t)-u_{0}\right) / t\right|_{2}^{2} d t
\end{aligned}
$$

because $0<1 / h<1 / t$ for $0<t<h$.
Here, we estimate the first term on the right-hand side of (2.8) as follows: at first,

$$
\begin{align*}
|(f(t)-f(0)) / h|_{2}^{2} & =\left|\frac{1}{h} \int_{0}^{t} f_{t}(s) d s\right|_{2}^{2}=\int_{\Omega}\left(\frac{1}{h} \int_{0}^{t} f_{t}(s, x) d s\right)^{2} d x \tag{2.9}\\
& \leqq \int_{\Omega} \frac{t}{h^{2}} \int_{0}^{t} f_{t}^{2}(s, x) d s d x=\frac{t}{h^{2}} \int_{0}^{t}\left|f_{t}(s)\right|_{2}^{2} d s
\end{align*}
$$

Then, we have

$$
\begin{align*}
\int_{0}^{h}|(f(t)-f(0)) / h|_{2}^{2} d t & \leqq \int_{0}^{h}\left(\frac{t}{h^{2}} \int_{0}^{t}\left|f_{t}(s)\right|_{2}^{2} d s\right) d t \tag{2.10}\\
& \leqq \frac{1}{2} \int_{0}^{h}\left|f_{t}(s)\right|_{2}^{2} d s \leqq \frac{1}{2}\left\|f_{t}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2}
\end{align*}
$$

Therefore, from (2.8) and (2.10) we get

$$
\begin{equation*}
\left|\left(u(h)-u_{0}\right) / h\right|_{2}^{2} \leqq \frac{1}{2}\left\|f_{t}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2}+\int_{0}^{h}\left|\left(u(t)-u_{0}\right) / t\right|_{2}^{2} d t \tag{2.11}
\end{equation*}
$$

Let us use Gronwall's inequality to obtain the estimate (2.4). In this way we finish the proof of this lemma.

§3. Proofs of our theorems

At first we give the proof of Theorem A.
Proof of Theorem A. For any solution u of (1.1) and a.e. $t \in I$, we take $v=u(t+h)$ in (1.1), where $|h|<\min (t, T-t)$. After this we take $v=u(t)$ in (1.1) for $t=t+h$. Adding these two inequalities, we have

$$
\begin{align*}
& \left(u_{t}(t+h)-u_{t}(t), u(t+h)-u(t)\right) \tag{3.1}\\
& +\left\langle\Delta_{p} u(t+h)-\Delta_{p} u(t), u(t+h)-u(t)\right\rangle \\
\leqq & (f(t+h)-f(t), u(t+h)-u(t)) \quad \text { a.e. } t \in I .
\end{align*}
$$

Dividing (3.1) by h^{2}, we get

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}|u(t+h)-u(t)|_{2}^{2} / h^{2} \tag{3.2}\\
+\left\langle\Delta_{p} u(t+h)-\Delta_{p} u(t), u(t+h)-u(t)\right\rangle / h^{2} \\
\leqq\left(\delta_{h} f(t), \delta_{h} u(t)\right) \quad \text { a.e. } t \in I
\end{gather*}
$$

where $\delta_{h} f(t)=(f(t+h)-f(t)) / h$ and $\delta_{h} u(t)=(u(t+h)-u(t)) / h$.
Let us integrate (3.2) over I to get

$$
\begin{align*}
& \frac{1}{2}|u(T+h)-u(T)|_{2}^{2} / h^{2}-\frac{1}{2}\left|u(h)-u_{0}\right|_{2}^{2} / h^{2} \tag{3.3}\\
& +\int_{I}\left\langle\Delta_{p} u(t+h)-\Delta_{p} u(t), u(t+h)-u(t)\right\rangle / h^{2} d t \\
& \leqq \int_{I}\left(\delta_{h} f(t), \delta_{h} u(t)\right) d t .
\end{align*}
$$

By Lemma 2.1 it holds that

$$
\begin{array}{r}
\gamma_{0}(|D u(t+h)|+|D u(t)|)^{p-2}|D u(t+h)-D u(t)|^{2} / h^{2} \tag{3.4}\\
\leqq \sum_{j=1}^{n}\left(|D u(t+h)|^{p-2} D_{j} u(t+h)-|D u(t)|^{p-2} D_{j} u(t)\right) \\
\left(D_{j} u(t+h)-D_{j} u(t)\right) / h^{2}
\end{array}
$$

Integrating (3.4) over Ω, we get

$$
\begin{align*}
& \gamma_{0} \int_{\Omega}(|D u(t+h)|+|D u(t)|)^{p-2}|D u(t+h)-D u(t)|^{2} / h^{2} d x \tag{3.5}\\
\leqq & \left\langle\Delta_{p} u(t+h)-\Delta_{p} u(t), u(t+h)-u(t)\right\rangle / h^{2}
\end{align*}
$$

Next let us set $F=|D u(t+h)-D u(t)|^{2} / h^{2}, H=(|D u(t+h)|+$ $|D u(t)|)^{p-2}, r=p / 2$ and $Q=\Omega$ in Lemma 2.2. Then, from (2.2), (3.5) and Proposition 2.1 we get

$$
\begin{align*}
& \quad\left(\int_{\Omega}|(D u(t+h)-D u(t)) / h|^{p} d x\right)^{2 / p} \tag{3.6}\\
& \leqq \\
& \frac{1}{h^{2}}\left(\int_{\Omega}(|D u(t+h)|+|D u(t)|)^{p-2}|D u(t+h)-D u(t)|^{2} d x\right) \\
& \quad\left(\int_{\Omega}(|D u(t+h)|+|D u(t)|)^{p} d x\right)^{(2-p) / p} \\
& \leqq \\
& \sigma^{(2-p) / p}\left(u_{0}, f\right)(1 / \gamma)^{-1}\left\langle\Delta_{p} u(t+h)-\Delta_{p} u(t), u(t+h)-u(t)\right\rangle / h^{2}
\end{align*}
$$

Let us integrate (3.6) over I to have

$$
\begin{align*}
& \int_{I}\left(\int_{\Omega}|(D u(t+h)-D u(t)) / h|^{p} d x\right)^{2 / p} d t \tag{3.7}\\
\leqq & \sigma^{(2-p) / p}\left(u_{0}, f\right) \int_{I}\left\langle\Delta_{p} u(t+h)-\Delta_{p} u(t), u(t+h)-u(t)\right\rangle / h^{2} d t
\end{align*}
$$

Combining (3.7) with (3.3) multiplied by $\sigma^{(2-p) / p}\left(u_{0}, f\right)$, we obtain

$$
\begin{align*}
& \int_{I}\left(\int_{\Omega}|(D u(t+h)-D u(t)) / h|^{p} d x\right)^{2 / p} d t \tag{3.8}\\
\leqq & \sigma^{(2-p) / p}\left(u_{0}, f\right)\left(\left|\left(u(h)-u_{0}\right) / h\right|_{2}^{2}+\int_{I}\left|\left(\delta_{h} f(t), \delta_{h} u(t)\right)\right| d t\right) \\
\leqq & \sigma^{(2-p) / p}\left(u_{0}, f\right)\left(\left|\left(u(h)-u_{0}\right) / h\right|_{2}^{2}+\int_{I}\left|\delta_{h} f(t)\right|_{2}\left|\delta_{h} u(t)\right|_{2} d t\right) \\
\leqq & \left.\left.\sigma^{(2-p) / p}\left(u_{0}, f\right)\left(\left|\left(u(h)-u_{0}\right) / h\right|_{2}^{2}+\int_{I}\left|\delta_{h} u(t)\right|_{2}^{2} d t+\int_{I} \mid \delta_{h} f(t)\right)\right|_{2} ^{2} d t\right)
\end{align*}
$$

By the similar calculations to (2.9) and (2.10) the last two terms in the blackts on the right-hand side of (3.8) are estimated as follows:

$$
\begin{aligned}
\int_{I}\left|\delta_{h} f(t)\right|_{2}^{2} d t & \leqq\left\|f_{t}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2} \\
\int_{I}\left|\delta_{h} u(t)\right|_{2}^{2} d t & \leqq\left\|u_{t}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2} \leqq \sigma\left(u_{0}, f\right)
\end{aligned}
$$

Here we have used Proposition 2.1 in the last inequality. In (3.8) let us use the above two estimates and Lemma 2.4. Then, we get

$$
\begin{equation*}
\int_{I}\left(\int_{\Omega}|(D u(t+h)-D u(t)) / h|^{p} d x\right)^{2 / p} d t \leqq \sigma^{2 / p}\left(u_{0}, f\right) \tag{3.9}
\end{equation*}
$$

By virtue of Lemma 2.3 we finish the proof of our theorem, see [N3, p.184] in detail.

Proof of Theorem B. For $i=1$ and $i=2$ let u_{i} be any solution of the inequality
$(3.10)_{i}$

$$
\left\{\begin{array}{l}
\left(\left(u_{i}\right)_{t}(s), u_{i}(s)-v\right)+\left\langle\Delta_{p} u_{i}(s), u_{i}(s)-v\right\rangle+\Phi\left(u_{i}(s)\right)-\Phi(v) \\
\quad \leqq\left(f_{i}(s), u_{i}(s)-v\right) \quad \text { for all } v \in D(\Phi) \text { a.e. } s \in I \\
u_{i}(x, 0)=u_{i, 0}
\end{array}\right.
$$

In $(3.10)_{1}$ (resp. $\left.(3.10)_{2}\right)$ we take $v=u_{2}\left(\right.$ resp. $\left.u_{1}\right)$. Then, let us add these two inequalities in order to get

$$
\begin{align*}
& \left(\left(\left(u_{1}\right)_{t}-\left(u_{2}\right)_{t}\right)(s),\right. \tag{3.11}\\
& \left.u_{1}(s)-u_{2}(s)\right) \\
& +\left\langle\Delta_{p} u_{1}(s)-\Delta_{p} u_{2}(s), u_{1}(s)-u_{2}(s)\right\rangle \\
\leqq & \left(f_{1}(s)-f_{2}(s), u_{1}(s)-u_{2}(s)\right) \text { a.e. } s \in I
\end{align*}
$$

Then, we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d s}\left|u_{1}(s)-u_{2}(s)\right|_{2}^{2}+\left\langle\Delta_{p} u_{1}(s)-\Delta_{p} u_{2}(s), u_{1}(s)-u_{2}(s)\right\rangle \tag{3.12}\\
\leqq & \left(f_{1}(s)-f_{2}(s), u_{1}(s)-u_{2}(s)\right) \quad \text { a.e. } s \in I .
\end{align*}
$$

Let us apply Hölder's inequality to the right-hand side of (3.12) and integrate it over $(0, t)$ for any $t \in I$ to obtain the inequality

$$
\begin{align*}
& \left|u_{1}(t)-u_{2}(t)\right|_{2}^{2}+2 \int_{0}^{t}\left\langle\Delta_{p} u_{1}(s)-\Delta_{p} u_{2}(s), u_{1}(s)-u_{2}(s)\right\rangle d s \tag{3.13}\\
\leqq & \left|u_{1,0}-u_{2,0}\right|_{2}^{2}+\int_{0}^{t}\left|f_{1}(s)-f_{2}(s)\right|_{2}^{2} d s+\int_{0}^{t}\left|u_{1}(s)-u_{2}(s)\right|_{2}^{2} d s
\end{align*}
$$

After using the fact that $0 \leqq\left\langle\Delta_{p} u_{1}(s)-\Delta_{p} u_{2}(s), u_{1}(s)-u_{2}(s)\right\rangle$ for any s let us apply Gronwall's inequality again to have

$$
\begin{equation*}
\left|u_{1}(t)-u_{2}(t)\right|_{2}^{2} \leqq C\left(\left|u_{1,0}-u_{2,0}\right|_{2}^{2}+\int_{0}^{T}\left|f_{1}(t)-f_{2}(t)\right|_{2}^{2} d t\right) \tag{3.14}
\end{equation*}
$$

In this way we finish the proof for (1) in Theorem B.
Secondly, as in (3.6) we have the following: from Proposition 2.1

$$
\begin{align*}
& \text { 15) } \quad\left(\int_{\Omega}\left|D u_{1}(t)-D u_{2}(t)\right|^{p} d x\right)^{2 / p} \tag{3.15}\\
& \leqq\left(\sigma\left(u_{1,0}, f_{1}\right)+\sigma\left(u_{2,0}, f_{2}\right)\right)^{(2-p) / p}\left\langle\Delta_{p} u_{1}(t)-\Delta_{p} u_{1}(t), u_{1}(t)-u_{2}(t)\right\rangle
\end{align*}
$$

By virtue of (3.13)-(3.15) we have

$$
\begin{align*}
& \int_{I}\left(\int_{\Omega}\left|D u_{1}(t)-D u_{2}(t)\right|^{p} d x\right)^{2 / p} d t \tag{3.16}\\
& \leqq\left(\sigma\left(u_{1,0}, f_{1}\right)+\sigma\left(u_{2,0}, f_{2}\right)\right)^{(2-p) / p} \\
& \quad\left(\left|u_{1,0}-u_{2,0}\right|_{2}^{2}+\left\|f_{1}-f_{2}\right\|_{L^{2}\left(I, L^{2}(\Omega)\right)}^{2}\right) .
\end{align*}
$$

Thus, we finish the proof.

Remark 3.1. When $2 \leqq p$, it holds that in Theorem B the estimate (1) is valid and the estimate (2) is replaced by the following form:

$$
\left\|u_{1}-u_{2}\right\|_{L^{p}(I, V)}^{p} \leqq C\left(\left|u_{1,0}-u_{2,0}\right|_{2}^{2}+\left\|f_{1}-f_{2}\right\|_{L^{p^{\prime}}\left(I, V^{\prime}\right)}^{p^{\prime}}\right)
$$

with some positive constant C. The above assertion is deduced from (3.13), (3.14), Hölder's and Poincaré's inequalities and the inequality

$$
\sum_{j=1}^{n}\left(|\xi|^{p-2} \xi_{j}-|\eta|^{p-2} \eta_{j}\right)\left(\xi_{j}-\eta_{j}\right) \geqq C_{0}|\xi-\eta|^{p} \quad \text { for any } \quad \xi, \eta \in R^{n}
$$

where C_{0} depends only on p and n, see [C].

References

[C] Y. Cheng, Hölder continuity of the inverse of p-Laplacian, J. Math. Anal. Appl., 221 (1998), 734-748.
[K1] J. Kacur, Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions, Math. Slovaca, 30-3 (1980), 213-237.
[K2] (1985), 205-224.
[K3] _ Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik, 80, Leipzig, 1985.
[L] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.
[N1] H. Nagase, On an estimate for solutions of nonlinear elliptic variational inequalities, Nagoya Math. J., 107 (1987), 69-89.
[N2] \qquad , On an application of Rothe's method to nonlinear parabolic variational inequalities, Funk. Ekv., 32-2 (1989), 273-299.
[N3] __ On an asymptotic behaviour of solutions of nonlinear parabolic variational inequalities, Japan. J. Math., 15-1 (1989), 169-189.
[N4] \qquad , On some regularity properties for solutions of nonlinear parabolic differential equations, Nagoya Math. J., 128 (1992), 49-63.
[N5] __, A remark on decay properties of solutions of nonlinear parabolic variational inequalities, Japan. J. Math., 22 (1996), 285-292.
[Sa] G. Savare, Weak solutions and maximal regularity for abstract evolution inequalities, Adv. Math. Sci. Appl., 6-2 (1996), 377-418.

```
Suzuka National College of Technology
510-0294 Suzuka
Japan
nagase@genl.suzuka-ct.ac.jp
```


[^0]: Received March 25, 1999.
 2000 Mathematics Subject Classification: 35K85, 35B45, 35B65.

