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HOOKE’S LAW IN STATISTICAL MANIFOLDS

AND DIVERGENCES

MASAYUKI HENMI and RYOICHI KOBAYASHI

Abstract. The concept of the canonical divergence is defined for dually flat

statistical manifolds in terms of the Legendre transform between dual affine
coordinates. In this article, we introduce a new two point function defined for

any triple (g,∇,∇∗) of a Riemannian metric g and two affine connections ∇

and ∇
∗. We show that this interprets the canonical divergence without refering

to the existence of special coordinates (dual affine coordinates) but in terms
of only classical mechanics concerning ∇- and ∇

∗-geodesics. We also discuss

the properties of the two point function and show that this shares some impor-

tant properties with the canonical divergence defined on dually flat statistical

manifolds.

§0. Introduction

Let (M,g,∇,∇∗) be a Riemannian manifold with two affine connections

(not necessarily metric preserving and possibly with torsion) ∇ and ∇∗. In

this article we introduce a two point functionW (p‖q) and a “two point func-

tion” Wc(p‖q) depending on paths connecting p and q (see Definition 1.1).

The two point function W (p‖q) is defined by connecting q and p by a unique

∇-geodesic and computing the necessary work to move a unit mass from

q to p against the force field induced by the “Hooke’s law” applied to ∇∗-

geodesics (considered as a spring) connecting points of the ∇-geodesic and

q. On the other hand, the paths depending “two point function” Wc(p‖q) is

defined by the same procedure (applying Hooke’s law to ∇∗-springs) along

any path c connecting p and q. We study fundamental properties of these

two point functions. To formulate a potential theoretic property of Wc, we

need to introduce a class of torsion-free1 statistical manifolds satisfying the
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1A statistical manifold (M, g,∇,∇∗) is said to be torsion-free iff both ∇ and ∇
∗ are

torsion-free.
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condition (S) or (S)∗ (see Definition 4.1)2.

Theorem 0.1. (Theorem 4.3 (i)) If (M,g,∇,∇∗) is a torsion-free sta-

tistical manifold satisfying the condition (S), then Wc(p‖q) ≡W (p‖q) holds,

i.e., Wc(p‖q) does not depend on the choice of paths connecting p and q.

Suppose that (M,g,∇,∇∗) is a torsion-free statistical manifold satisfy-

ing the condition (S) or (S)∗. Then the two point function W (q‖p) coincides

with the two point function W ∗(p‖q) defined by interchanging the role of

∇- and ∇∗-geodesics.

Theorem 0.2. (Theorem 5.4) Suppose that (M,g,∇,∇∗) is a torsion-

free statistical manifold satisfying the condition (S)∗ (resp. (S)). Then there

exists a function f (resp. f∗) satisfying the condition

f(0) = 0, f ′(0) = 1 (resp. f∗(0) = 0, (f∗)′(0) = 1)

such that

W (q‖p) = f(W ∗(p‖q)) (resp. W ∗(q‖p) = f∗(W (p‖q)))

holds.

Moreover we will show that the two point function Wc(p‖q) ≡W (p‖q)

on torsion-free statistical manifolds generalizes the concept of the canonical

divergence defined originally on dually flat statistical manifolds in terms

of the Legendre transform between dual affine coordinates. Moreover if the

statistical mamifold under consideration satisfies the condition (S), two

point function Wc(p‖q) ≡W (p‖q) on such torsion-free statistical manifolds

shares the orthogonality property (potential property) with the canonical

divergence and Theorem 0.1 for dually flat case is a consequence of this

property:

Theorem 0.3. (Theorem 6.3 and Theorem 4.2 (ii)) (i) For dually

flat statistical manifolds, the two point function W (p‖q) coincides with the

canonical divergence D(p‖q).

(ii) Let (M,g,∇,∇∗) be a torsion-free statistical manifold satisfying the

condition (S). Then each ∇∗-geodesic emanating from q is perpendicular to

the level hypersurfaces of the function W ( · ‖q).

2The condition (S) is a statistical geometric analogue of the concept of symmetric
spaces in Riemannian geometry.
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It follows from Theorems 0.1 and 0.3 (ii) that if a torsion-free statistical

manifold under consideration satisfies the condition (S), then W ( · ‖q) is the

potential function for the conservative force field induced from Hooke’s law

applied to ∇∗-geodesics emanating from q.

Finally we would like to mention a conjectural meaning of the two

point function W (p‖q) in the asymptotic theory of statistical estimation.

Let (M,g,∇,∇∗) be an n-parameter statistical model (i.e., a family of ev-

erywhere positive absolutely continuous probability distributions on a fixed

probability space (X,σ(X))), where g is the Fisher metric, ∇ = ∇(1) and

∇∗ = ∇(−1). The relative entropy D(p‖q) (p, q ∈M) is defined by

D(p‖q) =

∫

X

log
dp

dq
(ω)p(dω),

(dp/dq being the Radon-Nikodym derivative of mutually absolutely con-

tinuous probability measures p and q) which coincides with the canonical

divergence ((−1)-divergence) if (M,g, ∇,∇∗) is an exponential family which

is dually-flat. In general case, we have two two point functions W (p‖q) and

D(p‖q). The function W (p‖q) depends essentially on the geometry of the

parameter space (M,g,∇,∇∗) and the function D(p‖q) is completely inde-

pendent of the parameter space to which p and q belong. So, to understand

the difference of these two point functions would be interesting. It would

roughly be understood as follows. Let M (k) consist of k points correspond-

ing to zero-simplices of a simplicial decomposition of M . We then try to find

a finite dimensional exponential family P (k) on (X,σ(X)) together with an

embedding i(k) : M (k) → P (k). We then approximate M by constructing

(from i(k)(M (k))) a piecewise ∇∗-linear simplicial complex in P (k) corre-

sponding to the simplicial decomposition of M . The limit of taking finer

and finer simplicial decompositions of M would produce an embedding i(∞)

of the given statistical model M into “the maximal exponential family”

P (∞) on (X,σ(X)), which is “dually-flat”. The two point function D(p‖q)

is now the canonical divergence with respect to the ambient “maximal ex-

ponential family” and the difference of two point functions D(p‖q) and

W (p‖q) explains the extrinsic-geometrical nature (the second fundamental

form) of the virtual embedding i(∞) : M → P (∞).

§1. Hooke’s law in Riemannian manifolds with two affine connec-

tions

Throughout this article, we always restrict our attention to such re-
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gions in a given Riemannian manifold any pair of two points of which is

joined by a unique geodesic with respect to connections under considera-

tion. Moreover we use Einstein’s convention, e.g., a metric tensor is written

as ds2 = gij dx
idxj instead of ds2 =

∑

i,j gij dx
idxj . All parametric curves

c(t) in this article are parameterized by a parameter t in the unit interval

[0, 1] with c(0) and c(1) their end points, unless otherwise specified.

Let (M,g,∇,∇∗) be a Riemannian manifold with two affine connections

∇ and ∇∗ (not necessarily metric preserving and possibly with torsion) and

p, q two points of M which are connected by a unique ∇- (resp. ∇∗-)

geodesic c (resp. c∗). Now we consider the ∇-geodesic c(t) starting at q and

ending at p (t ∈ [0, 1], c(0) = q and c(1) = p). Assume that for all t ∈ [0, 1]

there exists a unique ∇∗-geodesic c∗t (s) (s ∈ [0, 1]) joining c∗t (0) = c(t) and

c∗t (1) = q. Let a point of unit mass be located at c(t). Now we consider the

∇∗-geodesic c∗t (s) as a “spring” which is stretched from the “equilibrium”

state q. Appling Hooke’s law to the ∇∗-springs c∗t (s) (t ∈ [0, 1]) at each

c(t) = c∗t (0), we get a force field (the stress)

F (c(t)) =
d

ds

∣

∣

∣

s=0
c∗t (s).

along the ∇-geodesic c(t) (t ∈ [0, 1]) (see Figure 1).

Figure 1: Hooke’s law in Riemannian manifolds with two connections.

The work W (p‖q) which is necessary to move a point of unit mass from

q to p along the ∇-geodesic c(t) against the force field F (c(t)) is given by

the integral

W (p‖q) := −

∫ 1

0
dt

[

gij(c(t))
d

dt
ci(t)

d

ds
c∗jt (0)

]

.(1)
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On the other hand, we introduce the quantity Wc(p‖q) (which depends on

the Riemannian metric g and the connection ∇∗ and on the choice of paths

c joining q and p) by the same integral as in (1) performed along any path

c(t) (0 ≤ t ≤ 1) with c(0) = q and c(1) = p:

Wc(p‖q) := −

∫ 1

0
dt

[

gij(c(t))
d

dt
ci(t)

d

ds
c∗jt (0)

]

,(2)

which is the work necessary to move a point of unit mass along a path c

from q to p against the force field induced by the ∇∗-spring.

Definition 1.1. (i) (Two point function) Let (g,∇,∇∗) be any triple

of a Riemannian metric g and any two affine connections ∇ and ∇∗. For

any two points p and q such that there is a unique ∇-geodesic c(t) (c(0) = q

and c(1) = p) and such that for any t ∈ [0, 1] there is a unique ∇∗-geodesic

c∗t (s) (c∗t (0) = c(t) and c∗t (1) = q), the two point function W (p‖q) is defined

by the integral (1).

(ii) (“Two point function” depending on paths) Let c(t), 0 ≤ t ≤ 1,

be any piecewise smooth path such that c(0) = q, c(1) = p and such that

for any t ∈ [0, 1] there is a unique ∇∗-geodesic c∗t (s) (c∗t (0) = c(t) and

c∗t (1) = q). The “two point function” Wc(p‖q) depending on paths c is

defined by the integral (2).

§2. Simple examples of Hooke’s law

Example 2.1. The stress which is caused by small deformations of a

spring obeys Hooke’s law

F = −kx

where F is the magnitude of the stress, x stands for the displacement com-

pared to its natural length and k is its elastic constant. It follows that the

work which is necessary to move a point of unit mass attached to the spring

by a small distance x from the equilibrium state is given by the integral
∫ x

0
kx dx =

1

2
kx2.

It is therefore natural to think that, forgetting the spring, the “potential

energy” which exists between two points p and q of the real line R (with its

natural metric) is equal to
1

2
k(p− q)2.
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Example 2.2. (Hooke’s Law w.r.t. the Levi-Civita connection) Let

(M,g) be a Riemannian manifold (g = gij dx
idxj being its Riemannian

metric) equipped with the Levi-Civita connection. We consider a paramet-

ric curve c(t) (t ∈ [0, 1]) in M . Set c(0) = q, c(1) = p. Let c∗t (s) (s is

proportional to the arclength and s ∈ [0, 1]) be the geodesic connecting c(t)

and q such that c∗t (0) = c(t) and c∗t (1) = q. We think of the geodesic arc

c∗t (s) (s ∈ [0, 1]) as a “small displacement” in the positive direction of the

“spring” from its “equilibrium” state q. And we consider that a point of

unit mass located at c(t) is attached to the “spring” c∗t . Applying Hooke’s

law in this situation yields the force field

F (c(t)) :=
d

ds

∣

∣

∣

s=0
c∗t (s) = − grad ρq(c(t))

along the curve c, where ρq is the half of the squared Riemannian distance

function from q (see Figure 2):

ρq( · ) = ρ( · , q) :=
1

2
dist( · , q)2.

Figure 2: Hooke’s law w.r.t. the Levi-Civita connection.

The work Wc(p‖q) which is necessary to move a point of unit mass

from q to p along the curve c against this force field is given by the half of
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the squared Riemannian distance 1
2 dist(p, q)2 between p and q as is shown

below:

−

∫ 1

0
dt

[

gij(c(t))
d

dt
ci(t)

d

ds
c∗jt (0)

]

=

∫ 1

0
dt

〈 d

dt
c(t), grad ρq(c(t))

〉

c(t)

=

∫ 1

0
dt

d

dt
ρq(c(t))

= ρq(p) =
1

2
dist(p, q)2.

Therefore the integral Wc(p‖q) := −
∫ 1
0 g(c(t))ij

d
dt
ci(t) d

ds
c∗jt (0)dt depends

only on end points q and p and does not depend on the choice of paths

c connectiong these (hence Wc(p‖q) ≡ W (p‖q)). It is therefore natural to

think, forgetting the spring, the “potential energy” which exists between

two points p and q in M is

1

2
dist(p, q)2.

§3. The concept of statistical manifolds ([N-A], [A], [A-N])

Suppose that we are given a Riemannian metric g and two affine con-

nections ∇ and ∇∗ on a smooth manifold M .

Definition 3.1. (cf. [N-A], [A], [A-N]) By a dual structure on M , we

mean a triple (g,∇,∇∗) on M such that

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY ).(3)

A statistical manidold is a Riemannian manifold M equipped with a dual

structure (g,∇,∇∗).

Torsion freeness for both ∇ and ∇∗ is assumed very often in the def-

inition of statistical manifolds. However, as we are interested in the effect

of torsion-freeness itself in this article, we do not consider torsion free-

ness as an a priori condition. Instead, we define that a statistical manifold

(M,g,∇,∇∗) is torsion-free iff both ∇ and ∇∗ are torsion-free. For any Rie-

mannian manifold (M,g) with an affine connection ∇, there exists a unique

affine connection ∇∗ (the dual connection) satisfying the condition (3). Thus

we can make a statistical manifold (M,g,∇,∇∗) from a given Riemannian

manifold with an affine connection ∇.
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In terms of local coordinates (ξi), the above condition (3) is equivalent

to

∂igkj = Γik,j + Γ∗
ij,k

where Γik,j := g(∇∂i
∂k, ∂j) and Γ∗

ij,k := g(∇∗
∂i
∂j, ∂k). We note that the

symmetry gij = gji implies

Γik,j + Γ∗
ij,k = Γij,k + Γ∗

ik,j ⇐⇒ Γ∗
ij,k − Γij,k = Γ∗

ik,j − Γik,j .(4)

In general there is no relation between the torsion tensor of ∇ and its

dual ∇∗. Suppose now that, for a statistical manifold (M,g,∇,∇∗), both

∇ and ∇∗ are torsion-free. Then we have

∂jgik =

{

Γ∗
ji,k + Γjk,i = Γ∗

ij,k + Γjk,i

Γ∗
jk,i + Γji,k = Γ∗

jk,i + Γij,k

which implies

Γ∗
ij,k + Γjk,i = Γ∗

jk,i + Γij,k ⇐⇒ Γ∗
ij,k − Γij,k = Γ∗

jk,i − Γjk,i.(5)

Example 3.2. (α-connections ([A], [A-N])) Let

S = {pξ = p(x, ξ) ; ξ ∈ Θ}

be a statistical model of (absolutely continuous) probability distributions

on a fixed probability space (X,σ(X)), where Θ is a parameter space which

is an open subset of R
n. Assume that pξ(x) > 0 everywhere on X. The

Fisher metric g on the parameter space Θ is defined by

gij := Eξ[∂ilξ∂j lξ],

where ∂i = ∂/∂ξi, lξ = log pξ. For any α ∈ R, put

(

Γ
(α)
ij,k

)

ξ
:= Eξ

[

(

∂i∂j lξ +
1 − α

2
∂ilξ∂j lξ

)

(∂klξ)

]

.

Then, using the Fisher metric, we set

g
(

∇
(α)
∂i ∂j, ∂k

)

= Γ
(α)
ij,k.

It turns out that this defines a torsion-free affine conection called the α-

connection. Then we have

∂igkj = Γ
(α)
ik,j + Γ

(−α)
ij,k ,

i.e., the α and (−α)-connections are dual to each other.
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§4. W (p‖q) and ∇∗-geodesics in statistical manifolds

First of all we recall that we always work on regions any two points of

which are jouned by a unique geodesic with respect to connections under

consideration.

Let (M,g,∇,∇∗) be a statistical manifold and q, p two points which are

joined by unique ∇- and ∇∗-geodesics. Let c(t) be the ∇-geodesic such that

c(0) = q and c(1) = p. Assume moreover that there is a unique ∇∗-geodesic

c∗t (s) joining c∗t (0) = c(t) and c∗t (1) = q. Recall that

W (p‖q) = −

∫ 1

0
dt

[

gij(c(t))
d

dt
ci(t)

d

ds
c∗jt (0)

]

,

i.e.,W (p‖q) is equal to the work necessary to move a point of unit mass from

q to p against the force field defined by the tangent vector d
ds
c∗t (0) of the ∇∗-

geodesic joining c(t) to q. Therefore, under a variation c(ε, t) of ∇-geodesics

emanating from q ending on a fixed level-hypersurface W ( · ‖q) = c, the

work which is necesarry to move a point of unit mass, against the force

field defined by the tangent vector (at c(t)) of ∇∗-geodesics c∗t (s), from q to

the endpoint of c(ε, t) on W ( · ‖q) = c does not change. It therefore might be

expected that, if the statistical manifold (M,g,∇,∇∗) under consideration

is torsion-free, at each point c(t) the ∇∗-geodesic c∗t (s) is orthogonal to the

level-hypersurface of W ( · ‖q) defined by W ( · ‖q) = W (c(t)‖q). We prove

this under certain assumption on (M,g,∇,∇∗).

Definition 4.1. An n-dimensional torsion-free statistical manifold

(M,g,∇,∇∗) satisfies the condition (S) iff:

(i) 〈R∗(V, T )T, T 〉 = 0 (∀V, T ).

(ii) ∇∗R∗ = 0 (R∗ being the curvature tensor of ∇∗).

We say that (M,g,∇,∇∗) satisfies the condition (S) iff (i) and (ii) hold

for ∇ and R (R being the curvature tensor of ∇).

The concept of torsion-free statistical manifolds satisfying the condi-

tion (S) is an analogue of that of symmetric spaces in Riemannian geome-

try. Moreover the condition (S)-(i) is a necessary condition for the function

Wc(p‖q) to be a two-point function (see the remark after the proof of Propo-

sition 4.2).

We introduce an auxiliary two point function W∗(p‖q) by choosing a

path c in Definition 1.1 (ii) to be a ∇∗-geodesic c∗ connecting q and p. Then

we have:
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Proposition 4.2. Suppose that a torsion-free statistical manifold (M,

g,∇,∇∗) satisfies the condition (S). Then each ∇∗-geodesic emanating from

q is perpendicular to the level-hypersurfaces of the function W∗( · ‖q).

Proof. Let c(τ, t) (−ε < τ < ε, 0 ≤ t ≤ 1) be a variation of ∇∗-

geodesics such that






c(0, t) = c∗(t)

c(τ, 0) = q (∀ τ)

〈V, T 〉(1) = 0

where T := ∂
∂t
c(τ, t) (the velocity vector field along c∗(t)) and V :=

(

∂
∂τ

)

τ=0
cτ,t (the variation vector field, i.e., a ∇∗-Jacobi field).

Let c∗τ,t(s) (0 ≤ s ≤ 1) be a ∇∗-geodesic such that c∗τ,t(0) = q and

c∗τ,t(1) = c(τ, t). Then, if we set S :=
(

∂
∂s

)

s=1
c∗τ,t(s), we have the pro-

portionality relation S = tT . The vector fields T and V are considered

to be the image of coordinate vector fields under some smooth map A :

[0, 1]t × (−ε, ε)τ →M , where [0, 1]t denotes the interval [0, 1] coordinatized

by t, etc. In this setting, we have:

〈

gradW∗( · ‖q),
d

dτ

∣

∣

∣

τ=0
c(τ, 1)

〉

=
d

dτ

∣

∣

∣

τ=0
W∗(c(τ, 1)‖q) =

∫ 1

0
V 〈T, S〉 dt

=

∫ 1

0
(〈∇V T, S〉 + 〈T,∇∗

V S〉) dt

=

∫ 1

0
(〈∇TV, S〉 + 〈T,∇∗

V S〉) dt (because ∇ is torsion-free)

=

∫ 1

0
(T 〈V, S〉 − 〈V,∇∗

TS〉 + 〈T,∇∗
V S〉) dt

= [〈V, S〉]10 +

∫ 1

0
(〈T,∇∗

V S〉 − 〈V,∇∗
TS〉) dt

= 〈V, T 〉(1) −

∫ 1

0
〈T, V 〉 dt+

∫ 1

0
t〈T,∇∗

V T 〉 dt

(because c∗0,t is a ∇∗-geodesic and S = tT )

= −a+ x,

where

a :=

∫ 1

0
〈T, V 〉 dt and x :=

∫ 1

0
t〈T,∇∗

TV 〉 dt.

Now we would like to show that −a+ x = 0 if the condition (S) is fulfilled.
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Let J (resp. J0) be the space of all ∇∗-Jacobi field along the ∇∗-

geodesic c∗(t) (resp. vanishing at the “origin” q). Set

V0 := {J ∈ J0 ; ∃k ∈ Z>0, (∇∗
T )kJ is ∇∗-parallel.}.

The condition (S)-(ii) and (∇∗)-Jacobi’s differential equation imply that

the composite (∇∗
T )2 induces a linear map of J0 to itself. It then follows

from the definition of V0 that (∇∗
T )2 induces an isomorphism

(∇∗
T )2 : J0/V0 −→ J0/V0.

Therefore we may assume that one of the following (a) or (b) occurs:

(a) the ∇∗-Jacobi field V (which we started with) is contained in the

image of (∇∗
T )2 : J0 → J0,

(b) V (1) is the boundary value of a ∇∗-Jacobi field J in V0.

Suppose first that (a) occurs. Then we may write V = ∇∗
TW for some

W ∈ J . Then we have

x = −

∫ 1

0
t〈R∗(W,T )T, T 〉 dt = 0

because the integrand vanishes identically by the condition (S)-(i). More-

over we have V = (∇∗
T )2U for some U ∈ J0 and therefore

a = −

∫ 1

0
〈R∗(U, T )T, T 〉 dt = 0

by the condition (S)-(i).

Suppose next that (b) occurs. Then J is written as tJ1+t2J2+· · ·+tkJk

where 0 ≤ t ≤ 1, 0 < k < n and Ji are all parallel Jacobi fields along c∗(t).

As 〈V, T 〉(1) = 0, we may assume that each Ji is perpendicular to T at t = 1.

Indeed, there exist constants αi such that
∑k

i=1 αi = 0 and each Ji + αiT

is perpendicular to T at t = 1. For each Ji we consider a coordinate system

(x) defined in a tubular neighborhood of c∗(t) with respect to which the

connection ∇∗ is written as a sum of a flat trivial connection ∇0 plus an

error term O(ε):

∇∗ = ∇0 +O(ε),

where ε is the Euclidean distance from c∗(t). As we are working along c∗(t),

allowing the error of order ε, we may pretend to work on a 2-dimensional

dually flat space (and let ε → 0 later). In fact, we prove a result (Theo-

rem 6.3) from which Proposition 4.2 follows in dually flat situation. Then,

letting ε→ 0 at each i yields the desired result.
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We remark here that the condition (S)-(i), i.e., the property

〈R∗(V, T )T, T 〉 = 0

for the curvature tensor R∗ of ∇∗, is a necessary condition for the validity

of Proposition 4.2. It is easy to check this. Indeed, suppose that V = ∇∗
TW .

Then we consider the Taylor expansion at q of the quantity

−a+ x = −

∫ 1

0
〈T,∇∗

TW 〉 dt−

∫ 1

0
t〈R∗(W,T )T, T 〉 dt

under the condition that the distance of q and p is very small.

In the Riemannian case, the integral (2) defined for any curve c(t)

(c(0) = q and c(1) = p) depends only on end points p and q. The following

Theorem 4.3, which follows from Proposition 4.2, asserts that this is the

case for any torsion-free statistical manifold (M,g,∇,∇∗) satisfying the

condition (S).

Theorem 4.3. Let (M,g,∇,∇∗) be a torsion-free statistical manifold

satisfying the condition (S). Then:

(i) The quantity Wc(p‖q) (defined for any curve c(t) with end points

c(0) = q and c(1) = p) does not depend on the choice of paths c and depends

only on end points q and p. In other words, Wc(p‖q) ≡W (p‖q) holds.

(ii) The two point function W (p‖q) is the potential energy for the con-

servative force field defined by the ∇∗-spring : d
ds
c∗p(0) where c∗p(s) is the

∇∗-geodesic such that c∗p(0) = p and c∗p(1) = q.

Proof. Let c∗(t) be a ∇∗-geodesic such that c∗(0) = q and c∗(1) = p.

For a fixed t let c∗t (s) be a unique ∇∗-geodesic such that c∗t (0) = q and

c∗t (1) = c∗(t). Then

W∗(p‖q) =

∫ 1

0
dt

〈 d

dt
c∗(t),

d

ds
c∗t (1)

〉

c∗(t)
.

We extend a ∇∗-geodesic c∗1(s) by ε > 0 across c∗1(1) = c∗(1) = p and

consider pτ := c∗1(1 + τ) (−ε < τ < ε) as a one-parameter variation of the

endpoint p. Let c∗(τ, t) be a one-parameter variation of ∇∗-geodesics such

that c∗(τ, 0) = q for all τ and c∗(τ, 1) = pτ . Repeating the same argument

as in the proof of Proposition 4.2, we have
〈

gradW∗( · ‖q),
d

dτ

∣

∣

∣

τ=0
pτ

〉

=
d

dτ

∣

∣

∣

τ=0
W∗(pτ‖q)(6)

=
〈 d

ds

∣

∣

∣

s=1
c∗1(s),

d

dτ

∣

∣

∣

τ=0
pτ

〉

.
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By Proposition 4.2 all ∇∗-geodsics emanating from q are perpendicular to

the level hypersurfaces of W∗( · ‖q). Therefore (6) implies

gradW∗( · |q)(c
∗
1(1)) =

d

ds

∣

∣

∣

s=1
c∗1(s).

It follows that the integral curves of gradW∗( · ‖q) coincides with the ∇∗-

geodesics. Therefore, if c(t) is any curve such that c(0) = q and c(1) = p,

we have

Wc(p‖q) =

∫ 1

0
dt

〈 d

dt
c(t),

d

ds
c∗t (1)

〉

c(t)
=

∫ 1

0
dt

d

dt
W∗(c(t)‖q)

= W∗(c(1)‖q) = W∗(p‖q).

Therefore the integral (2) depends only on end points q and p. In particular,

we have Wc(p‖q) = W∗(p‖q) = W (p‖q).

Corollary 4.4. Let M be as in Proposition 4.2. Let S be a smooth

submanifold of M of codimension ≥ 1. Let q be a point of M such that

q 6∈ S. Then the function r 7→ W (r‖q) defined on S takes its minimum

at a point p ∈ S iff the ∇∗-geodesic joining q and p is orthogonal to the

submanifold S at p.

Definition 4.5. Let (g,∇,∇∗) be a triple of a Riemannian metric g

and two affine connections ∇ and ∇∗. For any two points p and q such that

there is a unique ∇∗-geodesic c∗(t) (c∗(0) = q and c∗(1) = p) and such

that for any t ∈ [0, 1] there is a unique ∇-geodesic ct(s) (ct(0) = c∗(t) and

ct(1) = q), the two point function W ∗(p‖q) is defined by the integral

(1∗) W ∗(p‖q) := −

∫ 1

0
dt

[

gij(c
∗(t))

d

dt
c∗i(t)

d

ds
cjt (0)

]

.

The “two point function” W ∗
c∗(p‖q) depending on paths c∗ can be defined

for any path c∗(t) (0 ≤ t ≤ 1) connecting q and p by performing the same

integral as above along c

(2∗) W ∗
c∗(p‖q) := −

∫ 1

0
dt

[

gij(c
∗(t))

d

dt
c∗i(t)

d

ds
cjt (0)

]

,

ct being the ∇-geodesic such that ct(0) = c∗(t) and ct(1) = q as above.

Finally we can define the dual version (S)∗ of the condition (S) by inter-

changing the role of ∇ and ∇∗.
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Interchanging the role of ∇- and ∇∗-geodesics in the definition of

W (p‖q) (Definition 1.1) yields the above definition of W ∗(p‖q).

Corollary 4.6. If (g,∇,∇∗) is a torsion-free statistical manifold sat-

isfying the condition (S)∗. Then W ∗
c∗(p‖q) = W ∗(p‖q) holds and the func-

tion W ∗(p‖q) is the potential energy for the conservative force field defined

by the ∇-spring : d
ds
cp(0) where cp(s) is the ∇-geodesic such that cp(0) = p

and cp(1) = q.

§5. Contrast function defined by W (p‖q)

Eguchi [E] introduced a construction of statistical structures on a given

manifold using the concept of the contrast function. In this section we will

compute derivatives of W (p‖q) and we will follow notations in [E] (see

also [A-N]). Let M be a smooth manifold. A contrast function ρ(p‖q) is

defined in a neighborhood of the diagonal set of M ×M . For a function

ρ(p‖q) to be a contrast function, we require

ρ(p, q) ≥ 0, ρ(p, q) = 0 ⇐⇒ p = q

and

ρ(∂i∂j‖ · ) = −ρ(∂i‖∂j) = gij

is positive definite along the diagonal. Here, we define

ρ(∂i∂j‖ · ) = (∂i)p(∂j)pρ(p‖ · ), ρ(∂i‖∂j) = (∂i)p(∂j)qρ(p‖q)

and so forth where (∂i)p and (∂i)q are ∂/∂ξi operating on the variables p

and q, respectively. If ρ(p, q) is a contrast function, then

Γρ
ij,k := −ρ(∂i∂j‖∂k)

defines a torsion-free affine conection and

Γρ∗

ij,k := −ρ(∂k‖∂i∂j)

is its dual connection (also torsion-free) with respect to the Riemannian

metric gij . Now let p and q are sufficiently close to each other so that both

∇- and ∇∗-geodesics combining q and p are sufficiently close to a line. Let

fix a coordinate system so that (pi) and (qi) are coordinate expressions of

points p and q.

In the rest of this section, we assume that (M,g,∇,∇∗) is a statistical

manifold (not necessarily torsion-free).
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Lemma 5.1. Let c(t) (t ∈ [0, 1]) be the ∇-geodesic combining q = c(0)

and p = c(1) (where q and p are sufficiently close to each other). Then we

have

d

dt
ci(t) = (pi − qi) +

1

2
Γi

jk(q)(p
j − qj)(pk − qk)

− tΓi
jk(q)(p

j − pj)(pk − qk) +O(‖p− q‖3).

Proof. We consider a map

d

dt

∣

∣

∣

t=0
ci(t) 7−→ ci(1)

which sends the initial vector at t = 0 of ∇-geodesics emanating from q to

the end point ci(1). Introduce indeterminate coefficients xi
jk by setting

d

dt

∣

∣

∣

t=0
ci(t) = (pi − qi) + xi

jk(p
j − qj)(pk − qk) +O(‖p− q‖3).

As t 7→ c(t) is a ∇-geodesic, we have

d2

dt2
ci(t) + Γi

jk(c(t))
d

dt
cj(t)

d

dt
ck(t) = 0.

It follows that the Taylor expansion of ci(t) in t around t = 0 is

ci(t) = ci(0) + t{(pi − qi) + xi
jk(p

j − qj)(pk − qk)}

−
t2

2
Γi

jk(q)
{

(pj − qj) + xj
ab(p

a − qa)(pb − qb)
}

×
{

(pk − qk) + xk
cd(p

c − qc)(pd − qd)
}

+O(‖p− q‖3).

Therefore we have

ci(1) = ci(0) + (pi − qi) + xi
jk(p

j − qj)(pk − qk)

−
1

2
Γi

jk(q)(p
j − qj)(pk − qk) +O(‖p− q‖3).

Putting ci(1) = pi, we have

xi
jk =

1

2
Γi

jk(q).
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We substitute Taylor expansions

gij(c(t)) = gij(q) + t∂kgij(q)(p
k − qk) +O(‖p− q‖2),

d

dt
ci(t) = (pi − qi) +

1

2
Γi

jk(q)(p
j − qj)(pk − qk)

− tΓi
jk(q)(p

j − qj)(pk − qk) +O(‖p− q‖3),

d

ds
c∗jt (0) = (qj − cj(t)) +

1

2
Γ∗j

kl (c(t))(q
k − ck(t))(ql − cl(t))

+O(‖q − c(t)‖3)

of all factors involved in the integral (1). As

qj − cj(t) = qj −

[

qj + t
{

(pj − qj) +
t

2
Γj

kl(q)(p
k − qk)(pl − ql)

}

−
t2

2
Γj

kl(q)(p
k − qk)(pl − ql)

]

+O(‖p− q‖3)

= −t(pj − qj) −
t

2
Γj

kl(q)(p
k − qk)(pl − ql)

+
t2

2
Γj

kl(q)(p
k − qk)(pl − ql) +O(‖p− q‖3),

we have

d

ds
c∗jt (0) = (qj − cj(t)) +

1

2
Γ∗j

kl (c(t))(q
k − ck(t))(ql − cl(t))

+O(‖q − c(t)‖3)

= −t(pj − qj) −
t

2
Γj

kl(q)(p
k − qk)(pl − ql)

+
t2

2
Γj

kl(q)(p
k − qk)(pl − ql) +

t2

2
Γ∗j

kl (c(t))(q
k − pk)(ql − pl)

+O(‖q − c(t)‖3).

Therefore we have

(7)

W (p‖q) = −

∫ 1

0
dt

[

gij(c(t))
d

dt
ci(t)

d

ds
c∗jt (0)

]

= −

∫ 1

0
dt

[

{

gij(q) + t∂kgij(q)(p
k − qk)

}

×
{

(pi − qi) +
1

2
Γi

ab(q)(p
a − qa)(pb − qb) − tΓi

ab(q)(p
a − qa)(pb − qb)

}
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×
{

− t(pj − qj) −
t

2
Γj

cd(q)(p
c − qc)(pd − qd)

+
t2

2
Γj

cd(q)(p
c − qc)(pd − qd) +

t2

2
Γ∗j

cd(q)(p
c − qc)(pd − qd)

}

]

+O(‖p− q‖4).

Theorem 5.2. The integral W (p‖q) is a contrast function and induces

the original Riemannian metric:

−W (∂i‖∂j) = gij .(8)

Proof. It follows from (7) that

W (p‖q) ≥ 0, W (p‖q) = 0 ⇐⇒ p = q

if p and q are sufficiently close to each other. This implies that W (p‖q)

is a contrast function. Applying (∂i)p(∂j)q to (7) and putting p = q, we

have (8).

Theorem 5.3. The connection induced from the contrast function

W (p‖q) is given by

−W (∂i∂j‖∂k) =
1

3
(Γij,k + Γji,k + Γjk,i + Γkj,i + Γki,j + Γik,j)(9)

+
1

6
(Γ∗

ij,k + Γ∗
ji,k + Γ∗

jk,i + Γ∗
kj,i + Γ∗

ki,j + Γ∗
ik,j)

− Γki,j − Γ∗
kj,i.

In particular, if both ∇ and ∇∗ are torsion-free, the connection (9) coincides

with the original connection ∇.

Proof. Direct computation shows that

−W (∂i∂j‖∂k) = −∂kgij +
2

3
(∂kgij + ∂igjk + ∂jgki)

−
1

6

{

gak(Γ
∗a
ij + Γ∗a

ji ) + gaj(Γ
∗a
ki + Γ∗a

ik ) + gai(Γ
∗a
jk + Γ∗a

kj)
}

= −Γki,j −Γ∗
ik,j +

2

3
(Γki,j +Γ∗

kj,i +Γij,k +Γ∗
ik,j +Γjk,i +Γ∗

ji,k)

−
1

6
(Γ∗

ij,k + Γ∗
ji,k + Γ∗

ki,j + Γ∗
ik,j + Γ∗

jk,i + Γ∗
kj,i).
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Now we use (4) to conclude

−W (∂i∂j‖∂k)

=
1

3
(Γij,k + Γji,k + Γjk,i + Γkj,i + Γki,j + Γik,j)

+
1

6
(Γ∗

ij,k + Γ∗
ji,k + Γ∗

jk,i + Γ∗
kj,i + Γ∗

ki,j + Γ∗
ik,j) − Γki,j − Γ∗

kj,i

+
1

3
{(Γki,j − Γik,j) − (Γ∗

ki,j − Γ∗
ik,j)}

+
1

3
{(Γij,k − Γji,k) − (Γ∗

ij,k − Γ∗
ji,k)}

+
1

3
{(Γjk,i − Γkj,i) − (Γ∗

jk,i − Γ∗
kj,i)}

=
1

3
(Γij,k + Γji,k + Γjk,i + Γkj,i + Γki,j + Γik,j)

+
1

6
(Γ∗

ij,k + Γ∗
ji,k + Γ∗

jk,i + Γ∗
kj,i + Γ∗

ki,j + Γ∗
ik,j) − Γki,j − Γ∗

kj,i.

This implies (9). Now suppose that both ∇ and ∇∗ are torsion-free. Then

we have

Γ∗
ij,k − Γij,k = Γ∗

ik,j − Γik,j (from (4))

= Γ∗
jk,i − Γjk,i (from (5)).

Therefore we have

−W (∂i∂j‖∂k)

=
1

3
(Γij,k + Γji,k + Γjk,i + Γkj,i + Γki,j + Γik,j)

+
1

6
(Γ∗

ij,k + Γ∗
ji,k + Γ∗

jk,i + Γ∗
kj,i + Γ∗

ki,j + Γ∗
ik,j) − Γki,j − Γ∗

kj,i

= Γij,k +
1

3
(Γ∗

ij,k − Γij,k) +
1

3
(Γ∗

ki,j − Γki,j) −
2

3
(Γ∗

jk,i − Γjk,i)

= Γij,k +
1

3
(Γ∗

jk,i − Γjk,i) +
1

3
(Γ∗

kj,i − Γkj,i) −
2

3
(Γ∗

jk,i − Γjk,i)

= Γij,k.

This implies

−W (∂i∂j‖∂k) = Γij,k.

Thus, if ∇ and ∇∗ are torsion-free, then the connection induced from the

contrast function W (p‖q) coincides with the original connection ∇.
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Let ∇ be any affine connection (possibly with torsion) on a Riemannian

manifold (M,g). Let Φ be the map which associates to the affine connec-

tion ∇ the torsion-free affine connection induced from the contrast function

W (p‖q) defined in terms of ∇∗-geodesics where ∇∗ is the dual connection

of ∇. Then Φ is a map from the space of all affine connections of M to the

subspace of torsion-free affine connections. If both ∇ and ∇∗ are torsion-

free, then Φ(∇) coincides with ∇. If ∇ preserves the Riemannian metric

g (i.e., ∇∗ = ∇), then Φ(∇) coincides with the Levi-Civita connection of

(M,g).

By Theorem 4.3, if (M,g,∇,∇∗) is a torsion-free statistical manifold

satisfying the condition (S) and (S)∗, thenWc(p‖q) ≡W (p‖q) andW ∗
c∗(p‖q) ≡

W ∗(p‖q). In general the two-point function Wc(p‖q) ≡ W (p‖q) defined on

any torsion-free statistical manifold satisfying the condition (S) and (S)∗ is

not symmetric: W (q‖p) 6= W (p‖q). For more general torsion-free statistical

manifolds, the function W ( · ‖q) might no longer be the potential function

whose trajectories are ∇∗-geodesics emanating from q. However, the func-

tions W (p‖q) is defined without condition (S) and it is natural to ask what

the relation of W (p‖q) and W (q‖p) is. The following Theorem 5.4 is not a

satisfactory result but a proposal of a problem (see a remark after the proof

of Theorem 5.4).

Theorem 5.4. For any torsion-free statistical manifold (M,g,∇,∇∗),

the two point functions W ∗(p‖q) and W (q‖p) (resp. W (p‖q) and W ∗(q‖p))

are contrast functions which induce the connection ∇∗ (resp. ∇) on (M,g).

If moreover (M,g,∇,∇∗) satisfies the condition (S)∗ (resp. (S)), then

there exists a function f (resp. f∗) satisfying the condition

f(0) = 0, f ′(0) = 1 (resp. f∗(0) = 0, (f∗)′(0) = 1)

such that

W (q‖p) = f(W ∗(p‖q)) (resp. W ∗(q‖p) = f∗(W (p‖q)))

holds.

Proof. Put W ′(p‖q) := W (q‖p). Then W ′(p‖q) is a contrast function

and as ∇ is torsion-free, repeating the argument in the proof of Theorem 5.3

implies that the connection induced by W ′(p‖q) is

−W ′(∂i∂j‖∂k) = Γ∗
ij,k,
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i.e., the connection ∇∗ dual to ∇ with respect to the metric g (moreover by

computing W ′(∂i∂j∂k‖∂l), one gets the curvature tensor of the connection

∇∗ ([E])). Indeed, interchanging p and q in (7) and applying (∂i)p(∂j)p(∂k)q
yields the result:

−W ′(∂i∂j‖∂k) = ∂igkj + ∂jgki −
2

3
(∂kgij + ∂igjk + ∂jgkj)

+
1

6
(Γ∗

ij,k + Γ∗
ji,k + Γ∗

jk,i + Γkj,i + Γ∗
ki,j + Γ∗

ik,j)

= W (∂i∂j‖∂k) + (∂igkj + ∂jgki − ∂kgij)

= −Γij,k + (Γik,j + Γ∗
ij,k + Γjk,i + Γ∗

ji,k − Γki,j − Γ∗
kj,i)

= Γ∗
ij,k.

On the other hand, by interchanging the role of two connections ∇ and

∇∗ in Definition 1.1, we get the quantity W ∗(p‖q) defined by the inte-

gral (1∗). Now we compare the Taylor expansion of W (p‖q) and W ∗(p‖q)

along the diagonal. It follows from the definition of these contrast functions

that replacing the coefficients of the Taylor expansion of W (p‖q) along the

diagonal by the corresponding dual quantities yields the Taylor expansion

of W ∗(p‖q).

Thus we get two contrast functions W ′(p‖q) and W ∗(p‖q) which induce

the same Riemannian metric g, the same dual connection ∇∗.

We here examine the relationship between the condition (S)∗ and The-

orem 5.4. Consider a torsion-free statistical manifold (M,g,∇,∇∗) (not

necessarily satisfying the condition (S)∗) a family of the level hypersurfaces

of the function W ′( · ‖q) = W (q‖ · ). Let S be one of such hypersurfaces.

For a point u ∈ S we define

Lu :=
{

x ∈M ; W ′(x‖u) = min
v∈S

W ′(x‖v)
}

.

In [E, Section 4] Eguchi proved that (locally) {Lu}u∈S is a foliation of M

with 1-dimensional leaves such that

(i) each leaf Lu is orthogonal to S at u, and

(ii) the second fundamental form w.r.t. ∇ of Lu at u vanishes.

Therefore, the family of all curves which are orthogonal to the level

hypersurfaces of W ′( · ‖q) are all ∇-geodesics emanating from the origin q

(with a suitable choice of the parameter).

We note that the result in [E, Section 4] is complementary to our Propo-

sition 4.2, Theorem 4.3, Corollary 4.4 and Corollary 4.6.
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Suppose now that the statistical manifold (M,g,∇,∇∗) satisfies the

condition (S)∗. It then follows from the above argument and Corollary 4.6

that the level hypersurfaces of W ′( · ‖q) and W ∗( · ‖q) coincide as families

and in particular the gradient flow of these functions are identical as a

family of curves. This implies that there exists a function f : [0,K) → R≥0

such that W ′(p‖q) = f(W ∗(p‖q)), where K is a positive constant (possibly

∞).

§6. Hooke’s law in dually flat statistical manifolds

In this section we show that the two point function Wc(p‖q) ≡W (p‖q)

defined on torsion-free statistical manifolds generalizes the concept of the

canonical divergence originally defined on dually flat statistical manifolds.

Suppose that, for a statistical manifold (M,g,∇,∇∗), both ∇ and ∇∗ are

torsion-free. Then it is clear that ∇ is flat iff so is ∇∗.

Definition 6.1. A statistical manifold (M,g,∇,∇∗) is dually flat iff

both ∇ and ∇∗ are torsion-free and flat.

For a dually flat statistical manifold (M,g,∇,∇∗), let (θi) (resp. (ηi))

be the ∇-affine (resp. ∇∗-affine) coordinates such (θi) and (ηi) are dual with

respect to the Riemannian metric g, i.e.,

g(∂i, ∂
j) = δj

i

(

∂i =
∂

∂θi
, ∂j =

∂

∂ηj

)

.

Let ψ (resp. φ) be the potential in the Legendre transform connecting (θi)

and (ηj). This means that

∂iψ = ηi, ∂iφ = θi, ψ + φ− θiηi = 0.(10)

Definition 6.2. Let (M,g,∇,∇∗) be a dually flat statistical manifold

and (θi) and (ηi) are as above. For points p and q in the domain where both

(θi) and (ηi) are defined, the ∇-divergence D(p‖q) is defined by

D(p‖q) := ψ(p) + φ(q) − θi(p)ηi(q).

Interchanging the role of ∇ and ∇∗ yields the definition of the ∇∗-

divergence D∗(p‖q). The Legendre transform implies

D(p‖q) = D∗(q‖p).(11)
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It is well known that, in the exponential family, the (−1)-divergence

coincides with the relative entropy (= the Kullback divergence) (see, for

instance, [A] or [A-N]).

Let (M,g,∇,∇∗) is a dually flat statistical manifold.

Theorem 6.3. For dually flat statistical manifolds, the two point func-

tion W (p‖q) coincides with the canonical divergence D(p‖q).

Proof. Let (θi) (resp. (ηi)) be an ∇-affine (resp. ∇∗-affine) system of

local coordinates such that (θi) and (ηi) are dual to each other with respect

to the metric g, i.e., 〈∂i, ∂
j〉 = δj

i , where ∂i = ∂/∂θi and ∂j = ∂/∂ηj .

Assume that these coordinates are defined in a commomn domain of M .

In terms of these coordinates, a ∇-geodesics c(t) and ∇∗-geodesics c∗t (s)

(which appear in (1)) are written as

θ(c(t)) = θ(q) + t(θ(p) − θ(q)), (t ∈ [0, 1]),

η(c∗t (s)) = η(c(t)) + s(η(q) − η(c(t))), (s ∈ [0, 1]).

Therefore we have

(12)

W (p‖q) = −

∫ 1

0
dt

〈

(θi(p) − θi(q))(∂i)c(t), (ηj(q) − ηj(c(t)))(∂
j)c(t)

〉

c(t)

=

∫ 1

0
dt (θi(p) − θi(q))(ηi(c(t)) − ηi(q)) (because 〈∂i, ∂

j〉 = δj
i )

= (θi(q) − θi(p))ηi(q) +

∫ 1

0
dt ηi(c(t))(θ

i(p) − θi(q)).

Let ψ be the potential in the Legendre transform defined in (10). Then we

have ∂iψ = ηi and so

d

dt
ψ(c(t)) = ∂iψ(c(t))

d

dt
θi(c(t)) = ηi(c(t))(θ

i(p) − θi(q)).

Substituting this into (12) and applying the Legendre transform ψ + φ −

θiηi = 0, we have

W (p‖q) = (θi(q) − θi(p))ηi(q) + ψ(p) − ψ(q)(13)

= (ψ(q) + φ(q)) − θi(p)ηi(q) + ψ(p) − ψ(q)

= ψ(p) + φ(q) − θi(p)ηi(q)

= D(p‖q) (from Definition 6.2).
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The divergence on dually flat statistical manifolds is originally defined

in terms of mutually dual affine coordinates and the potentials of their

Legendre transform (10). On the other hand, (13) means that the divergence

is equal to the integral (1) which is defined completely in terms of geodesics

(without using dually flatness). Therefore it is natural to think that the

integral (1) generalizes the concept of the divergence in general statistical

manifolds. More generally, (1) is defined, provided a Riemannian metric g

and any two affine connections ∇ and ∇∗ (not necessarily dual) are given.

Now let examine the validity of Theroem 4.3 for dually flat statistical

manifolds. Suppose that a curve c(t) (c(0) = q and c(1) = p) is not necessar-

ily a ∇-geodesic and let c∗t (s) (c∗t (0) = c(t), c∗t (1) = q) be the ∇∗-geodesic.

If (g,∇,∇∗) is a dually flat structure, then ∇∗-geodesics emanating from

q coincide with the image of integral curves of gradD( · ‖q). Therefore we

have

−

∫ 1

0
dt

[

gij(c(t))
d

dt
ci(t)

d

ds
c∗jt (0)

]

=

∫ 1

0
dt

〈 d

dt
c(t), gradD( · ‖q)(c(t))

〉

c(t)

=

∫ 1

0
dt

d

dt
D(c(t)‖q) = D(p‖q),

which implies, in simply connected dually flat statistical manifolds, the

integral (2) (defined in general for any curve c(t) such that c(0) = q and

c(1) = p) depends only on end points q and p and is equal to the canonical

divergence D(p‖q).
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