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ON THE AUSLANDER-REITEN QUIVER OF

AN INFINITESIMAL GROUP

ROLF FARNSTEINER∗

Abstract. Let G be an infinitesimal group scheme, defined over an algebraically
closed field of characteristic p. We employ rank varieties of G-modules to study
the stable Auslander-Reiten quiver of the distribution algebra of G. As in case
of finite groups, the tree classes of the AR-components are finite or infinite
Dynkin diagrams, or Euclidean diagrams. We classify the components of finite
and Euclidean type in case G is supersolvable or a Frobenius kernel of a smooth,
reductive group.

§0. Introduction and preliminaries

The investigation of the representations of finite group schemes over

algebraically closed fields of positive characteristic typically proceeds in

several steps. By general theory (cf. [29, (6.8)]) a finite algebraic group

scheme G decomposes into a semidirect product G = G0×Gred with a normal

infinitesimal subgroup G0 and a reduced group Gred. Accordingly, one begins

by studying the representation theories of the constituents. These turn out

to differ with regard to both, their methods and results. The final, and

often most difficult, step amounts to fusing the results for infinitesimal and

constant groups.

The classical modular representation theory of finite groups is fairly

completely developed. One understands the Morita equivalence classes of

the representation-finite and tame blocks (cf. [3, 7]), and the Auslander-

Reiten quiver has also been determined (cf. [8]). Much of the success here

rests on the availability of a comprehensive block theory that is based on

Green’s theory of vertices and sources.

By contrast, much less is known for the group algebras of infinitesimal

algebraic groups. A general block theory remains elusive, and the most

promising approach pursued so far is based on geometric methods related
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to the notion of a rank variety. In recent work Suslin-Friedlander-Bendel

[26, 27] have extended this notion from infinitesimal groups of height ≤ 1

to those of arbitrary height. The main purpose of the present note is to

show how their results and those of [13, 16] can be exploited to study the

stable Auslander-Reiten quiver of an infinitesimal group.

The paper is organized as follows. In the first section we show that

the rank variety of an indecomposable module is an invariant of its stable

Auslander-Reiten component. By combining work of Happel-Preiser-Ringel

[20] with that of Erdmann-Skowroński [10] one then readily obtains the

standard list of the possible tree classes of the AR-components: finite and

infinite Dynkin diagrams, and Euclidean diagrams. Thus, Theorem 1.3 is

the analogue of Webb’s theorem [30] for group algebras of finite groups

(see [9, 11] for infinitesimal groups of height ≤ 1). In §2 we investigate the

question to what extent the structure of an AR-component is determined

by the dimension of its support variety. Components with one-dimensional

variety are those containing periodic modules and are therefore either finite,

or infinite tubes. In generalization of the main result of [14] we show that

AR-components with support varieties of dimension ≥ 3 are isomorphic to

Z[A∞].

Following a brief discussion on the number of AR-components, we turn

in the last two sections to special cases given by Frobenius kernels of reduc-

tive groups and supersolvable groups. For the former actions on varieties

provide additional information, while a certain “linkage principle” is ex-

ploited in the investigation of the latter. For both classes of groups, one

can reduce the list of possible tree classes by determining the finite and

Euclidean components.

Throughout this paper we will be working over an algebraically closed

field k of characteristic p > 0. All k-vector spaces are assumed to be of finite

dimension. Let H be a Hopf algebra with counit ε : H −→ k and antipode

η : H −→ H. According to a result due to Sweedler (cf. [28, (5.1.6)]), there

exists a one-dimensional subspace
∫ r

H
⊂ H, the space of right integrals of

H, such that

x · h = x ε(h) ∀ h ∈ H, x ∈

∫ r

H

.

The unique algebra homomorphism ζ : H −→ k satisfying h ·x = ζ(h)x for

h ∈ H and x ∈
∫ r

H
is called the modular function of H.
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Given an algebra homomorphism λ : H −→ k the convolution

λ ∗ idH : H −→ H ; h 7→
∑
(h)

λ(h(1))h(2)

is an automorphism of H of finite order. Every Hopf algebra is a (not neces-

sarily symmetric) Frobenius algebra (cf. [24]). In case H is cocommutative,

ν := ζ ∗ idH is a Nakayama automorphism of H (cf. [18, (1.5)]).

For an H-module M and an automorphism γ : H −→ H of k-algebras

we denote by M (γ) the H-module with underlying k-space M and action

given by

h ·m := γ−1(h)m ∀ h ∈ H, m ∈M.

In this fashion we obtain an action of the automorphism group Autk(H)

on modH , the category of H-modules. If λ : H −→ k is an algebra homo-

morphism, then kλ denotes the corresponding one-dimensional H-module.

Note that λ ◦ η is also a homomorphism, and that M (λ∗idH ) ∼= M ⊗k kλ◦η.

In particular, we have M (ν) ∼= M ⊗k kζ◦η.

§1. The variety of an Auslander-Reiten component

We refer the reader to [6, 22, 29] for general facts on algebraic k-groups.

Given such a group G, the rth Frobenius kernel of G will be denoted Gr. If

G = Speck(O(G)) is a finite algebraic k-group with function algebra O(G),

then H(G) := O(G)∗ is its group algebra. By definition H(G) is a finite

dimensional cocommutative Hopf algebra.

We consider the rth Frobenius kernel prαk = Speck(k[T ]/(T pr

)) of the

additive group, and recall that, letting {X0, . . . ,Xr−1} ⊂ H(prαk) be the

set of linear functionals given by

Xi(T
j + (T pr

)) := δpi,j ,

we have H(prαk) = k[X0, . . . ,Xr−1]/(X
p
0 , . . . ,X

p
r−1). In the sequel we shall

denote the p-dimensional local k-algebra k[Xr−1]/(X
p
r−1) ⊂ H(prαk) by Ar.

Given a G-module M and r > 0, we put

V̂Gr(M) := {ϕ : prαk −→ G ; M |Ar is not projective}.

Here M |Ar denotes the pullback of the module structure along the restric-

tion Ar −→ H(G) of the homomorphism H(prαk) −→ H(G) that corre-

sponds to ϕ. By abuse of notation this map will also be denoted ϕ. Note that
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V̂Gr(M) is the variety of k-rational points of the support scheme Vr(G)M
that was introduced in [27, §6]. Thanks to [27, (6.8)] we have

dim V̂Gr(M) = dimVr(G)M = dimVG(M),

where VG(M) denotes the support variety of the Hev(G, k)-module

Ext∗H(G)(M,M). In particular, dim V̂Gr(M) coincides with the complexity

cH(G)(M) of M .

The stable Auslander-Reiten quiver of H(G) will be denoted by Γs(G).

Recall that the vertices of Γs(G) are the isoclasses of the non-projective

indecomposable G-modules. The arrows are induced by the so-called irre-

ducible maps. We refer the reader to [1] concerning the general theory of

these quivers. The set of irreducible maps between two G-modules M and N

will be denoted Irr(M,N). If M is a module for a self-injective k-algebra Λ,

then we write Ωn
Λ(M) = Ωn(M) for the nth syzygy of a minimal projective

resolution of M . The resulting operator ΩΛ is called the Heller operator.

Important for our purposes is its connection with the Auslander-Reiten

translation τ of Γs(G). It follows from [3, p.138] that

τ(M) ∼= Ω2(M (ν))

for every non-projective indecomposable H(G)-module M .

Proposition 1.1. Let Θ ⊂ Γs(G) be a component. Given G-modules

M and N such that [M ], [N ] ∈ Θ, we have V̂Gr(M) = V̂Gr(N).

Proof. We first show that V̂Gr(M) = V̂Gr(τ(M)). According to

[27, (7.3)] H(G)|Ar is projective for every non-trivial element ϕ ∈ V̂Gr(M).

From the isomorphism

Ω2
H(G)(M)|Ar

∼= Ω2
Ar

(M |Ar ) ⊕ (proj)

we obtain the identity V̂Gr(M) = V̂Gr(Ω
2
H(G)(M)). Our earlier observations

now yield

τ(M) ∼= Ω2
H(G)(M

(ν)) ∼= Ω2
H(G)(M ⊗k kζ◦η) ∼= Ω2

H(G)(M) ⊗k kζ◦η,

with the last isomorphism following from the fact that M 7→ M ⊗k kζ◦η is

an auto-equivalence of modH(G). Since H(prαk) is a local Hopf algebra, we
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have (Ω2
H(G)(M)⊗k kζ)|H(pr αk)

∼= Ω2
H(G)(M)|H(pr αk), whence (Ω2

H(G)(M)⊗k

kζ)|Ar
∼= Ω2

H(G)(M)|Ar and

V̂Gr(τ(M)) = V̂Gr(Ω
2
H(G)(M) ⊗k kζ◦η) = V̂Gr(Ω

2
H(G)(M)) = V̂Gr(M).

Now let

(0) −→ τ(M) −→ XM −→M −→ (0)

be the almost split sequence terminating in M . Directly from the definition

we obtain V̂Gr(XM ) ⊂ V̂Gr(τ(M)) ∪ V̂Gr(M) = V̂Gr(M). If Irr(N,M) 6=
∅, then N is a direct summand of XM , whence V̂Gr(N) ⊂ V̂Gr(M). By

considering the almost split sequence

(0) −→ N −→ Xτ−1(N) −→ τ−1(N) −→ (0)

we conclude that V̂Gr(M) ⊂ V̂Gr(N) whenever Irr(N,M) 6= ∅. Since Θ is

connected, this yields the desired result.

Definition. Let Θ ⊂ Γs(G) be a component. Given r ∈ IN, we define

V̂Gr(Θ) := V̂Gr(M) [M ] ∈ Θ.

In the sequel we will be working with certain induced modules. Given

a homomorphism ϕ : prαk −→ G, we put Mϕ := H(G) ⊗Ar k. For future

reference we collect a few elementary properties:

Lemma 1.2. Let ϕ : prαk −→ G be a non-trivial homomorphism.

Then the module Mϕ has the following properties :

(1) Ω2
H(G)(Mϕ) ⊕ (proj) ∼= Mϕ.

(2) M
(ν)
ϕ

∼= Mϕ.

Proof. (1) Since Ar
∼= k[X]/(Xp) we have Ω2

Ar
(k) ∼= k. Thanks to

[27, (7.3)] H(G) is a projective Ar-module, so that general properties of the

Heller operator yield

Mϕ
∼= H(G) ⊗Ar Ω2

Ar
(k) ∼= Ω2

H(G)(Mϕ) ⊕ (proj).

(2) Recall that ν = ζ ∗ idH(G), where ζ is the modular function of H(G).

Since H(prαk) is local, we have ζ ◦ϕ = ε, so that ν ◦ϕ = ϕ. It follows that

there is a map Mϕ −→ Mϕ sending h ⊗ α to ν(h) ⊗ α. This map is the

desired isomorphism M
(ν)
ϕ

∼= Mϕ.
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Our next result, which generalizes earlier work on groups of height ≤ 1

(cf. [9, 11]), is the analogue of Webb’s theorem [30, Thm.A] for infinitesimal

groups.

Theorem 1.3. Let Θ ⊂ Γs(G) be a component of the stable Auslander-

Reiten quiver of an infinitesimal group G. Then the tree class TΘ of Θ is

either a finite Dynkin diagram, or an infinite Dynkin diagram, or a Eu-

clidean diagram.

Proof. Let r be the height of G. Then we have V̂Gr(Θ) 6= {0}, and for

a non-trivial element ϕ : prαk −→ G of V̂Gr(Θ), we consider the module

Mϕ. According to (1.2) there exists a projective H(G)-module P such that

τ(Mϕ) ⊕ P ∼= Mϕ.

Let [M ] be an element of Θ. Then M is a non-injective module for the

local, self-injective algebra Ar. Consequently,

(0) 6= Ext1Ar
(k,M) ∼= Ext1H(G)(Mϕ,M)

by Frobenius reciprocity. We may now apply [9, (1.5)] to obtain our result.

Remarks. Since k is algebraically closed, the labels of the edges of the

possible tree class have the form (n, n). Hence the following tree classes can

occur:

(a) finite Dynkin diagrams An, Dn, E6, E7, E8.

(b) infinite Dynkin diagrams A∞, A
∞
∞, D∞.

(c) Euclidean diagrams Ã12, D̃n, Ẽ6, Ẽ7, Ẽ8.

§2. Dimensions of Auslander-Reiten components

In the previous section we have associated to each component Θ ⊂

Γs(G) conical, affine varieties V̂Gr(Θ). If r is the height of the infinitesimal

k-group G, then, as we shall demonstrate below, the dimension of V̂Gr(Θ)

is related to the the structure of the component. Recall that an indecom-

posable H(G)-module M is said to be periodic if there exists n ∈ IN such

that Ωn
H(G)(M) ∼= M . Since the Nakayama automorphism ν of H(G) has

finite order, M is periodic if and only if it is τ -periodic in the sense that

τm(M) ∼= M for some m ∈ IN. The tree class of a component Θ ⊂ Γs(G)

will be denoted TΘ. We begin by studying components with one-dimensional

support.
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Proposition 2.1. Let G be an infinitesimal k-group of height r.

(1) If M be a G-module of complexity 1, then M is periodic.

(2) Let Θ ⊂ Γs(G) be a component. Then dim V̂Gr(Θ) = 1 if and only

if either TΘ is a finite Dynkin diagram, or Θ is an infinite tube.

Proof. (1) It follows from [19, (1.1)] and [4, (5.7.2)] that the complex-

ity cH(G)(M) coincides with the dimension of the cohomological support

variety VG(M). By considering a non-nilpotent element of the correspond-

ing coordinate ring, we infer from our present assumption the existence of

an element [ζ] ∈ H2n(G, k) such that its zero locus Z(ζ) meets VG(M) in

{0}. Let Lζ be the kernel of the corresponding map Ω2n
H(G)(k) −→ k. It was

shown in the proof of [27, (7.5)] that VG(Lζ) = Z(ζ). In view of [27, (7.2)]

the arguments of [4, (5.10.4)] may now be adopted verbatim to conclude

the proof.

(2) Suppose that dim V̂Gr(Θ) = 1 and let [M ] ∈ Θ be a vertex. Accord-

ing to [27, (6.8)], we have cH(G)(M) = dimVG(M) = 1 and (1) implies that

M is periodic. Thus, Θ consists of τ -periodic modules, and the main result

of [20] shows that Θ has the asserted form.

If Θ is an infinite tube, then all modules belonging to Θ are periodic, so

that dim V̂Gr(Θ) = 1. Supposing that TΘ is a finite Dynkin diagram, we let

ϕ ∈ V̂Gr(Θ) \ {0}. As before we consider the G-module Mϕ := H(G) ⊗Ar k.

Thanks to [10, (3.2)] the function

dϕ : Θ −→ IN ; [X] 7→ dimk Ext1H(G)(Mϕ,X)

is subadditive. In view of (1.2) dϕ ◦ τ = τ holds, so that dϕ defines a

subadditive function on the tree class TΘ. We may now apply [3, (4.5.8)] to

see that dϕ is not additive. Owing to [7, (I.8.8)] this implies the existence

of a vertex [X] ∈ Θ such that X or Ω−1
H(G)(X) is a direct summand of Mϕ.

Consequently, X is periodic and dim V̂Gr(Θ) = dim V̂Gr(X) = 1.

We say that a component Θ ⊂ Γs(G) is periodic if it contains a pe-

riodic module. In view of (2.1) these are precisely the components with

dim V̂Gr(Θ) = 1 (r = height of G). Our next result generalizes [14, (2.1)] to

our present context.

Theorem 2.2. Let G be an infinitesimal k-group of height r. If Θ 6∼=
Z[A∞] is a nonperiodic component, then dim V̂Gr(Θ) = 2.
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Proof. By combining (1.3) with (2.1) we see that the tree class TΘ is

either a Euclidean diagram, or an infinite Dynkin diagram.

If TΘ is a Euclidean diagram, then we may argue as in the proof of

[14, (2.1)] to see that dim V̂Gr(Θ) ≤ 2.

In view of (1.3) it thus remains to consider the cases where TΘ
∼= A∞

∞

or TΘ
∼= D∞. Assuming this to be the case, we pick a nontrivial map

ϕ : prαk −→ G and put Mϕ := H(G) ⊗Ar k. Thanks to (1.2) there are

projective H(G)-modules P, Q such that

τ(Mϕ) ⊕ P ∼= Mϕ
∼= τ−1(Mϕ) ⊕Q.

Now let [M0] ∈ Θ be a vertex with two predecessors. Suppose there is an

injective irreducible map g : M0 −→ N0. By choice of M0, the morphism g is

properly irreducible. Since A := coker g is not projective, there exists a non-

zero element ϕ ∈ V̂Gr(A). Observing Ext1H(G)(Mϕ, A) ∼= Ext1Ar
(k,A) 6= (0)

we apply [8, (1.5)] to see that A is an image of Mϕ or ΩH(G)(Mϕ). Thus,

setting q := max{dimk Mϕ, dimk ΩH(G)(Mϕ)} we obtain

dimkN0 ≤ dimkM0 + q.

If g is surjective, then the dual map g∗ : N∗
0 −→ M∗

0 is injective with

cokernel A ∼= (ker g)∗. Since M 7→ M∗ is an anti-equivalence on modH(G),

the above arguments show

dimkM0 ≤ dimk N0 + q.

By considering a walk τ(M0) → N0 →M0 consisting of properly irreducible

maps, we thus obtain dimk τ(M0) ≤ dimk M0 + 2q. Repeated application

then shows

dimk Ω2n
H(G)(M0) = dimk τ

n(M0) ≤ dimkM0 + 2nq ∀ n ≥ 1.

By considering [ΩH(G)(M0)] ∈ ΩH(G)(Θ) ∼= Θ we obtain

dimk Ωn
H(G)(M0) ≤ dimk M0 + nq′

for some q′ > 0. Consequently, dim V̂Gr(Θ) = cH(G)(M0) ≤ 2, as desired.
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§3. The number of AR-components

A well-known conjecture asserts that an algebra of infinite represen-

tation type admits infinitely many Auslander-Reiten components. In this

section we employ the methods of [12] to verify this conjecture for blocks

of infinitesimal groups. Throughout this section, we fix an infinitesimal al-

gebraic k-group G. Given an Auslander-Reiten component Θ ⊂ Γs(G) and

an integer d > 0, we consider

Θ(d) := {[M ] ∈ Θ ; dimk M ≤ d}.

Lemma 3.1. Let T ⊂ Θ be a τ -orbit. Then Θ(d) ∩ T is finite.

Proof. According to [19, (1.1)] the cohomology ring Hev(G, k) :=⊕∞
i=0H

2i(G, k) is a finitely generated k-algebra. The same result shows that

Ext∗H(G)(M,M) is a finitely generated Hev(G, k)-module. Consequently, the

proof may be completed by adopting the arguments of [12, (1.1)].

Theorem 3.2. Let Θ ⊂ Γs(G) be an Auslander-Reiten component.

Then Θ(d) is finite.

Proof. In view of (3.1) it suffices to verify the statement for the case

where Θ has infinitely many τ -orbits. Consequently, we have Θ ∼= Z[A∞],

Z[A∞
∞], Z[D∞]. For the latter two types, the proof of [12, (1.2)] yields the

desired result. If Θ ∼= Z[A∞], then the set of vertices is Z × IN. We have

arrows (j, n) → (j, n+ 1) pointing towards infinity, and arrows (j, n+ 1) →
(j − 1, n) poining towards the end. The Auslander-Reiten translation is

given by τ(j, n) = (j + 1, n). Since the component Θ contains only finitely

many meshes that are associated to projective indecomposable modules,

there exists a vertex (a, b) such that all projective meshes occur inside the

region Υ(a, b) := {(`,m) ; m ≤ b, a+m−b ≤ ` ≤ a+b−m}. It follows from

the mesh relations that all arrows pointing towards infinity that originate in

vertices (`,m) of Θ satisfying ` ≤ a+m−b are injective, while those pointing

towards the end terminating in vertices (`,m) satisfying ` ≥ a+ b−m are

surjective. Consequently, Θ(d) ⊂ Υ(a, b+d)∪{(`,m) ; m ≤ d} is contained

in a finite union of τ -orbits. The assertion now follows from (3.1).

Corollary 3.3. Let B ⊂ H(G) be a block of infinite representation

type. Then Γs(B) possesses infinitely many components.

Proof. This is a direct consequence of (3.2) and the second Brauer-

Thrall conjecture.
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§4. Frobenius kernels of reductive groups

Throughout this section we consider a reductive group scheme G, de-

fined over the algebaically closed field k whose characteristic p is assumed

to be ≥ 5. We refer the reader to [22] concerning the representation theory

of reductive groups.

Theorem 4.1. Let Θ ⊂ Γs(Gr) be a component. Then Θ is iso-

morphic to one of the following types: Z[A∞], Z[A∞]/(τ `), Z[A∞
∞], Z[D∞],

Z[Ã12].

Proof. We proceed according to the dimension of the support variety

of Θ. If dim V̂Gr(Θ) = 1, then (2.1) shows that either Θ ∼= Z[A∞]/(τ `) is an

infinite tube, or the tree class TΘ is a finite Dynkin diagram. In the latter

case Θ is finite, and in virtue of [1, (VII.2.1)] Θ is the set of nonprojective

indecomposables of a block B ⊂ H(Gr) of finite representation type. This,

however, contradicts [15, (7.1)].

In view of (1.3) we may now conclude the proof of our result by show-

ing that every component Θ, which is either isomorphic to Z[Ãn] or has

Euclidean tree class is isomorphic to Z[Ã12]. In view of [30, Thm.A] and

[5, p.155] such a component Θ is attached to a principal indecomposable

module. By the same token Ω(Θ) ∼= Θ also has this property, so that Θ

contains a simple vertex [S]. Since Θ has a tree class which is either A∞
∞

or of Euclidean type, (2.2) implies that dim V̂Gr(S) = 2. The arguments of

the proof of [15, (7.1)] now show that there exists a subgroup H ⊂ G and a

projective Hr-module P such that

(a) Gr
∼= SL(2)r ×Hr, and

(b) there is a decomposition S ∼= L(λ) ⊗k P , with a simple SL(2)r-

module L(λ).

The module L(λ) is defined by the highest weight λ ∈ {0, . . . , pr − 1}. We

write

λ =

r−1∑
i=0

λip
i,

with λi ∈ {0, . . . , p− 1}. Since V̂SL(2)r (L(λ)) = V̂Gr(S) has dimension 2, we

readily obtain from [27, (7.8)] that there exist at most two indices i, j ∈

{0, . . . , r − 1} such that λi 6= p − 1 6= λj. In case two indices differ from

p− 1, the same result shows that

V̂SL(2)r (L(λ)) ∼= {(x, y) ∈ V̂SL(2)1(k) × V̂SL(2)1(k) ; [x, y] = 0}
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is the commuting variety of V̂SL(2)1(k). We observe that the algebraic group

G := SL(2)(k) × (k \ {0}) operates on this set via conjugation and scalar

multiplication. Setting e = (00
1
0) we see that there are four G-orbits, given

by (e, e), (e, 0), (0, e), and (0, 0). Since the orbit passing through (e, e) has

dimension 3, we have reached a contradiction.

Hence there is exactly one index i ∈ {0, . . . , r−1} such that λi 6= p−1.

We consider the projective cover P (λ) of L(λ). Owing to [2, Lemma 6] (cf.

also [25, Satz4]) we have

P (λ) ∼= P (λi)
[i] ⊗k

⊗
j 6=i

L(p− 1)[j],

with the second factor being projective and simple. Here M [i] denotes the

ith Frobenius twist of the G-module M . From the s`(2)-theory we now

obtain a filtration of P (λi)
[i] with factors (from top to bottom) given by

L(λi)
[i], L(p− 2−λi)

[i] ⊕L(p− 2−λi)
[i], and L(λi)

[i]. Upon tensoring with⊗
j 6=i L(p− 1)[j], Steinberg’s twisted tensor product theorem [22, (II.3.17)]

readily shows that

Rad(P (λ))/Soc(P (λ)) ∼= 2(L(p− 2 − λi)
[i] ⊗k

⊗
j 6=i

L(p− 1)[j]).

Accordingly, the vertex [Rad(P (λ))] has a successor in Θ of multiplicity 2.

This readily implies that Θ ∼= Z[Ã12].

Remarks. (1) The proof of (4.1) in conjunction with [25, Satz6] also

shows that Euclidean components can occur in wild blocks whenever r ≥ 2.

(2) The arguments of (4.1) also imply that the components of Γs(Gr),

that are attached to a principal indecomposable module, are isomorphic to

Z[Ã12] or Z[A∞].

Corollary 4.2. Let G be almost simple, r ∈ IN. If H(Gr) admits a

tame block, or if Γs(Gr) possesses a Euclidean component, then G ∼= SL(2)

or G ∼= PSL(2).

Proof. In either case there exists a simple H(Gr)-module S whose sup-

port variety has dimension 2. The proof of [15, (7.1)] then shows that G has

rank 1, and is therefore of the asserted form.
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§5. Supersolvable infinitesimal groups

Throughout this section we assume that p ≥ 3. We shall be studying

the stable Auslander-Reiten quiver Γs(G) of a supersolvable infinitesimal

k-group G. In contrast to the foregoing sections, module varieties will not

play a rôle here. Instead we shall exploit detailed information the block

structure of H(G).

Recall that the set of algebra homomorphisms from H(G) to k coin-

cides with G(O(G)), the set of group-like elements of the function algebra

O(G). Since O(G) is a free k[G(O(G))]-module, it follows that G(O(G)) is

an abelian p-group. Given an H(G)-module M and λ ∈ G(O(G)) we will

write M (λ) instead of M (λ∗idH(G)).

We will say that a component Θ ⊂ Γs(G) is Euclidean if Θ either has a

Euclidean tree class, or Θ ∼= Z[Ãn]. In the latter case Θ has tree class A∞
∞.

Lemma 5.1. Let S and T be simple H(G)-modules. If there exists

n ∈ Z \ {0} such that τn(S) = T , then S and T are periodic.

Proof. Without loss of generality we may assume that n > 0. By

assumption S and T belong to the same block of H(G), and [16, (2.4)]

thus provides an element γ ∈ G(O(G)) such that Ω2n(S) ∼= S(γ). Since Ω

commutes with the operator [M ] 7→ [M (γ)] and the latter has finite order,

we conclude that there is m ∈ IN such that Ωm(S) ∼= S. Consequently, S

and T are periodic.

Let B ⊂ H(G) be a block. As G is supersolvable, a consecutive appli-

cation of [16, (2.4)] and [13, (4.2)] shows that a suitable subgroup G(B) ⊂

G(O(G)) operates transitively on the set S(B) of isoclasses of simple B-

modules. By the same token all principal indecomposable B-modules have

the same length `B. In view of [16, (2.1),(2.3)] `B is a p-power. Letting `(M)

be the length of a G-module M , it follows that

`(τ(M)) = `(Ω2(M)) ≡ `(M) mod(`B)

for every indecomposable B-module M .

If Θ ⊂ Γs(G) is a component with orbit graph T̄Θ, then the foregoing

observations show that the length-function induces a map

T̄Θ −→ {0, . . . , `B − 1} ; x 7→ `x,
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where `x ≡ `(M) mod(`B) for every [M ] ∈ x. Moreover, by composing the

length function with the covering map Z[TΘ] −→ Θ we obtain a similar

map on the orbit graph TΘ of Z[TΘ].

Theorem 5.2. The stable Auslander-Reiten quiver Γs(G) does not

contain any Euclidean components.

Proof. We begin with a few general observations. If Θ is a Euclidean

component, then we either have Θ ∼= Z[Ãn] or TΘ is a Euclidean diagram.

Thanks to [30, (2.4)] and [5, p.155] Θ is attached to a principal indecom-

posable module P . Since Ω(Θ) ∼= Θ also enjoys this property, [16, (2.4)]

provides λ ∈ G(O(G)) such that the restriction of the map

Γs(G) −→ Γs(G) ; [M ] 7→ [Ω(M (λ))]

defines an automorphism ϕ of the component Θ.

The arguments of [13, (4.9)] may be adopted verbatim to see that Θ 6∼=
Z[Ãn]. According to [3, (4.15.5)] ϕ induces an automorphism ψ : Z[TΘ] −→

Z[TΘ]. Let η : TΘ −→ TΘ be the automorphism that sends the τ -orbit of

(n, x) to that of ψ(n, x). As Θ does not contain any periodic modules, the

map η is fixed-point free. Consequently, components of tree class (Ẽn)6≤n≤8

do not occur. If Θ has tree class Ã12 then [7, (IV.3.8.2)] shows that the

principal indecomposable module P attached to Θ has length 4. Since p ≥ 3

this contradicts [16, (2.3)].

We finally assume that TΘ = D̃n. Since η is a fixed-point free auto-

morphism, it readily follows that n is odd. We may now apply [13, (2.1)]

to see that Θ ∼= Z[D̃n]. By the same token, Z[D̃n] does not possess any

automorphisms of order a p-power. Since ord(ϕ2 ◦ τ−1|Θ) is a p-power, we

conclude that ϕ2 = τ |Θ. Another application of [13, (2.1)] now yields n = 5.

We let B be the block associated to Θ and consider the orbit graph T̄Θ
∼=

D̃5 of Θ. By our introductory remarks Θ contains a simple vertex [S], and

the vertex [Rad(P )] defined by the radical of of a principal indecomposable

B-module P . These two modules belong to orbits xS, xRad(P ) ∈ D̃5 with

`xS
= 1, and `xRad(P )

= `B − 1.

If [S] has 3 predecessors in Θ, then there exists a vertex [X] ∈ Θ and a

principal indecomposable B-module Q such that

(0) −→ τ(X) −→ S ⊕Q −→ X −→ (0)
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is the almost split sequence terminating in X. Hence the above sequence

is the standard almost split sequence for Q, and S is isomorphic to the

heart H(Q) := Rad(Q)/Soc(Q) of Q. Consequently, Q is a uniserial mod-

ule of length 3. By the linkage principle for B [16, (2.3)] every principal

indecomposable B-module is uniserial. Thus, B is a Nakayama algebra, a

contradiction.

Accordingly, [S] is located at an end of Θ, so that the heart H(P ) is

indecomposable. Hence [H(P )] ∈ Θ belongs to an orbit xH(P ) with `xH(P )
=

`B − 2.

By definition we have `η(x) = `B − `x for every x ∈ D̃5. So far, we have

identified orbits xS and xRad(P ) of lengths 1 and `B−1, respectively, that are

located at ends, and xH(P ), η(xH(P )) of lengths `B − 2 and 2, respectively,

that are not located at ends. From the additivity of the length function we

obtain that the lengths of the end vertices adjacent to xH(P ) are `B − 1,

while those of the ends adjacent to η(xH(P )) are 1.

Since `B is odd, and B is not a Nakayama algebra, we have `B ≥ 5.

By standard properties of additive functions every non-periodic vertex of

Γs(B) is of the form [M (γ)] for [M ] ∈ Θ and a suitable γ ∈ G(O(G)) (cf. for

instance [13, (4.6)]).

Suppose there is a non-periodic, indecomposable B-module of length 2.

Then Θ contains a vertex [M2] of length 2, and the above observations show

that [M2] has 3 predecessors in Θ. There results an almost split sequence

(0) −→ τ(X) −→M2 ⊕Q −→ X −→ (0),

where Q = (0) or Q principal indecomposable. In the former case X and

τ(X) are simple, and (5.1) provides a contradiction. Alternatively, H(Q) ∼=
M2, so that `B = 4. As a result, all B-modules of length 2 are periodic.

Since Soc(P ) is simple, every submodule M ⊂ P is indecomposable.

Let M2 ⊂ M3 be submodules of P of lengths 2 and 3, respectively. By the

above M2 is periodic, while the simple module M3/M2 is not periodic. It

follows that M3 is not periodic either. Consequently, Θ contains a vertex of

length 3. Since the possible lengths are 1, 2, `B − 1 and `B − 2, we see that

`B = 5. But then Ω−1(M3) is a non-periodic indecomposable B-module of

length 2, a contradiction.

We turn to the determination of the finite components of Γs(G) and the

structure of the representation-finite blocks. According to [17, (2.1),(2.7)]

representation-finite infinitesimal groups are supersolvable with all blocks
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being Nakayama algebras. Our next result provides a generalization for

arbitrary blocks of supersolvable infinitesimal groups.

Theorem 5.3. Let B ⊂ H(G) be a block, Θ ⊂ Γs(G) a component.

(1) If B is representation-finite, then B is a Nakayama algebra.

(2) If Θ is finite, then there exist r > 0, s ≥ 0 such that Θ ∼=
Z[Apr−1]/(τ

ps

).

Proof. (1) Recall that B is transitive, in the sense that the subgroup

G(B) ⊂ G(O(G)) operates transitively on the set S(B) of isoclasses of simple

B-modules via λ · [S] := [S(λ)]. Since G(B) operates on modB via auto-

equivalences, the aforementioned operation induces an action of G(B) on

the Gabriel quiver Q(B) of B. Let Qs(B) = Q(B) × {0, 1} be the separated

quiver of B. If we define

λ · (x, i) := (λ · x, i) ∀ x ∈ Q(B), i ∈ {0, 1},

then G(B) operates on Qs(B) via quiver automorphisms, each of which

has order a p-power. The same holds for the underlying undirected graph

Q̄s(B). Since G(B) is abelian, an element operates either trivially or without

fixed-points.

Owing to [1, (X.2.6)] the connected components of the graph Q̄s(B) are

finite Dynkin diagrams of types An, Dn, E6, E7, or E8. By the above G(B)

operates on the set C of components of Q̄s(B) via permutations. Suppose

that λ ∈ G(B) fixes a component C ∈ C. If C has type Dn, E6, E7, or E8,

then the corresponding automorphism λ̂ : Q̄s(B) −→ Q̄s(B) has a fixed-

point, and λ operates trivially on Q̄s(B). Alternatively, λ̂|C has order ≤ 2,

which, in view of p 6= 2, entails λ̂|C = idC . Thus, λ operates trivially in this

case as well. Our discussion shows that the number of components of Q̄s(B)

equals the number of simple B-modules, so that each component of Q̄s(B)

has exactly two elements. Since dimk Ext1B(S, T ) ≤ 1 for any two simple

B-module S and T , we see that∑
[T ]∈S(B)

dimk Ext1B(S, T ) ≤ 1 and
∑

[T ]∈S(B)

dimk Ext1B(T, S) ≤ 1

for every simple B-module S. Thanks to [21, Thm.9] this shows that B is a

Nakayama algebra.

(2) If Θ ⊂ Γs(G) is finite, then [1, (VII.2.1)] provides a block B ⊂ H(G)

such that Θ is the set of isoclasses of the nonprojective indecomposable B-

modules. By (1) the block B is a Nakayama algebra. According to [1, p.253]
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this implies Θ ∼= Z[An]/(τq), where q := card(S(B)) and n+1 is the Loewy

length of B. Thanks to [16, (1.1)] and the transitivity of B, both of these

parameters are p-powers.

Corollary 5.4. Let B ⊂ H(G) be a representation-finite block. Then

B is Morita equivalent to k[Ãps−1]/Ipr , where Ipr is generated by all paths

of length pr.

Proof. According to (5.3) there exist r, s ≥ 0 such that B is a Nakayama

algebra of Loewy length pr, and with ps simple modules. By combining

[23, Satz 8] with [1, (IV.2.13)] we see that the basic algebra of B is isomor-

phic to k[Ãps−1]/Ipr .

We have seen in §2 that “most” AR-components are of type Z[A∞].

The following result shows that simple vertices of such components are

quasi-simple.

Proposition 5.5. Let Θ ∼= Z[A∞] be a component of Γs(G). Then Θ

contains at most one simple vertex [S]. Such a vertex is quasi-simple, and

the heart H(P ) of its projective cover P is indecomposable.

Proof. Let Υ be the set of all those components of Γs(G) that are iso-

morphic to Z[A∞] and contain a simple vertex [S] of quasi-length ql([S]) ≥

2. Given Θ ∈ Υ we define

qΘ := min{ql([S]) ; [S] ∈ Θ simple with ql([S]) ≥ 2}.

Assuming that Υ 6= ∅ we put r := min{qΘ ; Θ ∈ Υ}. Let Θ0 ∈ Υ be a

component with qΘ0 = r. There exists a simple vertex [S0] ∈ Θ0 such that

ql([S0]) = r. Since every irreducible map terminating (originating) in S0 is

surjective (injective), we conclude from the mesh relations that there exist

principal indecomposable modules P1, P2 such that each [Rad(Pi)] ∈ Θ0

has quasi-length < r. Consequently, the component Ω−1(Θ0) ∼= Θ0 contains

simple vertices of quasi-length < r. By choice of r we obtain ql([Rad(P1)]) =

1 = ql([Rad(P2)]). If r > 2, then Ω−1(Θ0) contains two simple vertices

of quasilength 1. By (5.1) the corresponding simple modules are periodic,

a contradiction. Consequently, r = 2, and [S0] is the only successor of

[Rad(P1)]. From the standard AR-sequence we obtain H(P1) ∼= S0, so that

P1 is uniserial. By transitivity, this holds for every principal indecomposable
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module of the block associated to S0. Hence this block is a Nakayama

algebra, a contradiction.

As a result of our discussion, Υ = ∅. Hence every simple vertex of a

Z[A∞]-component is quasi-simple, and another application of (5.1) shows

that such components contain at most one simple vertex.

Our final result is concerned with the special case, where the underlying

infinitesimal group G is unipotent. So far, these groups form the only class

whose Auslander-Reiten quivers are completely understood.

Corollary 5.6. Let Θ ⊂ Γs(G) be a component of the AR-quiver of

the unipotent infinitesimal group G. Then Θ ∼= Z[Apn ]/(τ), Z[A∞]/(τr), or

Z[A∞].

Proof. If Θ is periodic, then it is either finite, or isomorphic to

Z[A∞]/(τr). In the former case (5.3) implies that Θ ∼= Z[An]/(τr). Since

H(G) is local, we have r = 1.

Alternatively, a consecutive application of (1.3) and (5.2) shows that

Θ ∼= Z[A∞], Z[A∞
∞], or Z[D∞]. It therefore remains to rule out the last two

types. In view of [27, §6,§7] we may adopt the arguments of [9, (3.3)] to see

that there are no such components.
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