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ON A REGULARITY PROPERTY AND A PRIORI

ESTIMATES FOR SOLUTIONS OF NONLINEAR

PARABOLIC VARIATIONAL INEQUALITIES

HARUO NAGASE

Abstract. In this paper we consider the following nonlinear parabolic varia-
tional inequality; u(t) ∈ D(Φ) for all t ∈ I , (ut(t), u(t)−v)+〈∆pu(t), u(t)−v〉+
Φ(u(t)) − Φ(v) 5 (f(t), u(t) − v) for all v ∈ D(Φ) a.e. t ∈ I , u(x, 0) = u0(x),
where ∆p is the so-called p-Laplace operator and Φ is a proper, lower semicon-
tinuous functional. We have obtained two results concerning to solutions of this
problem. Firstly, we prove a few regularity properties of solutions. Secondly, we
show the continuous dependence of solutions on given data u0 and f .

§1. Introduction

Let Ω be a bounded domain in Rn with coordinates x = (x1, . . . , xn).

The boundary Γ of Ω is assumed to be of class C1. For any positive number

T we denote the open interval (0, T ) by I and the cylinder Ω × I by G,

i.e. G = {(x, t);x ∈ Ω, t ∈ I}. The usual Sobolev space W 1,p(Ω) is defined

as follows: W 1,p(Ω) = {v ∈ Lp(Ω);Djv ∈ Lp(Ω), j = 1, . . . , n} with the

norm |v|1,p = (|v|pp + |Dv|pp)1/p (1 5 p < ∞). Here Djv = ∂v/∂xj , Dv =

(D1v,D2v, . . . ,Dnv) and |v|p = ‖v‖Lp(Ω).

Let S be a compact C1 manifold of (n− 2)-dimension contained in Γ.

We assume that S divides Γ into two relatively open subsets Γ1, Γ2 such

that Γ1 6= ∅, more precisely, Γ = Γ1 ∪ Γ2 ∪ S, Γ1 ∩ Γ2 = ∅. Next let C∞

(0)(Ω̄)

be the family of all infinitely differentiable functions in Ω̄ vanishing in each

neighborhood of Γ1. The completion of C∞

(0)(Ω̄) with respect to the norm

| |1,p is denoted by V . We denote the norm in V by | |V , the dual space

of V by V ′, the pairing between V and V ′ by 〈 , 〉 and the inner product

of L2(Ω) by ( , ).

For any Banach space X and any s (1 5 s < ∞) let us denote by

Ls(I,X) the space of equivalent classes of functions v(t) from I to X, which

are Ls-integrable on I. It is a Banach space with the norm ‖v‖Ls(I,X) =
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(
∫

I |v(t)|
s
Xdt)

1/s, where | |X is the norm in X. In the case of s = ∞,

L∞(I,X) means the set of all measurable functions v; I → X, satisfying

‖v‖L∞(I,X) = ess. supI |v(s)|X <∞.

A functional Φ;X → (−∞,∞] is said to be proper if Φ 6≡ ∞. And a

proper functional Φ is said to be lower semicontinuous if

Φ(v0) 5 lim inf
v→v0

Φ(v) for any v0 ∈ X.

For a proper lower semicontinuous functional Φ on X we set D(Φ) = {v ∈
X; Φ(v) <∞}.

We consider the nonlinear parabolic variational inequality























u(t) ∈ D(Φ) for all t ∈ I,

(ut(t), u(t) − v) + 〈∆pu(t), u(t) − v〉 + Φ(u(t)) − Φ(v)

5 (f(t), u(t) − v) for all v ∈ D(Φ) a.e. t ∈ I,

u(x, 0) = u0(x),

(1.1)

where 〈∆pu, v〉 =
∑n

j=1(|Du|
p−2Dju,Djv). In the above Φ is supposed to

be proper, convex lower semicontinuous on V . Throughout this paper we

assume that 1 < p 5 2, if n = 1, 2, and 2n/(n+ 2) < p 5 2, if 3 5 n.

In this paper we denote by the same C any positive constant which

does not depend on u, u0 and f .

The first aim of this paper is to show the following

Theorem A. It is assumed that the inequality

〈∆pu0, u0 − v〉+Φ(u0)−Φ(v) 5 (f(0), u0 − v) for any v ∈ D(Φ)(1.2)

holds, where u0 ∈ D(Φ), f ∈ L2(I, L2(Ω)) and ft ∈ L
2(I, L2(Ω)). Then, for

any solution u of (1.1) it holds that (Du)t ∈ L2(I, Lp(Ω)) and

‖(Du)t‖L2(I,Lp(Ω)) 5 σ1/p(u0, f)

where σ(u0, f) = C(|Du0|
p
p + ‖ft‖

2
L2(I,L2(Ω))).

It is easy to deduce the follwoing corollary from Theorem A:

Corollary. Under the same assumptions as in Theorem A it holds

that (Du)t ∈ L
p(G) and

‖(Du)t‖Lp(G) 5 σ(u0, f).
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Secondly, we give a priori estimates which assure the continuous depen-

dence of solutions of (1.1) on the given data u0 and f .

Theorem B. Let u1 (resp. u2) be any solution of (1.1) with u1(x, 0) =

u1,0 (resp. u2(x, 0) = u2,0) and f = f1 (resp. f2). Let the condition (1.2) be

satisfied for ui,0 and fi, i = 1, 2. Under the condition that u1,0, u2,0 ∈ D(Φ),

f1, f2 ∈ L2(I, L2(Ω)) and (f1)t, (f2)t ∈ L2(I, L2(Ω)) the followings hold :

for any t ∈ I

(1) |(u1 − u2)(t)|2 5 C(|u1,0 − u2,0|2 + ‖f1 − f2‖L2(I,L2(Ω))),

and

(2) ‖D(u1 − u2)‖L2(I,Lp(Ω)) 5 (σ(u1,0, f1) + σ(u2,0, f2))
(2−p)/2p·

(|u1,0 − u2,0|2 + ‖f1 − f2‖L2(I,L2(Ω))).

Under the same conditions on p as this paper we have proved some

decay properties of solutions for (1.1) in [N5], where we have replaced Φ

by the indicator function IK of a closed onvex subset K of V and I by

R+
1 = (0,∞).

In [N2] we considered the nonlinear parabolic variational inequality























u(t) ∈ D(Φ) for all t ∈ I,

(ut(t), u(t) − v) + 〈A(t)u(t), u(t) − v〉 + Φ(u(t)) − Φ(v)

5 (f(t), u(t) − v) for all v ∈ D(Φ) a.e. t ∈ I,

u(x, 0) = u0(x).

(1.3)

In the above the operator A(t);V → V ′ is defined in such a way that

〈A(t)v,w〉 =

n
∑

j=1

(aj( . , t,Dv),Djw) for any v,w ∈ V.(1.4)

Here the nonlinear functions aj(x, t, η), j = 1, . . . , n, satisfy the following

Assumption (I). For (x, t) ∈ G, η ∈ Rn −{0}, ξ ∈ Rn and j, 1 5 j 5

n,

1-1 aj(x, t, η) ∈ C0(Ω × I ×Rn) ∩ C1(Ω × I × (Rn − {0})),
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1-2

n
∑

i,j=1

(∂/∂ ηi)aj(x, t, η)ξiξj = γ|η|p−2|ξ|2,

1-3 |(∂/∂ t)aj(x, t, η)| 5 Λ|η|p−1.

Here γ, Λ are some positive constants.

It is easy to see that the operator ∆p satisfies the Assumption (I).

However, it is assumed that 2 5 p in [N2]. In such a case we considered

the existence and the regularity of solutions of (1.3) under the following

assumptions in [N2]:

Assumption (II). The function u0(x) in (1.3) belongs to D(Φ) and

there exists an element z0(x) in L2(Ω) such that the inequality

(z0, v − u0) + 〈A(0)u0, v − u0〉 + Φ(v) − Φ(u0) = (f(0), v − u0)(1.5)

holds for all v ∈ D(Φ).

Assumption (III). There exists v0 in D(Φ) such that for any t ∈ I

{〈A(t)v, v − v0〉 + Φ(v)}/|v|V → ∞ uniformly as |v|V → ∞.(1.6)

Concerning with the regularity of solutions of (1.3), we obtained the

following results in [N2, p.276]: let the Assumptions (I), (II) and (III) be

satisfied. If f , ft ∈ L2(I, L2(Ω)), it holds that ‖(|Du|(p−2)/2Du)t‖
2
L2(G),

‖(aj( . , . ,Du))t‖
p′

Lp′ (G)
and ‖(|Du|(p−2)Du)t‖

p′

Lp′ (G)
5 γ(u0, z0, f) for any

solution u of (1.3). Here p′ is the adjoint number of p, i.e., p′ = p/(p−1), and

γ(u0, z0, f) = C(1+|z0|
2
2+|u0|

2
2+|Du0|

p
p+‖f‖2

L2(I,L2(Ω))+‖ft‖
2
L2(I,L2(Ω))). In

[N2] we have treated (1.3) when the operator A has a nonlinear perturbed

term of lower order.

In [N4] we considerd the nonlinear parabolic equation



























u ∈ L∞(I,W 1,p
0 (Ω)) ∩C(I, L2(Ω)), ut ∈ L2(I, L2(Ω)),

(ut(t), v) + 〈A(t)u(t), v〉 = 〈f(t), v〉

for all v ∈W 1,p
0 (Ω) a.e. t ∈ I,

u(x, 0) = u0.

(1.7)

under the following assumptions:
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Assumption (IV). f ∈ Lp′(I,W 1,p′(Ω)) and ft ∈ L2(I, L2(Ω)).

Assumption (V). u0 ∈ W 1,p(Ω) and Du0 ∈ L2(Ω). Further, there

exists a function z0 ∈ L2(Ω) such that the equality

(z0, v) + 〈A(0)u0, v〉 = 〈f(0), v〉 for all v ∈W 1,p
0 (Ω)

holds

In [N4, p.51, p.62] we obtained the following results concerned to the

regularity of any solution u of (1.7): under the Assumptions (I), (IV) and (V)

it holds that (1) if 2(n+1)/(n+3)<p 5 2, thenD2u ∈ Lk(p∞)(I ′, L
k(p∞)
loc (Ω)),

(Du)t ∈ Lk(p∞)(Ω × I ′) and D2u ∈ Lm(p∞)(Ω × I ′), (2) if 2n/(n + 2) <

p 5 2(n + 1)/(n + 3), then D2u ∈ Lp(I, Lp
loc(Ω)), (Du)t ∈ Lp(Ω × I ′) and

D2u ∈ L2p/(4−p)(G). Here D2u = DiDju, 1 5 i, j 5 n, I ′ = (a, b) with

any a, b, 0 < a < b < T , k(p∞) = 4(n + 1)(p − 1)/((n + 3)p − 4) and

m(p∞) = 2(n+1)(p−1)/(2p+n−3). It is easy to see that p < k(p∞) (resp.

p > k(p∞)), if 2(n+ 1)/(n+ 3) < p 5 2 (resp. 1 < p 5 2(n+ 1)/(n+ 3)).

The other results on the regularity of solutions for nonlinear parabolic

variational inequalities and nonlinear parabolic differential equations are

referred to [N2] and [N4].

In the abstract framework of a Hilbert triple {V,H, V ′} G. Savaré has

considered (1.3) when A(t), t ∈ I, is a family of linear continuous coercive

operators from V to V ′ and Φ is a proper convex lower semicontinuous

functional on V . In [Sa] he obtained the estimate ‖u1 − u2‖
2
i(I) 5 C(|u1,0 −

u2,0|
2
H+(‖f1‖S(I)+‖f2‖S(I))‖f1−f2‖S(I)), where u1 (resp. u2) is any solution

of (1.3) with f = f1 (resp. f2) and u0 = u1,0 (resp. u2,0). Here i(I) =

L2(I, V ) ∩ L∞(I,H) and S(I) = L2(I, V ′) + L1(I,H) + B
−1/2
21 (I,H) with

the norm ‖v‖i(I) = ‖v‖L2(I,V ) +‖v‖L∞(I,H) and ‖v‖S(I) = inf(‖v1‖L2(I,V ′) +

‖v2‖L1(I,H) + ‖v3‖B
−1/2

21
(I,H)

), where the infimum is taken for v = v1 + v2 +

v3 such that v1 ∈ L2(I, V ′), v2 ∈ L1(I,H) and v3 ∈ B
−1/2
21 (I,H). The

definition and the properties of the space B
−1/2
21 (I,H) are referred to [Sa].

At last we refer to the results in [C]. In [C] Y. Cheng considered

the nonlinear elliptic equation with the Dirichlet boundary condition;

−div(|Du|p−2Du) = f in Ω and u = 0 on Γ in the weak sense that

〈∆pu, φ〉 = (f, φ) for all φ ∈ C∞

0 (Ω).(1.8)
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Y. Cheng obtained the followings for solutions of (1.8) in [C]: (1) when

2 5 p, it holds that |u1−u2|1,p 5 C|f1−f2|
1/(p−1)
−1,p′ , and (2) when 1 < p < 2,

it holds that |u1 − u2|1,p 5 C(|f1|−1,p′ + |f2|−1,p′)
(2−p)/(p−1)|f1 − f2|−1,p′ .

Here u1 (resp. u2) is any solution of (1.8) for f = f1 (resp. f2).

This paper is constructed as follows: in Section 2 we prepare some

lemmas and a proposition, which play important roles in the proof of our

theorems. In Section 3 we give the proofs of our theorems.

§2. Lemmas

Lemma 2.1. ([C, p.736, Theorem 3]) There exists a positive constant

γ0 depending only on p such that the following inequality holds :

n
∑

j=1

(|ξ|p−2ξj − |η|p−2ηj)(ξj − ηj) = γ0(|ξ| + |η|)p−2|ξ − η|2(2.1)

for any ξ and η ∈ Rn, where the right-hand side is defined to be 0, if

ξ = η = 0.

We can show easily the following lemma by Hölder’s inequality:

Lemma 2.2. Let 0 < r < 1 and r′ = r/(r − 1). If F (x) ∈ Lr(Q),

F (x)H(x) ∈ L1(Q) and
∫

Q |H(x)|r
′

dx <∞, then it holds that

(
∫

Q
|F (x)|rdx

)1/r

5

(
∫

Q
|F (x)H(x)|dx

) (
∫

Q
|H(x)|r

′

dx

)

−1/r′

.(2.2)

Here Q is any bounded domain in Rm.

By the same way as in [N1, p.77, Lemma 1.4] we can show the following

Lemma 2.3. Let v be a distribution in Q and let {vj}
∞

j=1 be a sequence

in a reflexive Banach space X, where C∞

0 (Q) is dense. Let norms |vj |X be

uniformly bounded. If (vj , ψ) → (v, ψ) as j → ∞ for any ψ ∈ C∞

0 (Q), then

v belongs to X and the sequence vj converges weakly to v in X as j → ∞.

Next, we prepare a priori estimates for solutions of (1.1).

Proposition 2.1. Under the assumptions in Theorem A there exists

a unique solution u of (1.1) with the following properties :

(1) u ∈ L∞(I, V ) ∩C(I, L2(Ω)), ut ∈ L∞(I, L2(Ω))

(2) |ut(t)|
2
2, |u(t)|

p
V 5 σ(u0, f) uniformly in t ∈ I.
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For solutions of (1.3) the assertions of the above proposition were proved

in [N2, p.275, Theorem 1] under the Assumptions (I), (II) and (III) when

2 5 p. In the cases that 1 < p 5 2, if n = 1, 2, and 2n/(n + 2) < p 5 2,

if 3 5 n we can show the same results as [N2] by the similar way to [N2]

with slight modifications. Moreover, the above proposition was proved by

J. Kacur in [K3, p.116, Theorem 5.2.3]. In [K3] the operator ∆p was replaced

by a genral nonlinear elliptic operator which was independent of t.

Remark 2.1. We extend u(t) and f(t) outside I in such a way that

u(t) = u(T ), f(t) = f(T ) for t > T ;

u(t) = u0, f(t) = f(0) for t < 0.
(2.3)

Lemma 2.4. Under the assumptions in Theorem A the inequality

|(u(h) − u0)/h|2 5 C‖ft‖L2(I,L2(Ω)) (h 6= 0)(2.4)

holds for any solution u of (1.1). Here the positive constant C depends only

on T .

Proof. By Remark 2.1 it is easy to see that the estimate (2.4) is valid

for h < 0. Therefore, we may assume that 0 < h from now on.

For any solution u of (1.1) and a.e. t ∈ I let us take v = u0 in (1.1).

After this we take v = u(t) in (1.2). Adding these two inequalities, we get

(ut(t) − (u0)t, u(t) − u0) + 〈∆pu(t) − ∆pu0, u(t) − u0〉(2.5)

5 (f(t) − f(0), u(t) − u0) a.e. t ∈ I.

Using the fact that 0 5 〈∆pu(t) − ∆pu0, u(t) − u0〉, we get

1

2

d

dt
|u(t) − u0|

2
2 5 (f(t) − f(0), u(t) − u0) a.e. t ∈ I.(2.6)

Integrating the above over (0, h) for any h > 0, we have

|u(h) − u0|
2
2 5 2

∫ h

0
(f(t) − f(0), u(t) − u0)dt.(2.7)

Dividing (2.7) by h2 and using Hölder’s inequality, we get

|(u(h) − u0)/h|
2
2 5

2

h2

∫ h

0
|(f(t) − f(0), u(t) − u0)|dt(2.8)
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5 2

∫ h

0
|(f(t) − f(0))/h|2|(u(t) − u0)/t|2dt

5

∫ h

0
|(f(t) − f(0))/h|22dt+

∫ h

0
|(u(t) − u0)/t|

2
2dt,

because 0 < 1/h < 1/t for 0 < t < h.

Here, we estimate the first term on the right-hand side of (2.8) as fol-

lows: at first,

|(f(t) − f(0))/h|22 = |
1

h

∫ t

0
ft(s)ds|

2
2 =

∫

Ω

(

1

h

∫ t

0
ft(s, x)ds

)2

dx(2.9)

5

∫

Ω

t

h2

∫ t

0
f2

t (s, x)dsdx =
t

h2

∫ t

0
|ft(s)|

2
2ds.

Then, we have

∫ h

0
|(f(t) − f(0))/h|22dt 5

∫ h

0

(

t

h2

∫ t

0
|ft(s)|

2
2ds

)

dt(2.10)

5
1

2

∫ h

0
|ft(s)|

2
2ds 5

1

2
‖ft‖

2
L2(I,L2(Ω)).

Therefore, from (2.8) and (2.10) we get

|(u(h) − u0)/h|
2
2 5

1

2
‖ft‖

2
L2(I,L2(Ω)) +

∫ h

0
|(u(t) − u0)/t|

2
2dt.(2.11)

Let us use Gronwall’s inequality to obtain the estimate (2.4). In this way

we finish the proof of this lemma.

§3. Proofs of our theorems

At first we give the proof of Theorem A.

Proof of Theorem A. For any solution u of (1.1) and a.e. t ∈ I, we take

v = u(t+ h) in (1.1), where |h| < min(t, T − t). After this we take v = u(t)

in (1.1) for t = t+ h. Adding these two inequalities, we have

(ut(t+ h) − ut(t), u(t+ h) − u(t))(3.1)

+〈∆pu(t+ h) − ∆pu(t), u(t+ h) − u(t)〉

5 (f(t+ h) − f(t), u(t+ h) − u(t)) a.e. t ∈ I.
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Dividing (3.1) by h2, we get

1

2

d

dt
|u(t+ h) − u(t)|22/h

2(3.2)

+〈∆pu(t+ h) − ∆pu(t), u(t+ h) − u(t)〉/h2

5 (δhf(t), δhu(t)) a.e. t ∈ I.

where δhf(t) = (f(t+ h) − f(t))/h and δhu(t) = (u(t+ h) − u(t))/h.

Let us integrate (3.2) over I to get

1

2
|u(T + h) − u(T )|22/h

2 −
1

2
|u(h) − u0|

2
2/h

2(3.3)

+

∫

I
〈∆pu(t+ h) − ∆pu(t), u(t + h) − u(t)〉/h2dt

5

∫

I
(δhf(t), δhu(t))dt.

By Lemma 2.1 it holds that

γ0(|Du(t+ h)| + |Du(t)|)p−2|Du(t+ h) −Du(t)|2/h2(3.4)

5

n
∑

j=1

(

|Du(t+ h)|p−2Dju(t+ h) − |Du(t)|p−2Dju(t)
)

·

(Dju(t+ h) −Dju(t))/h
2.

Integrating (3.4) over Ω, we get

γ0

∫

Ω
(|Du(t+ h)| + |Du(t)|)p−2|Du(t+ h) −Du(t)|2/h2dx(3.5)

5 〈∆pu(t+ h) − ∆pu(t), u(t + h) − u(t)〉/h2.

Next let us set F = |Du(t + h) − Du(t)|2/h2, H = (|Du(t + h)| +

|Du(t)|)p−2, r = p/2 and Q = Ω in Lemma 2.2. Then, from (2.2), (3.5) and

Proposition 2.1 we get
(

∫

Ω
|(Du(t+ h) −Du(t))/h|pdx

)2/p

(3.6)

5
1

h2

(
∫

Ω
(|Du(t+ h)| + |Du(t)|)p−2|Du(t+ h) −Du(t)|2dx

)

·

(
∫

Ω
(|Du(t+ h)| + |Du(t)|)pdx

)(2−p)/p

5 σ(2−p)/p(u0, f)(1/γ)−1〈∆pu(t+ h) − ∆pu(t), u(t + h) − u(t)〉/h2.
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Let us integrate (3.6) over I to have

∫

I

(
∫

Ω
|(Du(t+ h) −Du(t))/h|pdx

)2/p

dt(3.7)

5 σ(2−p)/p(u0, f)

∫

I
〈∆pu(t+ h) − ∆pu(t), u(t+ h) − u(t)〉/h2dt.

Combining (3.7) with (3.3) multiplied by σ(2−p)/p(u0, f), we obtain

∫

I

(
∫

Ω
|(Du(t+ h) −Du(t))/h|pdx

)2/p

dt(3.8)

5 σ(2−p)/p(u0, f)(|(u(h) − u0)/h|
2
2 +

∫

I
|(δhf(t), δhu(t))|dt)

5 σ(2−p)/p(u0, f)(|(u(h) − u0)/h|
2
2 +

∫

I
|δhf(t)|2|δhu(t)|2dt)

5 σ(2−p)/p(u0, f)(|(u(h) − u0)/h|
2
2 +

∫

I
|δhu(t)|

2
2dt+

∫

I
|δhf(t))|22dt)

By the similar calculations to (2.9) and (2.10) the last two terms in the

blackts on the right-hand side of (3.8) are estimated as follows:
∫

I
|δhf(t)|22dt 5 ‖ft‖

2
L2(I,L2(Ω)),

∫

I
|δhu(t)|

2
2dt 5 ‖ut‖

2
L2(I,L2(Ω)) 5 σ(u0, f).

Here we have used Proposition 2.1 in the last inequality. In (3.8) let us use

the above two estimates and Lemma 2.4. Then, we get

∫

I

(
∫

Ω
|(Du(t+ h) −Du(t))/h|pdx

)2/p

dt 5 σ2/p(u0, f).(3.9)

By virtue of Lemma 2.3 we finish the proof of our theorem, see [N3, p.184]

in detail.

Proof of Theorem B. For i = 1 and i = 2 let ui be any solution of the

inequality

(3.10)i















((ui)t(s), ui(s) − v) + 〈∆pui(s), ui(s) − v〉 + Φ(ui(s)) − Φ(v)

5 (fi(s), ui(s) − v) for all v ∈ D(Φ) a.e. s ∈ I,

ui(x, 0) = ui,0
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In (3.10)1 (resp. (3.10)2) we take v = u2 (resp. u1). Then, let us add these

two inequalities in order to get

(((u1)t − (u2)t)(s), u1(s) − u2(s))(3.11)

+〈∆pu1(s) − ∆pu2(s), u1(s) − u2(s)〉

5 (f1(s) − f2(s), u1(s) − u2(s)) a.e. s ∈ I.

Then, we have

1

2

d

ds
|u1(s) − u2(s)|

2
2 + 〈∆pu1(s) − ∆pu2(s), u1(s) − u2(s)〉(3.12)

5 (f1(s) − f2(s), u1(s) − u2(s)) a.e. s ∈ I.

Let us apply Hölder’s inequality to the right-hand side of (3.12) and inte-

grate it over (0, t) for any t ∈ I to obtain the inequality

|u1(t) − u2(t)|
2
2 + 2

∫ t

0
〈∆pu1(s) − ∆pu2(s), u1(s) − u2(s)〉ds(3.13)

5 |u1,0 − u2,0|
2
2 +

∫ t

0
|f1(s) − f2(s)|

2
2ds+

∫ t

0
|u1(s) − u2(s)|

2
2ds.

After using the fact that 0 5 〈∆pu1(s) − ∆pu2(s), u1(s) − u2(s)〉 for any s

let us apply Gronwall’s inequality again to have

|u1(t) − u2(t)|
2
2 5 C(|u1,0 − u2,0|

2
2 +

∫ T

0
|f1(t) − f2(t)|

2
2dt).(3.14)

In this way we finish the proof for (1) in Theorem B.

Secondly, as in (3.6) we have the following: from Proposition 2.1

(
∫

Ω
|Du1(t) −Du2(t)|

pdx

)2/p

(3.15)

5 (σ(u1,0, f1) + σ(u2,0, f2))
(2−p)/p〈∆pu1(t) − ∆pu1(t), u1(t) − u2(t)〉.

By virtue of (3.13)–(3.15) we have

∫

I

(
∫

Ω
|Du1(t) −Du2(t)|

pdx

)2/p

dt(3.16)

5 (σ(u1,0, f1) + σ(u2,0, f2))
(2−p)/p ·

(|u1,0 − u2,0|
2
2 + ‖f1 − f2‖

2
L2(I,L2(Ω))).

Thus, we finish the proof.
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Remark 3.1. When 2 5 p, it holds that in Theorem B the estimate (1)

is valid and the estimate (2) is replaced by the following form:

‖u1 − u2‖
p
Lp(I,V ) 5 C(|u1,0 − u2,0|

2
2 + ‖f1 − f2‖

p′

Lp′ (I,V ′)
)

with some positive constant C. The above assertion is deduced from (3.13),

(3.14), Hölder’s and Poincaré’s inequalities and the inequality

n
∑

j=1

(|ξ|p−2ξj − |η|p−2ηj)(ξj − ηj) = C0|ξ − η|p for any ξ, η ∈ Rn,

where C0 depends only on p and n, see [C].
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