K. Diederich and E. Mazzilli Nagoya Math. J. Vol. 158 (2000), 185–189

A REMARK ON THE THEOREM OF OHSAWA-TAKEGOSHI

KLAS DIEDERICH AND EMMANUEL MAZZILLI

\S **1.** Introduction and main result

If $D \subset \mathbb{C}^n$ is a pseudoconvex domain and $X \subset D$ a closed analytic subset, the famous theorem B of Cartan-Serre asserts, that the restriction operator $r : \mathcal{O}(D) \longrightarrow \mathcal{O}(X)$ mapping each function F to its restriction F|X is surjective. A very important question of modern complex analysis is to ask what happens to this result if certain growth conditions for the holomorphic functions on D and on X are added. If the L^2 -norm with respect to the Lebesgue-measure and a plurisubharmonic weight function is taken as growth condition, then the Cartan-Serre extension has the following analogue:

THEOREM 1.1. (Ohsawa-Takegoshi [3]) Let $D \subset \mathbb{C}^n$ be a bounded pseudoconvex domain, $H \subset \mathbb{C}^n$ a complex affine hyperplane with D' := $D \cap H \neq \emptyset$ and $\varphi : D \longrightarrow \mathbb{R} \cup \{-\infty\}$ a plurisubharmonic function. Then there is a constant C > 0, depending only on the diameter of D, such that for each function f holomorphic on D' satisfying the growth condition

$$\int_{D'} |f|^2 e^{-\varphi} \, dV_{n-1} < \infty,$$

where dV_{n-1} denotes the Lebesgue-measure on $X \cong \mathbb{R}^{2n-2}$ there is a holomorphic function F on D such that r(F) = F|D' = f and

$$\int_{D} |F|^{2} e^{-\varphi} \, dV_{n} \le C \int_{D'} |f|^{2} e^{-\varphi} \, dV_{n-1}.$$

This theorem has, meanwhile, found a lot of applications in complex analysis and in algebraic geometry. Therefore, it is important to ask what kind of generalizations are possible. We mention the work of L. Manivel [2]

Received February 18, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 32A36, 32T99, 32T15.

who treats the extension problem for certain sections of suitable holomorphic vector bundles. More directly, it can be observed, that the Theorem carries over to the case, where H is replaced by a closed complex analytic subvariety $X = \{z \in U : h(z) = 0\}$ of an open neighborhood U of \overline{D} given by a holomorphic function h on U, such that on $X \cap U \cap \overline{D}$ there is at most a finite number of points z, all lying in D, with $\partial h(z) = 0$. (Hence X may have singularities, but only inside a compact subset of D.)

In this article we will show, that there is, however, no general Ohsawa-Takegoshi theorem for algebraic complex hypersurfaces of \mathbb{C}^n , even not if they are algebraic principal divisors intersecting ∂D transversally and if Dis strictly pseudoconvex.

In order to formulate our result more precisely, we denote by B_n the unit ball in \mathbb{C}^n , by $\mathcal{O}(B_n)$ the algebra of holomorphic functions on B_n and by $H^2(B_n) := \mathcal{O}(B_n) \cap L^2(B_n)$ the Hilbert space of square-integrable (with respect to the Lebesgue measure) holomorphic functions on B_n . For a complex hypersurface $X \subset \mathbb{C}^n$ with $X \cap B_n \neq \emptyset$ we mean by $H^{\infty}(B_n)$ the space of bounded holomorphic functions on B_n . We will show

THEOREM 1.2. There is an irreducible algebraic complex hypersurface X in \mathbb{C}^3 (with singularities) of the form $X = \{z \in \mathbb{C}^3 : h(z) = 0\}$ for a polynomial h such that $X \cap B_3 \neq \emptyset$ and $\dim_{\mathbb{C}}(T_z^{\mathbb{C}}(\partial B_3) \cap T_z X) = 1$ (here $T_z X$ denotes the tangent cone to X at z) and a function $f \in H^{\infty}(X \cap B_3)$, such that f has no holomorphic extension F to B_3 belonging to $H^2(B_3)$.

Before we come to the proof of this theorem we remark that the techniques for constructing the desired counterexample are very close to those used in [1] for constructing smooth hypersurfaces in pseudoconvex domains with very astonishing behavior with respect to the extension of holomorphic functions.

\S **2.** Some auxiliary facts

For the convenience of the reader we give here at first the proof of a classical lemma needed later. For this we denote

$$S_n(\varepsilon) := \left\{ z \in \mathbb{C}^n : |z_1| = \varepsilon^{1/2}, z_2 = 0, \dots, z_{n-1} = 0, z_n = 1 - \varepsilon \right\}.$$

For $\varepsilon > 0$ sufficiently small, one obviously has $S_n(\varepsilon) \subset B_n$. The following estimate holds:

LEMMA 2.1. For $F \in H^2(B_n)$ and all $z \in S_n(\varepsilon)$, one has

(2.1)
$$|F(z)| \le c ||F||_{H^2(B_n)} \varepsilon^{-(n+1)/2}$$

with a universal constant c > 0.

Proof. Notice that there are positive constants a_1, \ldots, a_n such that for $\varepsilon > 0$ sufficiently small the polydisc around any point $z \in S_n(\varepsilon)$ given by

$$P(z) := \left\{ \zeta \in \mathbb{C}^{n} : |\zeta_{1} - z_{1}| \le a_{1} \varepsilon^{1/2}, \dots, |\zeta_{n-1} - z_{n-1}| \le a_{n-1} \varepsilon^{1/2}, |\zeta_{n} - z_{n}| \le a_{n} \varepsilon \right\}$$

is contained in B_n . Applying the Cauchy estimates to it we obtain immediately

$$|F(z)| \leq \frac{1}{\operatorname{vol}(P(z))} \int_{P(z)} |F(\zeta)| \, d\lambda(\zeta)$$

$$\leq \frac{1}{\operatorname{vol}(P(z))} \left(\int_{P(z)} |F(\zeta)|^2 \, d\lambda(\zeta) \right)^{1/2} \left(\int_{P(z)} \, d\lambda(\zeta) \right)^{1/2}$$

$$\leq \left(\frac{1}{\operatorname{vol}(P(z))} \right)^{1/2} \|F\|_{H^2(B_n)}$$

$$\leq c \|F\|_{H^2(B_n)} \varepsilon^{-(n+1)/2}.$$

This proves the Lemma.

In the next proposition we construct the desired hypersurface X in \mathbb{C}^3 and the crucial holomorphic function f on $X \cap B_3$.

PROPOSITION 2.2. We put $X := \{z = (z_1, z_2, z_3) \in \mathbb{C}^3 : z_1^2 + z_2^q = 0\}$ for any fixed uneven integer q > 3 and define the holomorphic function fon B_3 by

(2.2)
$$f(z) := \frac{z_1}{(1-z_3)^{q/4}}.$$

Then f is bounded on $X' := X \cap B_3$ and, if $\theta > 0$ is any given constant and $\varepsilon > 0$ is sufficiently small (independently of the choice of θ), then f does not have a holomorphic extension F from X' to B_3 satisfying the estimate

(2.3)
$$|F(z)| \le c\varepsilon^{1/2 + \theta - q/4}$$

for all $z \in S_3(\varepsilon)$ and any constant c > 0.

Π

Proof. For all $z \in B_3$ we have $|1 - z_3| \ge c(|z_1|^2 + |z_2|^2)$. Furthermore, $|z_1| = |z_2|^{q/2}$ on X'. Hence f is bounded on X'.

In order to show the second part of the Proposition, we argue by contradiction. Let us suppose for some holomorphic extension F of f|X' to B_3 there exists a constant $\theta > 0$ such that for all $z \in S_3(\varepsilon)$ with $\varepsilon > 0$ small enough and a suitable constant c > 0 inequality (2.3) holds. Since the function $z \mapsto z_1^2 + z_2^q$ is irreducible, the function F can be written in the form

(2.4)
$$F(z) = \frac{1}{(1-z_3)^{q/4}} \left(z_1 + \left(z_1^2 + z_2^q \right) g(z) \right),$$

with a holomorphic function g on B_3 . Then it follows from (2.3) that g verifies for each z_1 with $|z_1| = \varepsilon^{1/2}$ the inequality

(2.5)
$$\left|\frac{1}{z_1} + g(z_1, 0, 1-\varepsilon)\right| \le c\varepsilon^{\theta - 1/2}$$

Consequently,

(2.6)
$$\int_{|z_1|=\varepsilon^{1/2}} \left(\frac{1}{z_1} + g(z_1, 0, 1-\varepsilon)\right) dz_1 = O\left(\varepsilon^{\theta}\right).$$

However,

(2.7)
$$\int_{|z_1|=\varepsilon^{1/2}} g(z_1, 0, 1-\varepsilon) \, dz_1 = 0,$$

since g is holomorphic on B_3 , and, hence,

(2.8)
$$2\pi i = \int_{|z_1|=\varepsilon^{1/2}} \frac{1}{z_1} dz_1 = \int_{|z_1|=\varepsilon^{1/2}} \left(\frac{1}{z_1} + g(z_1, 0, 1-\varepsilon)\right) dz_1.$$

The equations (2.6) and (2.8) obviously contradict each other.

Π

$\S3$. Proof of Theorem 1.1

Let X and f be as in Proposition 2.2. We may assume, that the uneven integer q > 3 has been chosen such that 1/2-q/4 < -2. A simple calculation shows that the transversality condition for X at ∂B_3 required in Theorem 1.1 is satisfied. If now f would have a holomorphic extension $F \in H^2(B_3)$, then, according to Lemma 2.1, we would have for any point $z \in S_3(\varepsilon)$ (with ε sufficiently small) the inequality

$$|F(z)| \le c ||F||_{H^2(B_3)} \varepsilon^{-2}.$$

Because of the choice of q such that 1/2 - q/4 < -2. and Proposition 2.2 this is, however, impossible.

188

References

- K. Diederich, and E. Mazzilli, Extension and restriction of holomorphic functions, Ann. Inst. Fourier, 47 (1997), 1079–1099.
- [2] L. Manivel, Un théorème de prolongement L² pour des sections holomorphes d'un fibré hermitien, Math. Z., 212 (1993), 107–122.
- [3] T. Ohsawa, and K. Takegoshi, On the extension of L²-holomorphic functions, Math. Z., 195 (1987), 197–204.

Klas Diederich Mathematik Unimersität Wuppertal Gausstr. 20 D-42095 Wuppertal Germany

Emmanuel Mazzilli UFR de Mathématiques Pures et Appliqués Université de Lille F-59655 Villeneuve d'Ascq Cedex France