ON A REGULARITY PROPERTY AND A PRIORI ESTIMATES FOR SOLUTIONS OF NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES

HARUO NAGASE

Abstract. In this paper we consider the following nonlinear parabolic variational inequality; $u(t) \in D(\Phi)$ for all $t \in I$, $(u_t(t), u(t) - v) + \langle \Delta_p u(t), u(t) - v \rangle +$ $\Phi(u(t)) - \Phi(v) \leq (f(t), u(t) - v)$ for all $v \in D(\Phi)$ a.e. $t \in I$, $u(x, 0) = u_0(x)$, where Δ_p is the so-called *p*-Laplace operator and Φ is a proper, lower semicontinuous functional. We have obtained two results concerning to solutions of this problem. Firstly, we prove a few regularity properties of solutions. Secondly, we show the continuous dependence of solutions on given data u_0 and f.

$\S1.$ Introduction

Let Ω be a bounded domain in \mathbb{R}^n with coordinates $x = (x_1, \ldots, x_n)$. The boundary Γ of Ω is assumed to be of class C^1 . For any positive number T we denote the open interval (0,T) by I and the cylinder $\Omega \times I$ by G, i.e. $G = \{(x,t); x \in \Omega, t \in I\}$. The usual Sobolev space $W^{1,p}(\Omega)$ is defined as follows: $W^{1,p}(\Omega) = \{v \in L^p(\Omega); D_j v \in L^p(\Omega), j = 1, \ldots, n\}$ with the norm $|v|_{1,p} = (|v|_p^p + |Dv|_p^p)^{1/p}$ $(1 \leq p < \infty)$. Here $D_j v = \frac{\partial v}{\partial x_j}$, $Dv = (D_1v, D_2v, \ldots, D_nv)$ and $|v|_p = ||v||_{L^p(\Omega)}$.

Let S be a compact C^1 manifold of (n-2)-dimension contained in Γ . We assume that S divides Γ into two relatively open subsets Γ_1 , Γ_2 such that $\Gamma_1 \neq \emptyset$, more precisely, $\Gamma = \Gamma_1 \cup \Gamma_2 \cup S$, $\Gamma_1 \cap \Gamma_2 = \emptyset$. Next let $C_{(0)}^{\infty}(\overline{\Omega})$ be the family of all infinitely differentiable functions in $\overline{\Omega}$ vanishing in each neighborhood of $\overline{\Gamma_1}$. The completion of $C_{(0)}^{\infty}(\overline{\Omega})$ with respect to the norm $| \ |_{1,p}$ is denoted by V. We denote the norm in V by $| \ |_V$, the dual space of V by V', the pairing between V and V' by $\langle \ , \ \rangle$ and the inner product of $L^2(\Omega)$ by $(\ , \)$.

For any Banach space X and any s $(1 \leq s < \infty)$ let us denote by $L^{s}(I, X)$ the space of equivalent classes of functions v(t) from I to X, which are L^{s} -integrable on I. It is a Banach space with the norm $\|v\|_{L^{s}(I,X)} =$

Received March 25, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 35K85, 35B45, 35B65.

 $(\int_{I} |v(t)|_{X}^{s} dt)^{1/s}$, where $||_{X}$ is the norm in X. In the case of $s = \infty$, $L^{\infty}(I, X)$ means the set of all measurable functions $v; I \to X$, satisfying $||v||_{L^{\infty}(I,X)} = \operatorname{ess.sup}_{I} |v(s)|_{X} < \infty$.

A functional $\Phi; X \to (-\infty, \infty]$ is said to be proper if $\Phi \not\equiv \infty$. And a proper functional Φ is said to be lower semicontinuous if

$$\Phi(v_0) \leq \liminf_{v \to v_0} \Phi(v) \text{ for any } v_0 \in X.$$

For a proper lower semicontinuous functional Φ on X we set $D(\Phi) = \{v \in X; \Phi(v) < \infty\}$.

We consider the nonlinear parabolic variational inequality

(1.1)
$$\begin{cases} u(t) \in D(\Phi) \quad \text{for all} \quad t \in I, \\ (u_t(t), u(t) - v) + \langle \Delta_p u(t), u(t) - v \rangle + \Phi(u(t)) - \Phi(v) \\ \leq (f(t), u(t) - v) \quad \text{for all } v \in D(\Phi) \text{ a.e. } t \in I, \\ u(x, 0) = u_0(x), \end{cases}$$

where $\langle \Delta_p u, v \rangle = \sum_{j=1}^{n} (|Du|^{p-2}D_j u, D_j v)$. In the above Φ is supposed to be proper, convex lower semicontinuous on V. Throughout this paper we assume that 1 , if <math>n = 1, 2, and $2n/(n+2) , if <math>3 \leq n$.

In this paper we denote by the same C any positive constant which does not depend on u, u_0 and f.

The first aim of this paper is to show the following

THEOREM A. It is assumed that the inequality

(1.2)
$$\langle \Delta_p u_0, u_0 - v \rangle + \Phi(u_0) - \Phi(v) \leq (f(0), u_0 - v) \text{ for any } v \in D(\Phi)$$

holds, where $u_0 \in D(\Phi)$, $f \in L^2(I, L^2(\Omega))$ and $f_t \in L^2(I, L^2(\Omega))$. Then, for any solution u of (1.1) it holds that $(Du)_t \in L^2(I, L^p(\Omega))$ and

$$||(Du)_t||_{L^2(I,L^p(\Omega))} \leq \sigma^{1/p}(u_0,f)$$

where $\sigma(u_0, f) = C(|Du_0|_p^p + ||f_t||_{L^2(I, L^2(\Omega))}^2).$

It is easy to deduce the following corollary from Theorem A:

COROLLARY. Under the same assumptions as in Theorem A it holds that $(Du)_t \in L^p(G)$ and

$$||(Du)_t||_{L^p(G)} \leq \sigma(u_0, f).$$

Secondly, we give a priori estimates which assure the continuous dependence of solutions of (1.1) on the given data u_0 and f.

THEOREM B. Let u_1 (resp. u_2) be any solution of (1.1) with $u_1(x,0) = u_{1,0}$ (resp. $u_2(x,0) = u_{2,0}$) and $f = f_1$ (resp. f_2). Let the condition (1.2) be satisfied for $u_{i,0}$ and f_i , i = 1, 2. Under the condition that $u_{1,0}$, $u_{2,0} \in D(\Phi)$, f_1 , $f_2 \in L^2(I, L^2(\Omega))$ and $(f_1)_t$, $(f_2)_t \in L^2(I, L^2(\Omega))$ the followings hold: for any $t \in I$

(1)
$$|(u_1 - u_2)(t)|_2 \leq C(|u_{1,0} - u_{2,0}|_2 + ||f_1 - f_2||_{L^2(I,L^2(\Omega))}),$$

and

(2)
$$\|D(u_1 - u_2)\|_{L^2(I, L^p(\Omega))} \leq (\sigma(u_{1,0}, f_1) + \sigma(u_{2,0}, f_2))^{(2-p)/2p}$$
$$(|u_{1,0} - u_{2,0}|_2 + \|f_1 - f_2\|_{L^2(I, L^2(\Omega))}).$$

Under the same conditions on p as this paper we have proved some decay properties of solutions for (1.1) in [N5], where we have replaced Φ by the indicator function I_K of a closed onvex subset K of V and I by $R_1^+ = (0, \infty)$.

In [N2] we considered the nonlinear parabolic variational inequality

(1.3)
$$\begin{cases} u(t) \in D(\Phi) \text{ for all } t \in I, \\ (u_t(t), u(t) - v) + \langle A(t)u(t), u(t) - v \rangle + \Phi(u(t)) - \Phi(v) \\ \leq (f(t), u(t) - v) \text{ for all } v \in D(\Phi) \text{ a.e. } t \in I, \\ u(x, 0) = u_0(x). \end{cases}$$

In the above the operator $A(t); V \to V'$ is defined in such a way that

(1.4)
$$\langle A(t)v, w \rangle = \sum_{j=1}^{n} (a_j(.,t,Dv), D_jw) \text{ for any } v, w \in V.$$

Here the nonlinear functions $a_j(x, t, \eta), j = 1, ..., n$, satisfy the following

Assumption (I). For $(x,t) \in G$, $\eta \in \mathbb{R}^n - \{0\}$, $\xi \in \mathbb{R}^n$ and $j, 1 \leq j \leq n$,

1-1
$$a_j(x,t,\eta) \in C^0(\Omega \times I \times R^n) \cap C^1(\Omega \times I \times (R^n - \{0\})),$$

1-2
$$\sum_{i,j=1}^{n} (\partial/\partial \eta_i) a_j(x,t,\eta) \xi_i \xi_j \ge \gamma |\eta|^{p-2} |\xi|^2,$$

1-3
$$|(\partial/\partial t)a_j(x,t,\eta)| \leq \Lambda |\eta|^{p-1}.$$

Here γ , Λ are some positive constants.

It is easy to see that the operator Δ_p satisfies the Assumption (I). However, it is assumed that $2 \leq p$ in [N2]. In such a case we considered the existence and the regularity of solutions of (1.3) under the following assumptions in [N2]:

ASSUMPTION (II). The function $u_0(x)$ in (1.3) belongs to $D(\Phi)$ and there exists an element $z_0(x)$ in $L^2(\Omega)$ such that the inequality

(1.5)
$$(z_0, v - u_0) + \langle A(0)u_0, v - u_0 \rangle + \Phi(v) - \Phi(u_0) \ge (f(0), v - u_0)$$

holds for all $v \in D(\Phi)$.

ASSUMPTION (III). There exists v_0 in $D(\Phi)$ such that for any $t \in I$

(1.6)
$$\{\langle A(t)v, v - v_0 \rangle + \Phi(v)\}/|v|_V \to \infty \text{ uniformly as } |v|_V \to \infty.$$

Concerning with the regularity of solutions of (1.3), we obtained the following results in [N2, p.276]: let the Assumptions (I), (II) and (III) be satisfied. If $f, f_t \in L^2(I, L^2(\Omega))$, it holds that $\|(|Du|^{(p-2)/2}Du)_t\|_{L^2(G)}^2$, $\|(a_j(\ldots, Du))_t\|_{L^{p'}(G)}^{p'}$ and $\|(|Du|^{(p-2)}Du)_t\|_{L^{p'}(G)}^{p'} \leq \gamma(u_0, z_0, f)$ for any solution u of (1.3). Here p' is the adjoint number of p, i.e., p' = p/(p-1), and $\gamma(u_0, z_0, f) = C(1+|z_0|_2^2+|u_0|_2^2+|Du_0|_p^p+\|f\|_{L^2(I,L^2(\Omega))}^2+\|f_t\|_{L^2(I,L^2(\Omega))}^2)$. In [N2] we have treated (1.3) when the operator A has a nonlinear perturbed term of lower order.

In [N4] we consider the nonlinear parabolic equation

(1.7)
$$\begin{cases} u \in L^{\infty}(I, W_{0}^{1, p}(\Omega)) \cap C(I, L^{2}(\Omega)), & u_{t} \in L^{2}(I, L^{2}(\Omega)), \\ (u_{t}(t), v) + \langle A(t)u(t), v \rangle = \langle f(t), v \rangle \\ & \text{for all } v \in W_{0}^{1, p}(\Omega) \text{ a.e. } t \in I, \\ u(x, 0) = u_{0}. \end{cases}$$

under the following assumptions:

Assumption (IV). $f \in L^{p'}(I, W^{1,p'}(\Omega))$ and $f_t \in L^2(I, L^2(\Omega))$.

ASSUMPTION (V). $u_0 \in W^{1,p}(\Omega)$ and $Du_0 \in L^2(\Omega)$. Further, there exists a function $z_0 \in L^2(\Omega)$ such that the equality

$$(z_0, v) + \langle A(0)u_0, v \rangle = \langle f(0), v \rangle$$
 for all $v \in W_0^{1, p}(\Omega)$

holds

In [N4, p.51, p.62] we obtained the following results concerned to the regularity of any solution u of (1.7): under the Assumptions (I), (IV) and (V) it holds that (1) if $2(n+1)/(n+3) , then <math>D^2 u \in L^{k(p_{\infty})}(I', L_{\text{loc}}^{k(p_{\infty})}(\Omega))$, $(Du)_t \in L^{k(p_{\infty})}(\Omega \times I')$ and $D^2 u \in L^{m(p_{\infty})}(\Omega \times I')$, (2) if $2n/(n+2) , then <math>D^2 u \in L^p(I, L_{\text{loc}}^p(\Omega))$, $(Du)_t \in L^p(\Omega \times I')$ and $D^2 u \in L^{2p/(4-p)}(G)$. Here $D^2 u = D_i D_j u$, $1 \leq i, j \leq n$, I' = (a, b) with any a, b, 0 < a < b < T, $k(p_{\infty}) = 4(n+1)(p-1)/((n+3)p-4)$ and $m(p_{\infty}) = 2(n+1)(p-1)/((2p+n-3))$. It is easy to see that $p < k(p_{\infty})$ (resp. $p > k(p_{\infty})$), if 2(n+1)/(n+3) (resp. <math>1).

The other results on the regularity of solutions for nonlinear parabolic variational inequalities and nonlinear parabolic differential equations are referred to [N2] and [N4].

In the abstract framework of a Hilbert triple $\{V, H, V'\}$ G. Savaré has considered (1.3) when $A(t), t \in I$, is a family of linear continuous coercive operators from V to V' and Φ is a proper convex lower semicontinuous functional on V. In [Sa] he obtained the estimate $||u_1 - u_2||_{i(I)}^2 \leq C(|u_{1,0} - u_{2,0}|_H^2 + (||f_1||_{S(I)} + ||f_2||_{S(I)})||f_1 - f_2||_{S(I)})$, where u_1 (resp. u_2) is any solution of (1.3) with $f = f_1$ (resp. f_2) and $u_0 = u_{1,0}$ (resp. $u_{2,0}$). Here $i(I) = L^2(I, V) \cap L^{\infty}(I, H)$ and $S(I) = L^2(I, V') + L^1(I, H) + B_{21}^{-1/2}(I, H)$ with the norm $||v||_{i(I)} = ||v||_{L^2(I,V)} + ||v||_{L^{\infty}(I,H)}$ and $||v||_{S(I)} = \inf(||v_1||_{L^2(I,V')} + ||v_2||_{L^1(I,H)} + ||v_3||_{B_{21}^{-1/2}(I,H)})$, where the infimum is taken for $v = v_1 + v_2 + v_3$ such that $v_1 \in L^2(I, V')$, $v_2 \in L^1(I, H)$ and $v_3 \in B_{21}^{-1/2}(I, H)$. The definition and the properties of the space $B_{21}^{-1/2}(I, H)$ are referred to [Sa].

At last we refer to the results in [C]. In [C] Y. Cheng considered the nonlinear elliptic equation with the Dirichlet boundary condition; $-\operatorname{div}(|Du|^{p-2}Du) = f$ in Ω and u = 0 on Γ in the weak sense that

(1.8)
$$\langle \Delta_p u, \phi \rangle = (f, \phi) \text{ for all } \phi \in C_0^{\infty}(\Omega).$$

Y. Cheng obtained the followings for solutions of (1.8) in [C]: (1) when $2 \leq p$, it holds that $|u_1 - u_2|_{1,p} \leq C |f_1 - f_2|_{-1,p'}^{1/(p-1)}$, and (2) when $1 , it holds that <math>|u_1 - u_2|_{1,p} \leq C (|f_1|_{-1,p'} + |f_2|_{-1,p'})^{(2-p)/(p-1)} |f_1 - f_2|_{-1,p'}$. Here u_1 (resp. u_2) is any solution of (1.8) for $f = f_1$ (resp. f_2).

This paper is constructed as follows: in Section 2 we prepare some lemmas and a proposition, which play important roles in the proof of our theorems. In Section 3 we give the proofs of our theorems.

\S **2.** Lemmas

LEMMA 2.1. ([C, p.736, Theorem 3]) There exists a positive constant γ_0 depending only on p such that the following inequality holds:

(2.1)
$$\sum_{j=1}^{n} (|\xi|^{p-2}\xi_j - |\eta|^{p-2}\eta_j)(\xi_j - \eta_j) \ge \gamma_0 (|\xi| + |\eta|)^{p-2} |\xi - \eta|^2$$

for any ξ and $\eta \in \mathbb{R}^n$, where the right-hand side is defined to be 0, if $\xi = \eta = 0$.

We can show easily the following lemma by Hölder's inequality:

LEMMA 2.2. Let 0 < r < 1 and r' = r/(r-1). If $F(x) \in L^r(Q)$, $F(x)H(x) \in L^1(Q)$ and $\int_Q |H(x)|^{r'} dx < \infty$, then it holds that

(2.2)
$$\left(\int_{Q} |F(x)|^{r} dx\right)^{1/r} \leq \left(\int_{Q} |F(x)H(x)| dx\right) \left(\int_{Q} |H(x)|^{r'} dx\right)^{-1/r'}$$

Here Q is any bounded domain in \mathbb{R}^m .

By the same way as in [N1, p.77, Lemma 1.4] we can show the following

LEMMA 2.3. Let v be a distribution in Q and let $\{v_j\}_{j=1}^{\infty}$ be a sequence in a reflexive Banach space X, where $C_0^{\infty}(Q)$ is dense. Let norms $|v_j|_X$ be uniformly bounded. If $(v_j, \psi) \to (v, \psi)$ as $j \to \infty$ for any $\psi \in C_0^{\infty}(Q)$, then v belongs to X and the sequence v_j converges weakly to v in X as $j \to \infty$.

Next, we prepare a priori estimates for solutions of (1.1).

PROPOSITION 2.1. Under the assumptions in Theorem A there exists a unique solution u of (1.1) with the following properties:

(1)
$$u \in L^{\infty}(I, V) \cap C(I, L^{2}(\Omega)), \quad u_{t} \in L^{\infty}(I, L^{2}(\Omega))$$

(2)
$$|u_t(t)|_2^2, |u(t)|_V^p \leq \sigma(u_0, f) \text{ uniformly in } t \in I.$$

For solutions of (1.3) the assertions of the above proposition were proved in [N2, p.275, Theorem 1] under the Assumptions (I), (II) and (III) when $2 \leq p$. In the cases that 1 , if <math>n = 1, 2, and 2n/(n+2) , $if <math>3 \leq n$ we can show the same results as [N2] by the similar way to [N2] with slight modifications. Moreover, the above proposition was proved by J. Kacur in [K3, p.116, Theorem 5.2.3]. In [K3] the operator Δ_p was replaced by a genral nonlinear elliptic operator which was independent of t.

Remark 2.1. We extend u(t) and f(t) outside I in such a way that

(2.3)
$$u(t) = u(T), \qquad f(t) = f(T) \quad \text{for} \quad t > T; \\ u(t) = u_0, \qquad f(t) = f(0) \quad \text{for} \quad t < 0.$$

LEMMA 2.4. Under the assumptions in Theorem A the inequality

(2.4)
$$|(u(h) - u_0)/h|_2 \leq C ||f_t||_{L^2(I, L^2(\Omega))} \qquad (h \neq 0)$$

holds for any solution u of (1.1). Here the positive constant C depends only on T.

Proof. By Remark 2.1 it is easy to see that the estimate (2.4) is valid for h < 0. Therefore, we may assume that 0 < h from now on.

For any solution u of (1.1) and a.e. $t \in I$ let us take $v = u_0$ in (1.1). After this we take v = u(t) in (1.2). Adding these two inequalities, we get

(2.5)
$$(u_t(t) - (u_0)_t, u(t) - u_0) + \langle \Delta_p u(t) - \Delta_p u_0, u(t) - u_0 \rangle$$

 $\leq (f(t) - f(0), u(t) - u_0) \quad \text{a.e. } t \in I.$

Using the fact that $0 \leq \langle \Delta_p u(t) - \Delta_p u_0, u(t) - u_0 \rangle$, we get

(2.6)
$$\frac{1}{2}\frac{d}{dt}|u(t) - u_0|_2^2 \leq (f(t) - f(0), u(t) - u_0)$$
 a.e. $t \in I$.

Integrating the above over (0, h) for any h > 0, we have

(2.7)
$$|u(h) - u_0|_2^2 \leq 2 \int_0^h (f(t) - f(0), u(t) - u_0) dt.$$

Dividing (2.7) by h^2 and using Hölder's inequality, we get

(2.8)
$$|(u(h) - u_0)/h|_2^2 \leq \frac{2}{h^2} \int_0^h |(f(t) - f(0), u(t) - u_0)| dt$$

$$\leq 2 \int_0^h |(f(t) - f(0))/h|_2 |(u(t) - u_0)/t|_2 dt$$

$$\leq \int_0^h |(f(t) - f(0))/h|_2^2 dt + \int_0^h |(u(t) - u_0)/t|_2^2 dt,$$

because 0 < 1/h < 1/t for 0 < t < h.

Here, we estimate the first term on the right-hand side of (2.8) as follows: at first,

$$(2.9) \quad |(f(t) - f(0))/h|_{2}^{2} = |\frac{1}{h} \int_{0}^{t} f_{t}(s)ds|_{2}^{2} = \int_{\Omega} \left(\frac{1}{h} \int_{0}^{t} f_{t}(s,x)ds\right)^{2} dx$$
$$\leq \int_{\Omega} \frac{t}{h^{2}} \int_{0}^{t} f_{t}^{2}(s,x)dsdx = \frac{t}{h^{2}} \int_{0}^{t} |f_{t}(s)|_{2}^{2} ds.$$

Then, we have

$$(2.10) \qquad \int_0^h |(f(t) - f(0))/h|_2^2 dt \leq \int_0^h \left(\frac{t}{h^2} \int_0^t |f_t(s)|_2^2 ds\right) dt$$
$$\leq \frac{1}{2} \int_0^h |f_t(s)|_2^2 ds \leq \frac{1}{2} ||f_t||_{L^2(I, L^2(\Omega))}^2.$$

Therefore, from (2.8) and (2.10) we get

(2.11)
$$|(u(h) - u_0)/h|_2^2 \leq \frac{1}{2} ||f_t||_{L^2(I, L^2(\Omega))}^2 + \int_0^h |(u(t) - u_0)/t|_2^2 dt.$$

Let us use Gronwall's inequality to obtain the estimate (2.4). In this way we finish the proof of this lemma.

\S **3.** Proofs of our theorems

At first we give the proof of Theorem A.

Proof of Theorem A. For any solution u of (1.1) and a.e. $t \in I$, we take v = u(t+h) in (1.1), where $|h| < \min(t, T-t)$. After this we take v = u(t) in (1.1) for t = t + h. Adding these two inequalities, we have

(3.1)
$$(u_t(t+h) - u_t(t), u(t+h) - u(t)) + \langle \Delta_p u(t+h) - \Delta_p u(t), u(t+h) - u(t) \rangle \leq (f(t+h) - f(t), u(t+h) - u(t))$$
 a.e. $t \in I$.

Dividing (3.1) by h^2 , we get

(3.2)
$$\frac{1}{2} \frac{d}{dt} |u(t+h) - u(t)|_2^2 / h^2 + \langle \Delta_p u(t+h) - \Delta_p u(t), u(t+h) - u(t) \rangle / h^2 \leq (\delta_h f(t), \delta_h u(t)) \quad \text{a.e. } t \in I.$$

where $\delta_h f(t) = (f(t+h) - f(t))/h$ and $\delta_h u(t) = (u(t+h) - u(t))/h$. Let us integrate (3.2) over I to get

(3.3)
$$\frac{1}{2}|u(T+h) - u(T)|_{2}^{2}/h^{2} - \frac{1}{2}|u(h) - u_{0}|_{2}^{2}/h^{2} + \int_{I} \langle \Delta_{p}u(t+h) - \Delta_{p}u(t), u(t+h) - u(t) \rangle /h^{2} dt \leq \int_{I} (\delta_{h}f(t), \delta_{h}u(t)) dt.$$

By Lemma 2.1 it holds that

(3.4)
$$\gamma_0(|Du(t+h)| + |Du(t)|)^{p-2}|Du(t+h) - Du(t)|^2/h^2 \leq \sum_{j=1}^n \left(|Du(t+h)|^{p-2}D_ju(t+h) - |Du(t)|^{p-2}D_ju(t)\right) \cdot (D_ju(t+h) - D_ju(t))/h^2.$$

Integrating (3.4) over Ω , we get

(3.5)
$$\gamma_0 \int_{\Omega} (|Du(t+h)| + |Du(t)|)^{p-2} |Du(t+h) - Du(t)|^2 / h^2 dx$$
$$\leq \langle \Delta_p u(t+h) - \Delta_p u(t), u(t+h) - u(t) \rangle / h^2.$$

Next let us set $F = |Du(t+h) - Du(t)|^2/h^2$, $H = (|Du(t+h)| + |Du(t)|)^{p-2}$, r = p/2 and $Q = \Omega$ in Lemma 2.2. Then, from (2.2), (3.5) and Proposition 2.1 we get

$$(3.6) \qquad \left(\int_{\Omega} |(Du(t+h) - Du(t))/h|^{p} dx \right)^{2/p} \\ \leq \frac{1}{h^{2}} \left(\int_{\Omega} (|Du(t+h)| + |Du(t)|)^{p-2} |Du(t+h) - Du(t)|^{2} dx \right) \cdot \\ \left(\int_{\Omega} (|Du(t+h)| + |Du(t)|)^{p} dx \right)^{(2-p)/p} \\ \leq \sigma^{(2-p)/p} (u_{0}, f) (1/\gamma)^{-1} \langle \Delta_{p} u(t+h) - \Delta_{p} u(t), u(t+h) - u(t) \rangle / h^{2}.$$

Let us integrate (3.6) over I to have

(3.7)
$$\int_{I} \left(\int_{\Omega} |(Du(t+h) - Du(t))/h|^{p} dx \right)^{2/p} dt$$
$$\leq \sigma^{(2-p)/p}(u_{0}, f) \int_{I} \langle \Delta_{p} u(t+h) - \Delta_{p} u(t), u(t+h) - u(t) \rangle / h^{2} dt.$$

Combining (3.7) with (3.3) multiplied by $\sigma^{(2-p)/p}(u_0, f)$, we obtain

$$(3.8) \quad \int_{I} \left(\int_{\Omega} |(Du(t+h) - Du(t))/h|^{p} dx \right)^{2/p} dt$$

$$\leq \sigma^{(2-p)/p}(u_{0}, f)(|(u(h) - u_{0})/h|_{2}^{2} + \int_{I} |(\delta_{h}f(t), \delta_{h}u(t))| dt)$$

$$\leq \sigma^{(2-p)/p}(u_{0}, f)(|(u(h) - u_{0})/h|_{2}^{2} + \int_{I} |\delta_{h}f(t)|_{2} |\delta_{h}u(t)|_{2} dt)$$

$$\leq \sigma^{(2-p)/p}(u_{0}, f)(|(u(h) - u_{0})/h|_{2}^{2} + \int_{I} |\delta_{h}u(t)|_{2}^{2} dt + \int_{I} |\delta_{h}f(t)|_{2}^{2} dt)$$

By the similar calculations to (2.9) and (2.10) the last two terms in the blackts on the right-hand side of (3.8) are estimated as follows:

$$\int_{I} |\delta_{h} f(t)|_{2}^{2} dt \leq ||f_{t}||_{L^{2}(I,L^{2}(\Omega))}^{2},$$
$$\int_{I} |\delta_{h} u(t)|_{2}^{2} dt \leq ||u_{t}||_{L^{2}(I,L^{2}(\Omega))}^{2} \leq \sigma(u_{0},f).$$

Here we have used Proposition 2.1 in the last inequality. In (3.8) let us use the above two estimates and Lemma 2.4. Then, we get

(3.9)
$$\int_{I} \left(\int_{\Omega} |(Du(t+h) - Du(t))/h|^{p} dx \right)^{2/p} dt \leq \sigma^{2/p}(u_{0}, f).$$

By virtue of Lemma 2.3 we finish the proof of our theorem, see [N3, p.184] in detail. $\hfill \Box$

Proof of Theorem B. For i = 1 and i = 2 let u_i be any solution of the inequality

$$(3.10)_i \begin{cases} ((u_i)_t(s), u_i(s) - v) + \langle \Delta_p u_i(s), u_i(s) - v \rangle + \Phi(u_i(s)) - \Phi(v) \\ \\ \leq (f_i(s), u_i(s) - v) \quad \text{for all } v \in D(\Phi) \text{ a.e. } s \in I, \\ \\ u_i(x, 0) = u_{i,0} \end{cases}$$

In $(3.10)_1$ (resp. $(3.10)_2$) we take $v = u_2$ (resp. u_1). Then, let us add these two inequalities in order to get

(3.11)
$$(((u_1)_t - (u_2)_t)(s), u_1(s) - u_2(s)) + \langle \Delta_p u_1(s) - \Delta_p u_2(s), u_1(s) - u_2(s) \rangle$$
$$\leq (f_1(s) - f_2(s), u_1(s) - u_2(s)) \text{ a.e. } s \in I.$$

Then, we have

(3.12)
$$\frac{1}{2} \frac{d}{ds} |u_1(s) - u_2(s)|_2^2 + \langle \Delta_p u_1(s) - \Delta_p u_2(s), u_1(s) - u_2(s) \rangle$$
$$\leq (f_1(s) - f_2(s), u_1(s) - u_2(s)) \quad \text{a.e. } s \in I.$$

Let us apply Hölder's inequality to the right-hand side of (3.12) and integrate it over (0, t) for any $t \in I$ to obtain the inequality

$$(3.13) \quad |u_1(t) - u_2(t)|_2^2 + 2\int_0^t \langle \Delta_p u_1(s) - \Delta_p u_2(s), u_1(s) - u_2(s) \rangle ds$$
$$\leq |u_{1,0} - u_{2,0}|_2^2 + \int_0^t |f_1(s) - f_2(s)|_2^2 ds + \int_0^t |u_1(s) - u_2(s)|_2^2 ds.$$

After using the fact that $0 \leq \langle \Delta_p u_1(s) - \Delta_p u_2(s), u_1(s) - u_2(s) \rangle$ for any s let us apply Gronwall's inequality again to have

$$(3.14) \quad |u_1(t) - u_2(t)|_2^2 \leq C(|u_{1,0} - u_{2,0}|_2^2 + \int_0^T |f_1(t) - f_2(t)|_2^2 dt).$$

In this way we finish the proof for (1) in Theorem B.

Secondly, as in (3.6) we have the following: from Proposition 2.1

$$(3.15) \quad \left(\int_{\Omega} |Du_1(t) - Du_2(t)|^p dx\right)^{2/p} \\ \leq (\sigma(u_{1,0}, f_1) + \sigma(u_{2,0}, f_2))^{(2-p)/p} \langle \Delta_p u_1(t) - \Delta_p u_1(t), u_1(t) - u_2(t) \rangle.$$

By virtue of (3.13)-(3.15) we have

(3.16)
$$\int_{I} \left(\int_{\Omega} |Du_{1}(t) - Du_{2}(t)|^{p} dx \right)^{2/p} dt$$
$$\leq (\sigma(u_{1,0}, f_{1}) + \sigma(u_{2,0}, f_{2}))^{(2-p)/p} \cdot (|u_{1,0} - u_{2,0}|_{2}^{2} + ||f_{1} - f_{2}||_{L^{2}(I,L^{2}(\Omega))}^{2}).$$

Thus, we finish the proof.

Remark 3.1. When $2 \leq p$, it holds that in Theorem B the estimate (1) is valid and the estimate (2) is replaced by the following form:

$$|u_1 - u_2||_{L^p(I,V)}^p \leq C(|u_{1,0} - u_{2,0}|_2^2 + ||f_1 - f_2||_{L^{p'}(I,V')}^{p'})$$

with some positive constant C. The above assertion is deduced from (3.13), (3.14), Hölder's and Poincaré's inequalities and the inequality

$$\sum_{j=1}^{n} (|\xi|^{p-2}\xi_j - |\eta|^{p-2}\eta_j)(\xi_j - \eta_j) \ge C_0 |\xi - \eta|^p \quad \text{for any} \ \xi, \eta \in \mathbb{R}^n,$$

where C_0 depends only on p and n, see [C].

References

- [C] Y. Cheng, Hölder continuity of the inverse of p-Laplacian, J. Math. Anal. Appl., 221 (1998), 734–748.
- [K1] J. Kacur, Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions, Math. Slovaca, 30-3 (1980), 213–237.
- [K2] _____, On an approximate solution of variational inequalities, Math. Nachr., 123 (1985), 205–224.
- [K3] _____, Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik, 80, Leipzig, 1985.
- [L] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.
- [N1] H. Nagase, On an estimate for solutions of nonlinear elliptic variational inequalities, Nagoya Math. J., 107 (1987), 69–89.
- [N2] _____, On an application of Rothe's method to nonlinear parabolic variational inequalities, Funk. Ekv., 32-2 (1989), 273–299.
- [N3] _____, On an asymptotic behaviour of solutions of nonlinear parabolic variational inequalities, Japan. J. Math., 15-1 (1989), 169–189.
- [N4] _____, On some regularity properties for solutions of nonlinear parabolic differential equations, Nagoya Math. J., 128 (1992), 49–63.
- [N5] _____, A remark on decay properties of solutions of nonlinear parabolic variational inequalities, Japan. J. Math., 22 (1996), 285–292.
- [Sa] G. Savare, Weak solutions and maximal regularity for abstract evolution inequalities, Adv. Math. Sci. Appl., 6-2 (1996), 377–418.

Suzuka National College of Technology 510-0294 Suzuka Japan nagase@genl.suzuka-ct.ac.jp