THE DETERMINATION OF CALORIC MORPHISMS ON EUCLIDEAN DOMAINS

KATSUNORI SHIMOMURA

Dedicated to Professor Masayuki Itô in honour of his sixtieth birthday

Abstract

Let D be a domain in \mathbb{R}^{m+1} and E be a domain in \mathbb{R}^{n+1}. A pair of a smooth mapping $f: D \rightarrow E$ and a smooth positive function φ on D is called a caloric morphism if $\varphi \cdot u \circ f$ is a solution of the heat equation in D whenever u is a solution of the heat equation in E. We give the characterization of caloric morphisms, and then give the determination of caloric morphisms. In the case of $m<n$, there are no caloric morphisms. In the case of $m=n$, caloric morphisms are generated by the dilation, the rotation, the translation and the Appell transformation. In the case of $m>n$, under some assumption on f, every caloric morphism is obtained by composing a projection with a direct sum of caloric morphisms of \mathbb{R}^{n+1}.

§1. Introduction

For a non-negative integer k, \mathbb{R}^{k+1} denotes the $k+1$-dimensional Euclidean space. The coordinates in \mathbb{R}^{k+1} is denoted by (t, x) or $\left(x_{0}, x\right)$ where $x=\left(x_{1}, \ldots, x_{k}\right)$.

We shall use the following notation:

$$
\nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{k}}\right), \quad \Delta=\sum_{j=1}^{k} \frac{\partial^{2}}{\partial x_{j}^{2}}, \quad H=\frac{\partial}{\partial t}-\Delta .
$$

A C^{2}-function h is said to be caloric if h satisfies the heat equation

$$
H h=0 .
$$

Since the heat operator H is hypoelliptic (see, e.g. [9]), every caloric function is infinitely differentiable.

[^0]Let m, n be positive integers and D a domain in \mathbb{R}^{m+1}. We denote by $(t, x)=\left(t, x_{1}, \ldots, x_{m}\right),(\tau, y)=\left(\tau, y_{1}, \ldots, y_{n}\right)$ the points of $\mathbb{R}^{m+1}, \mathbb{R}^{n+1}$ respectively. We consider a mapping $f(t, x)=\left(f_{0}(t, x), f_{1}(t, x), \ldots, f_{n}(t, x)\right)$: $D \rightarrow \mathbb{R}^{n+1}$ and a weight function φ which preserve solutions of the heat equation in the following sense. A pair (f, φ) of C^{2}-mapping $f: D \rightarrow \mathbb{R}^{n+1}$ and a positive C^{2}-function φ on D is said to be a caloric morphism if $f(D)$ is a domain in \mathbb{R}^{n+1} and if for every caloric function u on $f(D)$, $\varphi(t, x)(u \circ f)(t, x)$ is also a caloric function on D.

In the case of $m=n$, the following three typical caloric morphisms are known.

The Appell transformation

Let $D=(0, \infty) \times \mathbb{R}^{n}$ (resp. $\left.=(-\infty, 0) \times \mathbb{R}^{n}\right)$. Put

$$
f(t, x)=\left(-\frac{1}{t}, \frac{x}{t}\right), \quad \varphi(t, x)=\frac{1}{\sqrt{4 \pi|t|}^{n}} e^{-|x|^{2} / 4 t}
$$

Then $f(D)=(-\infty, 0) \times \mathbb{R}^{n}$ (resp. $\left.=(0, \infty) \times \mathbb{R}^{n}\right)$ and (f, φ) is a caloric morphism.

The dilation and the rotation in x

Let $\lambda>0$ and U be an (n, n)-orthogonal matrix. Put

$$
f(t, x)=\left(\lambda^{2} t, \lambda U x\right), \quad \varphi(t, x)=1
$$

Then (f, φ) is a caloric morphism from \mathbb{R}^{n+1} onto \mathbb{R}^{n+1}.

The translation

Let $a \in \mathbb{R}$ and $b, c \in \mathbb{R}^{n}$. Put

$$
f(t, x)=(t+a, x+t b+c), \quad \varphi(t, x)=e^{\frac{1}{4}|b|^{2} t+\frac{1}{2} b \cdot x}
$$

Then (f, φ) is a caloric morphism from \mathbb{R}^{n+1} onto \mathbb{R}^{n+1}.
We give two simple examples in the case of $m>n$.
Example 1. The symmetrization in \mathbb{R}^{m} with respect to a subspace with codimension 2.

Let $m \geqq 4, n=m-2$ and $D=\left\{(t, x) ; t>0,\left|x^{\prime}\right|>0\right\}$ (resp. $\left.D=\left\{(t, x) ; t<0,\left|x^{\prime}\right|>0\right\}\right)$, where $x^{\prime}=\left(x_{1}, x_{2}, x_{3}, 0, \ldots, 0\right)$ for $x=$ $\left(x_{1}, \ldots, x_{m}\right)$. Put

$$
\left\{\begin{array}{l}
f_{0}(t)=-t^{-1} \\
f_{1}(t, x)=t^{-1}\left|x^{\prime}\right| \\
f_{j}(t, x)=t^{-1} x_{j+2}, \quad 2 \leqq j \leqq n
\end{array}\right.
$$

$$
\varphi(t, x)=\left|x^{\prime}\right|^{-1}|t|^{-(m-2) / 2} \exp \left(-\frac{|x|^{2}}{4 t}\right) .
$$

Then $f(D)=\left\{(\tau, y) ; \tau<0, y_{1}>0\right\}\left(\right.$ resp. $\left.f(D)=\left\{(\tau, y) ; \tau>0, y_{1}<0\right\}\right)$ and (f, φ) is a caloric morphism.

Example 2. The projection in x.
Let h be an arbitrary positive caloric function on \mathbb{R}^{m-n+1}. Put

$$
f\left(t, x_{1}, \ldots, x_{m}\right)=\left(t, x_{1}, \ldots, x_{n}\right), \quad \varphi(t, x)=h\left(t, x_{n+1}, \ldots, x_{m}\right) .
$$

Then (f, φ) is a caloric morphism from \mathbb{R}^{m+1} onto \mathbb{R}^{n+1}.
In the case of $m=n$, Leutwiler [7] proved that every caloric morphism has the following form:

$$
\begin{align*}
& f(t, x)=\left(\frac{\alpha t+\beta}{\gamma t+\delta}, \frac{R x+t v+w}{\gamma t+\delta}\right) \\
& \varphi(t, x)= \begin{cases}\frac{C}{|\gamma t+\delta|^{n / 2}} \exp \left[-\frac{|\gamma R x+\gamma w-\delta v|^{2}}{\gamma|\gamma t+\delta|}\right], & \gamma \neq 0 \\
C \exp \left[\frac{|v|^{2}}{4} t+\frac{1}{2} v \cdot R x\right], & \gamma=0\end{cases} \tag{0}
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta$ are real numbers with $\alpha \delta-\beta \gamma=1, v, w \in \mathbb{R}^{n}, R$ is an n-dimensional orthogonal matrix, $C>0$ and \cdot denotes the inner product of \mathbb{R}^{n}. It is a composition of the above three morphisms: the Appell transformation, the dilation, the translation.

The aim of this paper is to extend this to the case of $m \neq n$.
We first give a general characterization of caloric morphisms, which is essentially obtained by Leutwiler. As its corollary, there are no caloric morphism if $m<n$. Also by virtue of the characterization, we obtain a new systematic way to construct a caloric morphism by a "direct sum" of caloric morphisms in the case of $m>n$. It is remarkable that the direct sum gives caloric morphisms of new type such that f_{0} is a sum of fractional linear functions. Note that in the case of $m=n, f_{0}$ is just a fractional linear function.

Our main result is the determination of caloric morphisms (f, φ) in the case of $m>n$ under the assumption that each $f_{i}, 1 \leqq i \leqq n$ is a polynomial in x for every t and that f_{0} is real analytic. Under the assumption, we can give an explicit form of caloric morphisms (Theorem 7 below). Although it seems to be complicated, it turns out to be a direct sum of the caloric morphisms of form (0) composed with a projection, as is shown in Corollary 10.

§2. Characterization of caloric morphisms

Definition 1. A pair (f, φ) of C^{2}-mapping $f: D \rightarrow \mathbb{R}^{n+1}$ and a positive C^{2}-function on D is said to be a caloric morphism, if $f(D)$ is a domain and if for every caloric function u on $f(D), \varphi(t, x)(u \circ f)(t, x)$ is also a caloric function on D.

Remark 1. Using derivatives in the sense of distribution, we may assume f and φ to be continuous rather than of C^{2}. For the sake of simplicity, we assume here that f and φ are of C^{2}.

THEOREM 1. Let $f=\left(f_{0}, f_{1}, \ldots, f_{n}\right): D \rightarrow \mathbb{R}^{n+1}$ be a C^{2}-mapping such that $f(D)$ is a domain and let φ be a positive C^{2}-function on D. Then the following statements are equivalent:
(i) (f, φ) is a caloric morphism.
(ii) For every polynomial $P(\tau, y)$ which is caloric and of degree $\leqq 4$,

$$
\varphi(t, x)(P \circ f)(t, x)
$$

is caloric on D.
(iii) f and φ satisfy the following equations:

$$
\begin{equation*}
H \varphi=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\varphi H f_{i}=2 \nabla \varphi \cdot \nabla f_{i}, \quad 1 \leqq i \leqq n \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\nabla f_{0}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla f_{i}(t, x) \cdot \nabla f_{j}(t, x)=\delta_{i j} \frac{d f_{0}}{d t}(t), \quad 1 \leqq i, j \leqq n \tag{4}
\end{equation*}
$$

where \cdot denotes the inner product in \mathbb{R}^{m}.
(iv) There exists a continuous function $\lambda(t) \geqq 0$ on D such that

$$
\begin{equation*}
H\{\varphi(u \circ f)\}(t, x)=\lambda(t)^{2} \varphi(t, x)(H u \circ f)(t, x) \tag{5}
\end{equation*}
$$

holds for every C^{2} function u on $f(D)$ where H in the right hand side means the heat operator on \mathbb{R}^{n+1}.

Remark 2. By (3), f_{0} depends only on t. And (4) shows that $d f_{0} / d t \geqq 0$ and $\left|\nabla f_{j}(t, x)\right|^{2}$ is independent of x, where $|\cdot|$ denotes the norm of \mathbb{R}^{m}.

Proof.
(i) \Rightarrow (ii) is trivial.
$($ ii $) \Rightarrow$ (iii): By the chain rule,
(6)

$$
\begin{aligned}
H\{\varphi(P \circ f)\}=H \varphi(P \circ f)+ & \sum_{i=0}^{n}\left(\varphi H f_{i}-2 \nabla \varphi \cdot \nabla f_{i}\right) \frac{\partial P}{\partial y_{i}} \circ f \\
& -\varphi \sum_{i, j=0}^{n}\left(\nabla f_{i} \cdot \nabla f_{j}\right) \frac{\partial^{2} P}{\partial y_{i} \partial y_{j}} \circ f
\end{aligned}
$$

Let $P=1$. Then we have $H \varphi=0$. Let $P\left(y_{0}, y\right)=y_{i}, 1 \leqq i \leqq n$ in the equation (6). Then we obtain

$$
\varphi H f_{i}=2 \nabla \varphi \cdot \nabla f_{i}, \quad 1 \leqq i \leqq n
$$

Take a point $p \in D$ and put $q=f(p)$. Let $P\left(y_{0}, y\right)=\left(y_{i}-q_{i}\right)\left(y_{j}-q_{j}\right)$, $1 \leqq i, j \leqq n, i \neq j$ in the equation (6). Since $\left(\partial^{2} P / \partial y_{i} \partial y_{j}\right)(q)=1$ and the other derivatives of P vanish at q, we have

$$
\nabla f_{i}(p) \cdot \nabla f_{j}(p)=0, \quad 1 \leqq i, j \leqq n, i \neq j
$$

Since p is arbitrary,

$$
\begin{equation*}
\nabla f_{i} \cdot \nabla f_{j}=0, \quad 1 \leqq i, j \leqq n, i \neq j \tag{7}
\end{equation*}
$$

in D. Let $P\left(y_{0}, y\right)=\left(y_{0}-q_{0}\right)^{2}+\left(y_{0}-q_{0}\right)\left(y_{i}-q_{i}\right)^{2}+\frac{1}{12}\left(y_{i}-q_{i}\right)^{4}, 1 \leqq i \leqq n$.
Since $\left(\partial^{2} P / \partial y_{0}^{2}\right)(q)=1$ and the other derivatives of order $\leqq 2$ vanish at q, we have

$$
\begin{equation*}
\left|\nabla f_{0}(p)\right|^{2}=0, \text { and thus } \nabla f_{0}(p)=0 \tag{8}
\end{equation*}
$$

Since p is arbitrary, (3) holds. Finally, let $P\left(y_{0}, y\right)=y_{0}-q_{0}+\frac{1}{2}\left(y_{i}-q_{i}\right)^{2}$, $1 \leqq i \leqq n$. Since $\left(\partial P / \partial y_{0}\right)(q)=\left(\partial^{2} P / \partial y_{i}^{2}\right)(q)=1$ and the other derivatives vanish at q, we have

$$
\begin{equation*}
\varphi(p) H f_{0}(p)=\varphi(p)\left|\nabla f_{i}(p)\right|^{2}, \quad 1 \leqq i \leqq n \tag{9}
\end{equation*}
$$

Combining (7), (8) and (9), we obtain (4).
$(\mathrm{iii}) \Rightarrow(\mathrm{iv})$: Let u be of C^{2} in $f(D)$. By the chain rule

$$
\begin{align*}
H\{\varphi(u \circ f)\}=H \varphi(u \circ f)+ & \sum_{i=0}^{n}\left(\varphi H f_{i}-2 \nabla \varphi \cdot \nabla f_{i}\right) \frac{\partial u}{\partial y_{i}} \circ f \tag{10}\\
& -\varphi \sum_{i, j=0}^{n}\left(\nabla f_{i} \cdot \nabla f_{j}\right) \frac{\partial^{2} u}{\partial y_{i} \partial y_{j}} \circ f
\end{align*}
$$

Substituting (1)-(4) into (10), we have

$$
H\{\varphi(u \circ f)\}=\varphi H f_{0} \frac{\partial u}{\partial y_{0}} \circ f-\varphi \sum_{i=1}^{n}\left|\nabla f_{i}\right|^{2} \frac{\partial^{2} u}{\partial y_{i}^{2}} \circ f=\varphi \frac{d f_{0}}{d t} H u \circ f
$$

Putting $\lambda(t)=\left(d f_{0} / d t(t)\right)^{1 / 2}$, we obtain

$$
H\{\varphi(u \circ f)\}(t, x)=\lambda(t)^{2} \varphi(t, x)(H u \circ f)(t, x)
$$

Note that $\lambda(t)=\left|\nabla f_{i}(t, x)\right|$ by (4).
(iv) \Rightarrow (i) is evident.

Corollary 2. For every caloric morphism $(f, \varphi), f$ and φ are of C^{∞}.
Proof. By (2), φf_{i} is caloric $(1 \leqq i \leqq n)$, so φf_{i} is of C^{∞}. Since $\varphi>0$ and φ is caloric, f_{i} is of $C^{\infty}, 1 \leqq i \leqq n$. f_{0} is of C^{∞} by (4). Thus f is a C^{∞}-mapping.

Corollary 3. Let (f, φ) be a caloric morphism from D to \mathbb{R}^{n+1}. Then for any C^{2}-function u on $f(D)$, we have the following implications:

$$
\begin{aligned}
& H u \geqq 0 \Longrightarrow H\{\varphi(u \circ f)\} \geqq 0 \\
& H u \leqq 0 \Longrightarrow H\{\varphi(u \circ f)\} \leqq 0
\end{aligned}
$$

They immediately follow from (5).
Corollary 4. (i) $\operatorname{Let}(f, \varphi)=\left(\left(f_{0}, \ldots, f_{n}\right), \varphi\right)$ be a caloric morphism from $D \subset \mathbb{R}^{m+1}$ to \mathbb{R}^{n+1}. Then $f_{0}^{\prime}(t)>0$ on D.
(ii) If $n>m$, there are no caloric morphisms.

Proof. (i) Suppose that $f_{0}^{\prime}\left(t_{0}\right)=0$ for some $\left(t_{0}, x_{0}\right) \in D$. Let $I \subset \mathbb{R}$ be the connected component of $\left\{t ; f_{0}^{\prime}(t)=0\right\}$ such that $t_{0} \in I$. Since f_{0} is a non-decreasing function, $f_{0}(t) \neq f_{0}\left(t_{0}\right)$ for all $t \notin I$. So we have

$$
f(\{(t, x) \in D ; t \in I\})=f(D) \cap\left\{(\tau, y) \in \mathbb{R}^{n+1} ; \tau=f_{0}\left(t_{0}\right)\right\}
$$

Then by (4)

$$
\nabla f_{i}(t, x)=0, \quad(t, x) \in D, t \in I, 1 \leqq i \leqq n
$$

This and (2) imply

$$
\frac{\partial f_{i}}{\partial t}(t, x)=2 \nabla \log \varphi \cdot \nabla f_{i}=0, \quad(t, x) \in D, t \in I, 1 \leqq i \leqq n
$$

Therefore the set $f(\{(t, x) \in D ; t \in I\})$ consists of one point. Thus the set $f(D) \cap\left\{(\tau, y) ; \tau=f_{0}\left(t_{0}\right)\right\}$ consists of one point. It is contrary to the condition that $f(D)$ is a domain. Therefore $f_{0}^{\prime}(t)>0$ for all t.
(ii) Let $m<n$. By virtue of (4), $\nabla f_{1}, \ldots, \nabla f_{n}$ are n orthogonal vectors in \mathbb{R}^{m} with same length. Since $n>m$, we have $\nabla f_{1}=\cdots=\nabla f_{n}=0$ in D. Then (4) gives $f_{0}^{\prime}=0$ in D. This contradicts to (i).

Let m, n, k be positive integers and let D, E be domains in \mathbb{R}^{m+1}, in \mathbb{R}^{n+1}, respectively. If $(f, \varphi): E \rightarrow \mathbb{R}^{k+1}$ and $(g, \psi): D \rightarrow \mathbb{R}^{n+1}$ are caloric morphisms such that $g(D) \subset E$, then we can make a caloric morphism $(F, \Phi): D \rightarrow \mathbb{R}^{k+1}$ from (f, φ) and (g, ψ) by the composition $(F, \Phi)=$ $(f \circ g,(\varphi \circ g) \psi)$.

The next proposition provides a manner for the construction of new caloric morphisms.

Proposition 5. Let $l, m_{1}, \ldots, m_{l}, n$ be positive integers and I be an open interval. For each $j=1, \ldots$, l, suppose that D_{j} is a domain in $\mathbb{R}^{m_{j}}$ and that $\left(g_{j}, \varphi_{j}\right)=\left(\left(g_{j 0}, g_{j 1}, \ldots, g_{j n}\right), \varphi_{j}\right)$ is a caloric morphism : $I \times D_{j} \subset$ $\mathbb{R}^{m_{j}+1} \rightarrow \mathbb{R}^{n+1}$. Put

$$
\begin{aligned}
& f_{0}(t)=g_{10}(t)+\cdots+g_{l 0}(t) \\
& \begin{aligned}
& f_{i}\left(t, x_{1}, \ldots, x_{m_{1}+\cdots+}+m_{l}\right)=g_{1 i}\left(t, x_{1}, \ldots, x_{m_{1}}\right) \\
& \quad+g_{2 i}\left(t, x_{m_{1}+1}, \ldots, x_{m_{1}+m_{2}}\right)+\cdots \\
& \quad+g_{l i}\left(t, x_{m_{1}+\cdots+m_{l-1}+1}, \ldots, x_{m_{1}+\cdots+m_{l}}\right), \quad 1 \leqq i \leqq n \\
& \varphi\left(t, x_{1}, \ldots, x_{m_{1}+\cdots+m_{l}}\right)=\varphi_{1}\left(t, x_{1}, \ldots, x_{m_{1}}\right) \varphi_{2}\left(t, x_{m_{1}+1}, \ldots, x_{m_{1}+m_{2}}\right) \cdots \\
& \varphi_{l}\left(t, x_{m_{1}+\cdots+m_{l-1}+1}, \ldots, x_{m_{1}+\cdots+m_{l}}\right)
\end{aligned}
\end{aligned}
$$

Then $(f, \varphi): I \times D_{1} \times \cdots \times D_{l} \subset \mathbb{R}^{m_{1}+\cdots+m_{l}+1} \rightarrow \mathbb{R}^{n+1}$ is a caloric morphism.

We call the above caloric morphism (f, φ) the direct sum of $\left(g_{1}, \varphi_{1}\right), \ldots,\left(g_{l}, \varphi_{l}\right)$.

Proof. For each j, we denote by H_{j}, ∇_{j} and Δ_{j} the heat operator, the gradient and the Laplacian in $\mathbb{R}^{m_{j}+1}$. The heat operator, the gradient and the Laplacian in $\mathbb{R}^{m_{1}+\cdots+m_{l}+1}$ are denoted by H, ∇ and Δ. Since $\left(g_{j}, \varphi_{j}\right)$ is a caloric morphism, (1), (2) and (4) show

$$
\begin{array}{r}
H_{j} \varphi_{j}=0, \quad \varphi_{j} H_{j} g_{j i}=2 \nabla_{j} \varphi_{j} \cdot \nabla_{j} g_{j i}, \quad \nabla_{j} g_{j i} \cdot \nabla_{j} g_{j k}=\delta_{i k} \frac{d g_{j 0}}{d t} \\
1 \leqq i, k \leqq n, 1 \leqq j \leqq l
\end{array}
$$

Using

$$
\begin{aligned}
\nabla f_{i} & =\left(\nabla_{1} g_{1 i}, \nabla_{2} g_{2 i}, \ldots, \nabla_{l} g_{l i}\right) \\
\nabla \varphi & =\varphi\left(\frac{\nabla_{1} \varphi_{1}}{\varphi_{1}}, \frac{\nabla_{2} \varphi_{2}}{\varphi_{2}}, \ldots, \frac{\nabla_{l} \varphi_{l}}{\varphi_{l}}\right) \\
H f_{i} & =H_{1} g_{1 i}+H_{2} g_{2 i}+\cdots+H_{l} g_{l i}
\end{aligned}
$$

we have

$$
\begin{aligned}
2 \nabla \varphi \cdot \nabla f_{i} & =\varphi\left(\frac{2 \nabla_{1} \varphi_{1} \cdot \nabla_{1} g_{1 i}}{\varphi_{1}}, \frac{2 \nabla_{2} \varphi_{2} \cdot \nabla_{2} g_{2 i}}{\varphi_{2}}, \ldots, \frac{2 \nabla_{l} \varphi_{l} \cdot \nabla_{l} g_{l i}}{\varphi_{l}}\right) \\
& =\varphi\left(H_{1} g_{1 i}+H_{2} g_{2 i}+\cdots+H_{l} g_{l i}\right) \\
& =\varphi H f_{i}, \quad 1 \leqq i \leqq n
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla f_{i} \cdot \nabla f_{k} & =\nabla_{1} g_{1 i} \cdot \nabla_{1} g_{1 k}+\nabla_{2} g_{2 i} \cdot \nabla_{2} g_{2 k}+\cdots+\nabla_{l} g_{l i} \cdot \nabla_{l} g_{l k} \\
& =\delta_{i k}\left(\frac{d g_{10}}{d t}+\frac{d g_{20}}{d t}+\cdots+\frac{d g_{l 0}}{d t}\right) \\
& =\delta_{i k} \frac{d f_{0}}{d t}
\end{aligned}
$$

On the other hand, since

$$
\begin{aligned}
\frac{\partial \varphi}{\partial t} & =\varphi\left(\frac{1}{\varphi_{1}} \frac{\partial \varphi_{1}}{\partial t}+\frac{1}{\varphi_{2}} \frac{\partial \varphi_{2}}{\partial t}+\cdots+\frac{1}{\varphi_{l}} \frac{\partial \varphi_{l}}{\partial t}\right) \\
\Delta \varphi & =\varphi\left(\frac{\Delta_{1} \varphi_{1}}{\varphi_{1}}+\frac{\Delta_{2} \varphi_{2}}{\varphi_{2}}+\cdots+\frac{\Delta_{l} \varphi_{l}}{\varphi_{l}}\right)
\end{aligned}
$$

we obtain $H \varphi=0$. Thus (f, φ) is a caloric morphism.

§3. Main result

In the case of $m=n$, the form of caloric morphism is explicitly determined by Leutwiler [7]. So hereafter, we assume $m>n$ in the rest of this paper.

In the sequel, we shall determine caloric morphisms $(f, \varphi), f=\left(f_{0}, f_{1}\right.$, $\left.\ldots, f_{n}\right)$ in the case that $f_{i}, 1 \leqq i \leqq n$ is a polynomial of x for each t and that f_{0} is real analytic.

Proposition 6. Let (f, φ) be a caloric morphism and assume that $f_{i}, 1 \leqq i \leqq n$ is a polynomial of x for each fixed t. Then

$$
f_{i}(t, x)=\sum_{j=1}^{m} a_{i j}(t) x_{j}+b_{i}(t), \quad 1 \leqq i \leqq n
$$

where $a_{i j}, b_{i}, 1 \leqq i \leqq n, 1 \leqq j \leqq m$ are C^{∞}-functions.
Proof. Let t be fixed. Suppose that $f_{i}(t, x)$ is a polynomial of degree $l \geqq 1$. Write $f_{i}(t, x)=h(t, x)+g(t, x)$, where h is a homogeneous polynomial of degree l and g is a polynomial of degree $\leqq l-1$. Since $\nabla h \neq 0$, the degree of the polynomial $\left|\nabla f_{i}\right|^{2}=|\nabla h|^{2}+2 \nabla h \cdot \nabla g+|\nabla g|^{2}$ is equal to $2 l-2$. On the other hand, $\left|\nabla f_{i}\right|^{2}$ is of degree 0 by (4) of Theorem 1 . Thus $\operatorname{deg} f_{i} \leqq 1$.

Remark 3. We cannot replace real analytic functions in the place of polynomials in the above proposition. In the above Example $1, f_{1}$ is not a polynomial.

Main result of this paper is the following
THEOREM 7. Let $(f, \varphi)=\left(\left(f_{0}, f_{1}, \ldots, f_{n}\right), \varphi\right)$ be a caloric morphism defined on a domain $D \subset \mathbb{R}^{m+1}$. Assume that for each $1 \leqq i \leqq n$ and each $t, f_{i}(t, x)$ is a polynomial of x and that $f_{0}(t)$ is real analytic.

Then there exist a positive integer $k \leqq m / n$ and an orthogonal coordinate of \mathbb{R}^{m} denoted by $\left(x_{1}, \ldots, x_{m}\right)$ again with four families $\alpha_{i}, 1 \leqq i \leqq k$, $\beta_{i}, 1 \leqq i \leqq k, \delta_{i}, 0 \leqq i \leqq n$ and $\gamma_{i j}, 1 \leqq i \leqq n, 1 \leqq j \leqq k$ of real numbers satisfying $\alpha_{i}>0$ and $\beta_{i} \neq \beta_{j}, i \neq j$, and a positive caloric function $h=h\left(t, x_{k n+1}, \ldots, x_{m}\right)($ in the case of $m=n k, h$ is a positive constant) such that f and φ are of form (I) or (II).

$$
\begin{align*}
& f_{0}(t)=\sum_{j=1}^{k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0}, \tag{I}\\
& f_{i}(t, x)=\sum_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{(j-1) n+i}+\gamma_{i j}\right)+\delta_{i}, \quad 1 \leqq i \leqq n \\
& \varphi(t, x)=h \prod_{j=1}^{k} \frac{1}{\left|\beta_{j}-t\right|^{n / 2}} \exp \sum_{i=1}^{n} \frac{\left(x_{(j-1) n+i}+\gamma_{i j}\right)^{2}}{4\left(\beta_{j}-t\right)},
\end{align*}
$$

(II)
$f_{0}(t)=\alpha_{1}^{2} t+\sum_{1<j \leqq k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0}$,
$f_{i}(t, x)=\alpha_{1}\left(x_{i}+\gamma_{i 1} t\right)+\sum_{1<j \leqq k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{(j-1) n+i}+\gamma_{i j}\right)+\delta_{i}, \quad 1 \leqq i \leqq n$,
$\varphi(t, x)=h \exp \sum_{i=1}^{n}\left[\frac{\gamma_{i 1}^{2}}{4} t+\frac{\gamma_{i 1}}{2} x_{i}\right] \prod_{1<j \leqq k} \frac{1}{\left|\beta_{j}-t\right|^{n / 2}} \exp \sum_{i=1}^{n} \frac{\left(x_{(j-1) n+i}+\gamma_{i j}\right)^{2}}{4\left(\beta_{j}-t\right)}$.
First we shall prove the assertion of the theorem in the case of $n=1$ under the assumption that $\log \varphi$ is a polynomial of x of degree $\leqq 2$.

LEMMA 8. Let $(f, \varphi)=\left(\left(f_{0}, f_{1}\right), \varphi\right)$ be a caloric morphism from $D \subset$ \mathbb{R}^{m+1} to \mathbb{R}^{1+1}. Assume that f_{1} and φ are of the following form:

$$
\begin{aligned}
f_{1}(t, x) & =\sum_{j=1}^{m} a_{j}(t) x_{j}+b(t) \\
\varphi(t, x) & =\exp \left(\frac{1}{4} x \cdot U(t) x+v(t) \cdot x+w(t)\right)
\end{aligned}
$$

where a_{1}, \ldots, a_{m}, b and w are C^{∞}-functions, v is a C^{∞}-vector and where U is a symmetric (m, m)-matrix of C^{∞}-functions.

Then there exist a positive integer $k \leqq m$ and an orthogonal coordinate of \mathbb{R}^{m} denoted by $\left(x_{1}, \ldots, x_{m}\right)$ again with four families $\alpha_{i}, 1 \leqq i \leqq k, \beta_{i}$, $1 \leqq i \leqq k, \delta_{i}, i=0,1$ and $\gamma_{i}, 1 \leqq i \leqq k$ of real numbers satisfying $\alpha_{i}>0$ and $\beta_{i} \neq \beta_{j}, i \neq j$, and a positive caloric function $h=h\left(t, x_{k+1}, \ldots, x_{m}\right)$
(in the case of $m=k, h$ is a positive constant) such that f and φ are of form (1) or (2).
(1)

$$
\begin{aligned}
& f_{0}(t)=\sum_{j=1}^{k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0} \\
& f_{1}(t, x)=\sum_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{j}+\gamma_{j}\right)+\delta_{1} \\
& \varphi(t, x)=h(t, x) \prod_{j=1}^{k} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
\end{aligned}
$$

if $U\left(t_{0}\right)$ is invertible or $a\left(t_{0}\right)$ is orthogonal to the zero-eigenspace of $U\left(t_{0}\right)$ for some t_{0}.
(2)

$$
\begin{aligned}
& f_{0}(t)=\alpha_{1}^{2} t+\sum_{1<j \leqq k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0} \\
& f_{1}(t, x)=\alpha_{1}\left(x_{1}+\gamma_{1} t\right)+\sum_{1<j \leqq k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{j}+\gamma_{j}\right)+\delta_{1} \\
& \varphi(t, x)=h(t, x) \exp \left[\frac{\gamma_{1}^{2}}{4} t+\frac{\gamma_{1}}{2} x_{1}\right] \prod_{1<j \leqq k} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
\end{aligned}
$$

otherwise.
Proof of Lemma 8. We may assume $t_{0}=0$ by some translation of t.
Since (f, φ) is a caloric morphism, f_{1} and $\log \varphi$ satisfy the equations

$$
\begin{aligned}
& \frac{\partial \log \varphi}{\partial t}-\Delta \log \varphi-|\nabla \log \varphi|^{2}=0 \\
& H f_{1}=2 \nabla \log \varphi \cdot \nabla f_{1}
\end{aligned}
$$

by (1) and (2). Then we have the following differential equations

$$
\begin{array}{ll}
U^{\prime}=U^{2}, & v^{\prime}=U v, \quad w^{\prime}=\frac{|v|^{2}}{4}+\frac{\operatorname{tr} U}{2} \\
a^{\prime}=U a, & b^{\prime}=a \cdot v
\end{array}
$$

where $a=\left(a_{1}, \ldots, a_{m}\right)$ and $\operatorname{tr} U$ denotes the trace of the matrix U.
Since $U(0)$ is real symmetric, we have the spectral decomposition $U(0)=\sum_{j=1}^{l} \lambda_{j} P_{j}$, where λ_{j} is a real eigenvalue of $U(0)$ with multiplicity n_{j}, and P_{j} is the orthogonal projection of \mathbb{R}^{m} to the corresponding eigenspace. Since $U(t)$ is the solution of $U^{\prime}=U^{2}$,

$$
U(t)=\sum_{j=1}^{l} \frac{\lambda_{j}}{1-\lambda_{j} t} P_{j}
$$

and so the solutions of $a^{\prime}=U a, v^{\prime}=U v$ are

$$
a(t)=\sum_{j=1}^{l} \frac{1}{1-\lambda_{j} t} P_{j} a_{0}, \quad v(t)=\sum_{j=1}^{l} \frac{1}{1-\lambda_{j} t} P_{j} v_{0}
$$

where $a_{0}=a(0)$ and $v_{0}=v(0)$.
Let k be the cardinal of $\left\{P_{j} ; P_{j} a_{0} \neq 0\right\}$ (note that $a_{0} \neq 0$ because of (4) and Corollary 4). We may assume $P_{j} a_{0} \neq 0,1 \leqq j \leqq k, P_{j} a_{0}=0, k<j \leqq l$ and $\lambda_{j} \neq 0,1<j \leqq k, k+1<j \leqq l$ by some rearrangement of $\lambda_{1}, \ldots, \lambda_{l}$, if necessary.

Assume that $U(0)$ is invertible. Then $\lambda_{j} \neq 0$ for all j and the solutions of $b^{\prime}=a \cdot v$ and $w^{\prime}=|v|^{2} / 4+\operatorname{tr} U / 2$ are

$$
\begin{aligned}
b(t) & =\sum_{j=1}^{k} \frac{P_{j} a_{0} \cdot P_{j} v_{0}}{\lambda_{j}\left(1-\lambda_{j} t\right)}+\delta_{1} \\
w(t) & =\sum_{j=1}^{l}\left(\frac{\left|P_{j} v_{0}\right|^{2}}{4 \lambda_{j}\left(1-\lambda_{j} t\right)}-\frac{n_{j}}{2} \log \left(1-\lambda_{j} t\right)\right)+\delta_{2}
\end{aligned}
$$

with some constants δ_{1} and δ_{2}. By $f_{0}^{\prime}=\left|\nabla f_{1}\right|^{2}$ we have

$$
f_{0}(t)=\int|a(t)|^{2} d t=\sum_{j=1}^{k} \frac{\left|P_{j} a_{0}\right|^{2}}{\lambda_{j}\left(1-\lambda_{j} t\right)}+\delta_{0}
$$

with some constant δ_{0}. Put

$$
\alpha_{j}=\frac{\left|P_{j} a_{0}\right|}{\left|\lambda_{j}\right|}>0, \quad e_{j}=\frac{\lambda_{j} P_{j} a_{0}}{\left|\lambda_{j} P_{j} a_{0}\right|} \in \mathbb{R}^{m}, \quad \beta_{j}=\frac{1}{\lambda_{j}}, \quad 1 \leqq j \leqq k
$$

Note that $\beta_{1}, \ldots, \beta_{k}$ are mutually distinct. Adding $m-k$ eigenvectors of $U(0)$ to $\left\{e_{1}, \ldots, e_{k}\right\}$, in the case of $m>k$, we obtain an orthonormal basis
$\left\{e_{1}, \ldots, e_{m}\right\}$ of \mathbb{R}^{m}. For $j>k$, we denote by λ_{j} the eigenvalue of $U(0)$ corresponding to e_{j} and put $\beta_{j}=\frac{1}{\lambda_{j}}$. By the orthogonal coordinate of \mathbb{R}^{m} defined by $\left\{e_{1}, \ldots, e_{m}\right\}$, we write $x=\left(x_{1}, \ldots, x_{m}\right)$ again for every $x \in \mathbb{R}^{m}$. Putting $\gamma_{j}=e_{j} \cdot \sum_{i=1}^{l} P_{i} v_{0} / \lambda_{i}, 1 \leqq j \leqq m$, we obtain

$$
\begin{aligned}
& f_{0}(t)=\sum_{j=1}^{k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0} \\
& f_{1}(t, x)=\sum_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{j}+\gamma_{j}\right)+\delta_{1} \\
& \varphi(t, x)=C \prod_{j=1}^{m} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
\end{aligned}
$$

where C is a positive constant.
Put

$$
h(t, x)=C \prod_{k<j \leqq m} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
$$

Then $h=h\left(t, x_{k+1}, \ldots, x_{m}\right)$ is a positive caloric function and

$$
\varphi(t, x)=h \prod_{j=1}^{k} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
$$

Assume that $U(0)$ is not invertible. Then there are two cases: a_{0} is not orthogonal to the zero-eigenspace of $U(0)$, or a_{0} is orthogonal to the zero-eigenspace. They are equivalent to $\lambda_{1}=0$, or $\lambda_{k+1}=0$, respectively.

If $\lambda_{1}=0$, then $b(t), w(t)$ are given by

$$
\begin{aligned}
& b(t)=P_{1} a_{0} \cdot P_{1} v_{0} t+\sum_{1<j \leqq k} \frac{P_{j} a_{0} \cdot P_{j} v_{0}}{\lambda_{j}\left(1-\lambda_{j} t\right)}+\delta_{1}, \\
& w(t)=\frac{\left|P_{1} v_{0}\right|^{2}}{4} t+\sum_{1<j \leqq l}\left(\frac{\left|P_{j} v_{0}\right|^{2}}{4 \lambda_{j}\left(1-\lambda_{j} t\right)}-\frac{n_{j}}{2} \log \left(1-\lambda_{j} t\right)\right)+\delta_{2}
\end{aligned}
$$

with some constants δ_{1} and δ_{2}. Thus

$$
f_{0}(t)=\left|P_{1} a_{0}\right|^{2} t+\sum_{1<j \leqq k} \frac{\left|P_{j} a_{0}\right|^{2}}{\lambda_{j}\left(1-\lambda_{j} t\right)}+\delta_{0}
$$

with some constant δ_{0}. Put

$$
\begin{aligned}
& \alpha_{j}=\left\{\begin{array}{ll}
\left|P_{j} a_{0}\right|, & j=1, \\
\frac{\left|P_{j} a_{0}\right|}{\left|\lambda_{j}\right|}, & j>1,
\end{array} \quad e_{j}= \begin{cases}\frac{P_{j} a_{0}}{\left|P_{j} a_{0}\right|}, & j=1, \\
\frac{\lambda_{j} P_{j} a_{0}}{\left|\lambda_{j} P_{j} a_{0}\right|}, & j>1,\end{cases} \right. \\
& \beta_{j}=\frac{1}{\lambda_{j}}, \quad 1<j \leqq k
\end{aligned}
$$

Note that β_{j} are mutually distinct. Adding $m-k$ eigenvectors of $U(0)$ to $\left\{e_{1}, \ldots, e_{k}\right\}$, in the case of $m>k$, we obtain an orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of \mathbb{R}^{m}. If $j>k$ and $U(0) e_{j}=\lambda_{i} e_{j}$ for some $\lambda_{i} \neq 0$, we put $\beta_{j}=1 / \lambda_{i}$. By the orthogonal coordinate of \mathbb{R}^{m} defined by $\left\{e_{1}, \ldots, e_{m}\right\}$, we write $x=\left(x_{1}, \ldots, x_{m}\right)$ again for every $x \in \mathbb{R}^{m}$.
Putting $\gamma_{j}=e_{j} \cdot\left(P_{1} v_{0}+\sum_{1<i \leqq l} P_{i} v_{0} / \lambda_{i}\right), 1 \leqq j \leqq m$, we obtain

$$
\begin{aligned}
& f_{0}(t)=\alpha_{1}^{2} t+\sum_{1<j \leqq k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0} \\
& f_{1}(t, x)=\alpha_{1}\left(x_{1}+\gamma_{1} t\right)+\sum_{1<j \leqq k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{j}+\gamma_{j}\right)+\delta_{1} \\
& \varphi(t, x)=C \prod_{j \in J_{0}} \exp \left[\frac{\gamma_{j}^{2}}{4} t+\frac{\gamma_{j}}{2} x_{j}\right] \prod_{j \in J_{1}} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
\end{aligned}
$$

where $J_{0}=\left\{j ; U(0) e_{j}=0\right\}, J_{1}=\left\{j ; U(0) e_{j} \neq 0\right\}$ and where C is a positive constant.
Put

$$
h(t, x)=C \prod_{\substack{j \in J_{0} \\ k<j \leqq m}} \exp \left[\frac{\gamma_{j}^{2}}{4} t+\frac{\gamma_{j}}{2} x_{j}\right] \prod_{\substack{j \in J_{1} \\ k<j \leqq m}} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)} .
$$

Then $h=h\left(t, x_{k+1}, \ldots, x_{m}\right)$ is a positive caloric function and

$$
\varphi(t, x)=h \exp \left[\frac{\gamma_{1}^{2}}{4} t+\frac{\gamma_{1}}{2} x_{1}\right] \prod_{1<j \leqq k} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
$$

Finally, if $\lambda_{k+1}=0$, then $b(t), w(t)$ are given by

$$
b(t)=\sum_{1 \leqq j \leqq k} \frac{P_{j} a_{0} \cdot P_{j} v_{0}}{\lambda_{j}\left(1-\lambda_{j} t\right)}+\delta_{1}
$$

$$
w(t)=\frac{\left|P_{k+1} v_{0}\right|^{2}}{4} t+\sum_{j \neq k+1}\left(\frac{\left|P_{j} v_{0}\right|^{2}}{4 \lambda_{j}\left(1-\lambda_{j} t\right)}-\frac{n_{j}}{2} \log \left(1-\lambda_{j} t\right)\right)+\delta_{2}
$$

with some constants δ_{1} and δ_{2}. Thus

$$
f_{0}(t)=\sum_{1 \leqq j \leqq k} \frac{\left|P_{j} a_{0}\right|^{2}}{\lambda_{j}\left(1-\lambda_{j} t\right)}+\delta_{0}
$$

with some constant δ_{0}. Put

$$
\alpha_{j}=\frac{\left|P_{j} a_{0}\right|}{\left|\lambda_{j}\right|}, \quad e_{j}=\frac{\lambda_{j} P_{j} a_{0}}{\left|\lambda_{j} P_{j} a_{0}\right|}, \quad \beta_{j}=\frac{1}{\lambda_{j}}, \quad 1 \leqq j \leqq k
$$

Note that β_{j} are mutually distinct. Adding $m-k$ eigenvectors of $U(0)$ to $\left\{e_{1}, \ldots, e_{k}\right\}$, in the case of $m>k$, we obtain an orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of \mathbb{R}^{m}. If $j>k$ and $U(0) e_{j}=\lambda_{i} e_{j}$ for some $\lambda_{i} \neq 0$, we put $\beta_{j}=1 / \lambda_{i}$. By the orthogonal coordinate of \mathbb{R}^{m} defined by $\left\{e_{1}, \ldots, e_{m}\right\}$, we write $x=\left(x_{1}, \ldots, x_{m}\right)$ again for every $x \in \mathbb{R}^{m}$.
Putting $\gamma_{j}=e_{j} \cdot\left(P_{k+1} v_{0}+\sum_{1 \leqq i \leqq l, i \neq k+1} P_{i} v_{0} / \lambda_{i}\right), 1 \leqq j \leqq m$, we obtain

$$
\begin{aligned}
& f_{0}(t)=\sum_{j=1}^{k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0} \\
& f_{1}(t, x)=\sum_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{j}+\gamma_{j}\right)+\delta_{1} \\
& \varphi(t, x)=C \prod_{j \in J_{0}} \exp \left[\frac{\gamma_{j}^{2}}{4} t+\frac{\gamma_{j}}{2} x_{j}\right] \prod_{j \in J_{1}} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
\end{aligned}
$$

where $J_{0}=\left\{j ; U(0) e_{j}=0\right\}, J_{1}=\left\{j ; U(0) e_{j} \neq 0\right\}$ and where C is a positive constant.
Since $1, \ldots, k \in J_{1}$,

$$
h(t, x)=C \prod_{j \in J_{0}} \exp \left[\frac{\gamma_{j}^{2}}{4} t+\frac{\gamma_{j}}{2} x_{j}\right] \prod_{\substack{j \in J_{1} \\ k<j \leqq m}} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
$$

is a positive caloric function and

$$
\varphi(t, x)=h \prod_{1 \leqq j \leqq k} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{j}+\gamma_{j}\right)^{2}}{4\left(\beta_{j}-t\right)}
$$

For the proof of Theorem 7, we may assume that f is a caloric morphism of the form

$$
\begin{equation*}
f_{i}(t, x)=\sum_{j=1}^{m} a_{i j}(t) x_{j}+b_{i}(t), \quad 1 \leqq i \leqq n \tag{11}
\end{equation*}
$$

by virtue of Proposition 6 . Denote by $a_{i}(t)$ the row-vector $\left(a_{i 1}(t), \ldots, a_{i m}(t)\right)$.
We introduce the functions $p_{k}(t), q_{k}(t), k \geqq 1$ which will be used in the proof of Theorem 7 . We define $p_{1}(t)$ and $q_{1}(t)$ by

$$
p_{1}(t)=\frac{f_{0}^{\prime \prime}(t)}{2 f_{0}^{\prime}(t)}, \quad q_{1}(t)=\frac{1}{\sqrt{3}}\left(p_{1}^{\prime}(t)-p_{1}(t)^{2}\right)^{1 / 2}
$$

(Recall that $f_{0}^{\prime}(t)>0$ for all t by virtue of Corollary 4). For $k \geqq 2$, we define $p_{k}(t)$ and $q_{k}(t)$ inductively by

$$
\begin{align*}
p_{k}(t) & =\frac{q_{k-1}^{\prime}(t)}{k q_{k-1}(t)}+\frac{k-2}{k} p_{k-1}(t) \tag{12}\\
q_{k}(t) & =\frac{k}{\sqrt{2 k+1}}\left(p_{k}^{\prime}(t)-p_{k}^{2}(t)+\frac{2 k-3}{(k-1)^{2}} q_{k-1}^{2}(t)\right)^{1 / 2} \tag{13}
\end{align*}
$$

if $q_{k-1}(t) \neq 0$. We put $r_{i}(t) \in \mathbb{R}^{m}, 1 \leqq i \leqq n$ by

$$
r_{i}(t)=\frac{1}{\left|a_{i}(t)\right|} a_{i}(t)
$$

(Note that $\left|a_{i}(t)\right|=\sqrt{f_{0}^{\prime}(t)}>0$ for all i and t because of (4)). And we put $r_{n+1}(t), \ldots, r_{k n}(t)$ inductively by
(14) $r_{i+n}(t)= \begin{cases}\frac{1}{q_{1}(t)} r_{i}^{\prime}(t), & 1 \leqq i \leqq n, \\ \frac{1}{q_{j}(t)}\left(r_{i}^{\prime}(t)+q_{j-1}(t) r_{i-n}(t)\right), \\ & (j-1) n+1 \leqq i \leqq j n, 2 \leqq j \leqq k-1,\end{cases}$
if $q_{j}(t) \neq 0,1 \leqq j \leqq k-1$.
The following is the key lemma to prove Theorem 7.
Lemma 9. Let l be a positive integer. Assume that q_{1}, \ldots, q_{l} are defined on an open interval $I \subset \mathbb{R}$. Then the following statements hold.
(i) If $q_{l} \neq 0$ on I, then $r_{1}(t), \ldots, r_{(l+1) n}(t)$ defined in (14) are orthonormal C^{∞}-vectors of \mathbb{R}^{m}. Adding arbitrary C^{∞}-vectors $r_{(l+1) n+1}(t), \ldots, r_{m}(t)$
such that $\left\{r_{1}(t), \ldots, r_{m}(t)\right\}$ forms an orthonormal basis of \mathbb{R}^{m} for each $t \in I$, in the case of $m \geqq(l+1) n+1$, we take the change of variables

$$
\left\{\begin{array}{l}
\tau=t \\
\xi_{j}=r_{j}(t) \cdot x, \quad 1 \leqq j \leqq m
\end{array}\right.
$$

on $D \cap\left(I \times \mathbb{R}^{m}\right)$. Then there exists a C^{∞}-function $\psi_{l+1}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right)$ on $D \cap\left(I \times \mathbb{R}^{m}\right)$ such that

$$
\begin{aligned}
& \log \varphi(\tau, \xi)=\sum_{k=1}^{l}\left(\sum_{i=(k-1) n+1}^{k n} \frac{1}{4} p_{k}(\tau) \xi_{i}^{2}+\frac{1}{2 k} q_{k}(\tau) \xi_{i} \xi_{i+n}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& \quad+\psi_{l+1}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right), \\
& \frac{\partial \psi_{l+1}}{\partial \xi_{i}}=\frac{1}{2} p_{l+1}(\tau) \xi_{i}+\frac{1}{2(l+1)} \sum_{j=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\beta_{i}(\tau) \\
& \quad l n+1 \leqq i \leqq(l+1) n
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \psi_{l+1}}{\partial \tau}-\Delta_{\xi} \psi_{l+1} & -\sum_{k=l n+1}^{m} \frac{\partial \psi_{l+1}}{\partial \xi_{k}}\left(\frac{\partial \psi_{l+1}}{\partial \xi_{k}}-\sum_{j=l n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}\right) \\
& +\sum_{i=l n+1}^{(l+1) n}\left(\frac{2 l-1}{4 l^{2}} q_{l}(\tau)^{2} \xi_{i}^{2}+\frac{l-1}{l} q_{l}(\tau) \beta_{i-n}(\tau) \xi_{i}\right)=0
\end{aligned}
$$

where

$$
\beta_{i}= \begin{cases}\frac{b_{i}^{\prime}}{2 \sqrt{f_{0}^{\prime}}}, & 1 \leqq i \leqq n \\ \frac{1}{2 q_{1}}\left(\beta_{i-n}^{\prime}-p_{1} \beta_{i-n}\right), & n+1 \leqq i \leqq 2 n \\ \frac{k}{(k+1) q_{k}}\left(\beta_{i-n}^{\prime}-p_{k} \beta_{i-n}+\frac{k-2}{k-1} q_{k-1} \beta_{i-2 n}\right) \\ k n+1 \leqq i \leqq(k+1) n, 2 \leqq k \leqq l\end{cases}
$$

and

$$
\begin{align*}
& \rho_{i}(\tau)=\int\left(\frac{1}{2} p_{k}(\tau)+\beta_{i}^{2}(\tau)\right) d \tau \tag{15}\\
& \qquad(k-1) n+1 \leqq i \leqq k n, 1 \leqq k \leqq l
\end{align*}
$$

(ii) If $q_{l}(t)=0$ for all $t \in I$, then $r_{1}(t), \ldots, r_{l n}(t)$ defined in (14) are orthonormal C^{∞}-vectors of \mathbb{R}^{m} and satisfies the equations

$$
r_{(l-1) n+i}^{\prime}(t)=\left\{\begin{array}{ll}
0, & \text { if } l=1, \tag{16}\\
-q_{l-1}(t) r_{(l-2) n+i}(t), & \text { if } l \geqq 2
\end{array} \quad 1 \leqq i \leqq n\right.
$$

for all $t \in I$. Add arbitrary C^{∞}-vectors $r_{l n+1}(t), \ldots, r_{m}(t)$ such that $\left\{r_{1}(t), \ldots, r_{m}(t)\right\}$ forms an orthonormal basis of \mathbb{R}^{m} for each $t \in I$, if necessary. We take the change of variables $(t, x) \mapsto(\tau, \xi)$ defined in (1). Then there exists a C^{∞}-function $\psi_{l+1}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right)$ on $D \cap\left(I \times \mathbb{R}^{m}\right)$ such that (17) $\log \varphi(\tau, \xi)$

$$
\begin{aligned}
& =\sum_{k=1}^{l-1}\left(\sum_{i=(k-1) n+1}^{k n} \frac{1}{4} p_{k}(\tau) \xi_{i}^{2}+\frac{1}{2 k} q_{k}(\tau) \xi_{i} \xi_{i+n}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& \quad+\sum_{i=(l-1) n+1}^{l n}\left(\frac{1}{4} p_{l}(\tau) \xi_{i}^{2}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& \quad+\psi_{l+1}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

and
(18) $\frac{\partial \psi_{l+1}}{\partial \tau}-\Delta_{\xi} \psi_{l+1}-\left|\nabla_{\xi} \psi_{l+1}\right|^{2}+\sum_{j, k=l n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j} \frac{\partial \psi_{l+1}}{\partial \xi_{k}}=0$,
where β_{i} and $\rho_{i}, 1 \leqq i \leqq \ln$ are defined in (i).
Proof. We shall show the lemma by induction.
First we shall deal with the case of $l=1$. By (4) and Corollary 4,

$$
a_{i}(t) \cdot a_{j}(t)=\nabla f_{i}(t, x) \cdot \nabla f_{j}(t, x)=\delta_{i j} f_{0}^{\prime}(t)>0, \quad 1 \leqq i \leqq n
$$

which shows that $\left\{r_{1}(t), \ldots, r_{n}(t)\right\}$ is an orthonormal system of \mathbb{R}^{m} for each t. Let $r_{n+1}(t), \ldots, r_{m}(t)$ be $m-n$ orthonormal C^{∞}-vectors such that $\left\{r_{1}(t), \ldots, r_{m}(t)\right\}$ is an orthonormal basis of \mathbb{R}^{m}. By the chain rule,

$$
\begin{aligned}
\frac{\partial}{\partial t} & =\frac{\partial \tau}{\partial t} \frac{\partial}{\partial \tau}+\sum_{j=1}^{m} \frac{\partial \xi_{j}}{\partial t} \frac{\partial}{\partial \xi_{j}}=\frac{\partial}{\partial \tau}+\sum_{j=1}^{m} r_{j}^{\prime}(\tau) \cdot x \frac{\partial}{\partial \xi_{j}} \\
& =\frac{\partial}{\partial \tau}+\sum_{j, k=1}^{m}\left(r_{j}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \xi_{k} \frac{\partial}{\partial \xi_{j}} \\
\frac{\partial}{\partial x_{i}} & =\frac{\partial \tau}{\partial x_{i}} \frac{\partial}{\partial \tau}+\sum_{j=1}^{m} \frac{\partial \xi_{j}}{\partial x_{i}} \frac{\partial}{\partial \xi_{j}}=\sum_{j=1}^{m} r_{j i}(\tau) \frac{\partial}{\partial \xi_{j}}
\end{aligned}
$$

where $r_{i}(\tau)=\left(r_{i 1}(\tau), \ldots, r_{i m}(\tau)\right), 1 \leqq i \leqq m$. Since $r_{1}(\tau), \ldots, r_{m}(\tau)$ is orthonormal, we have

$$
\begin{aligned}
& \Delta_{x}=\Delta_{\xi}, \\
& \nabla_{x} u \cdot \nabla_{x} v=\nabla_{\xi} u \cdot \nabla_{\xi} v .
\end{aligned}
$$

Since (f, φ) is a caloric morphism, Theorem 1 (2) and Proposition 6 imply

$$
\begin{equation*}
2 \nabla \log \varphi \cdot \nabla f_{i}=\frac{\partial f_{i}}{\partial t}, \quad 1 \leqq i \leqq n \tag{19}
\end{equation*}
$$

By (11) we have

$$
\begin{equation*}
f_{i}(\tau, \xi)=\sqrt{f_{0}^{\prime}(\tau)} \xi_{i}+b_{i}(\tau) \tag{20}
\end{equation*}
$$

and hence

$$
H f_{i}=\frac{\partial f_{i}}{\partial t}=\frac{f_{0}^{\prime \prime}(\tau)}{2 \sqrt{f_{0}^{\prime}(\tau)}} \xi_{i}+\sqrt{f_{0}^{\prime}(\tau)} \sum_{j=1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+b_{i}^{\prime}(\tau) .
$$

Then (19) becomes

$$
\begin{equation*}
\frac{\partial \log \varphi}{\partial \xi_{i}}=\frac{1}{2} p_{1}(\tau) \xi_{i}+\frac{1}{2} \sum_{j=1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\beta_{i}(\tau) \tag{21}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)=r_{i}(\tau) \cdot r_{j}^{\prime}(\tau), \quad 1 \leqq i, j \leqq n \tag{22}
\end{equation*}
$$

because $\left(\partial / \partial \xi_{j}\right)\left(\partial \log \varphi / \partial \xi_{i}\right)=r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)$. On the other hand, $r_{i}(\tau)$. $r_{j}(\tau)=\delta_{i j}$ implies

$$
\begin{equation*}
r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)=-r_{i}(\tau) \cdot r_{j}^{\prime}(\tau), \quad 1 \leqq i, j \leqq m \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)=0, \quad 1 \leqq i, j \leqq n \tag{24}
\end{equation*}
$$

Then by (21) and (24),

$$
\psi_{2}=\log \varphi-\sum_{i=1}^{n}\left(\frac{1}{4} p_{1}(\tau) \xi_{i}^{2}+\frac{1}{2} \sum_{j=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{i} \xi_{j}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right)
$$

is a C^{∞}-function of $\tau, \xi_{n+1}, \ldots, \xi_{m}$. Thus we have
(25) $\log \varphi(\tau, \xi)$

$$
\begin{aligned}
= & \sum_{i=1}^{n}\left(\frac{1}{4} p_{1}(\tau) \xi_{i}^{2}+\frac{1}{2} \sum_{j=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{i} \xi_{j}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& +\psi_{2}\left(\tau, \xi_{n+1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

On the other hand, $\psi_{1}:=\log \varphi$ satisfies

$$
\frac{\partial \psi_{1}}{\partial t}-\Delta \psi_{1}-\left|\nabla \psi_{1}\right|^{2}=0
$$

because φ is a positive caloric function. In the coordinate $\left(\tau, \xi_{1}, \ldots, \xi_{m}\right)$, the above equation is

$$
\begin{equation*}
\frac{\partial \psi_{1}}{\partial \tau}+\sum_{j, k=1}^{m}\left(r_{j}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \xi_{k} \frac{\partial \psi_{1}}{\partial \xi_{j}}-\Delta_{\xi} \psi_{1}-\left|\nabla_{\xi} \psi_{1}\right|^{2}=0 \tag{26}
\end{equation*}
$$

Then from (25), we have
$\frac{\partial \psi_{1}}{\partial \tau}=\sum_{i=1}^{n}\left(\frac{1}{4} p_{1}^{\prime}(\tau) \xi_{i}^{2}+\frac{1}{2} \sum_{j=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right)^{\prime} \xi_{i} \xi_{j}+\beta_{i}^{\prime}(\tau) \xi_{i}+\rho_{i}^{\prime}(\tau)\right)+\frac{\partial \psi_{2}}{\partial \tau}$,
$\frac{\partial \psi_{1}}{\partial \xi_{k}}= \begin{cases}\frac{1}{2} p_{1}(\tau) \xi_{k}+\frac{1}{2} \sum_{j=n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\beta_{k}(\tau), & 1 \leqq k \leqq n, \\ \frac{1}{2} \sum_{i=1}^{n}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \xi_{i}+\frac{\partial \psi_{2}}{\partial \xi_{k}}, & n+1 \leqq k \leqq m,\end{cases}$
$\Delta_{\xi} \psi_{1}=\frac{n}{2} p_{1}(\tau)+\Delta_{\xi} \psi_{2}$.
Substituting these into (26) and comparing the coefficients with respect to ξ_{1}, \ldots, ξ_{n}, we obtain the following:

$$
\begin{array}{r}
\frac{1}{4}\left(p_{1}^{\prime}(\tau)-p_{1}^{2}(\tau)\right) \delta_{i j}-\frac{3}{4} \sum_{k=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right)\left(r_{j}^{\prime}(\tau) \cdot r_{k}(\tau)\right)=0 \tag{27}\\
1 \leqq i, j \leqq n
\end{array}
$$

(28) $\frac{1}{2} \sum_{j=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right)^{\prime} \xi_{j}+\left(\beta_{i}^{\prime}(\tau)-p_{1}(\tau) \beta_{i}(\tau)\right)$

$$
\begin{aligned}
& -2 \sum_{k=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \frac{\partial \psi_{2}}{\partial \xi_{k}} \\
& +\frac{1}{2} \sum_{j, k=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right)\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}=0, \quad 1 \leqq i \leqq n
\end{aligned}
$$

and
(29) $\frac{\partial \psi_{2}}{\partial \tau}-\Delta_{\xi} \psi_{2}-\sum_{k=n+1}^{m} \frac{\partial \psi_{2}}{\partial \xi_{k}}\left(\frac{\partial \psi_{2}}{\partial \xi_{k}}-\sum_{j=n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}\right)$

$$
+\frac{1}{4} \sum_{i=1}^{n} \sum_{j, k=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right)\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \xi_{j} \xi_{k}=0
$$

Since $r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)=0,1 \leqq i, j \leqq n, r_{i}^{\prime}(\tau)=\sum_{k=n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) r_{k}(\tau)$ for $1 \leqq i \leqq n$. Hence (27) gives

$$
\begin{equation*}
r_{i}^{\prime}(\tau) \cdot r_{j}^{\prime}(\tau)=q_{1}(\tau)^{2} \delta_{i j}, \quad 1 \leqq i, j \leqq n . \tag{30}
\end{equation*}
$$

(Note that $q_{1}(\tau)^{2}=\left|r_{i}^{\prime}(\tau)\right|^{2} \geqq 0$.)
If $q_{1} \neq 0$ on an open interval I, then (24) and (30) show that $r_{1}(\tau), \ldots$, $r_{n}(\tau), r_{1}^{\prime}(\tau), \ldots, r_{n}^{\prime}(\tau)$ are linearly independent for all $\tau \in I$. Therefore $m \geqq$ $2 n$. Putting

$$
r_{i+n}(\tau)=\frac{r_{i}^{\prime}(\tau)}{q_{1}(\tau)}, \quad 1 \leqq i \leqq n
$$

we have an orthonormal system $\left\{r_{1}(\tau), \ldots, r_{2 n}(\tau)\right\}$ of \mathbb{R}^{m}. Adding $m-2 n$ C^{∞}-vectors $r_{2 n+1}(\tau), \ldots, r_{m}(\tau)$ if $m \geqq 2 n+1$, we obtain an orthonormal basis $\left\{r_{1}(\tau), \ldots, r_{m}(\tau)\right\}$ of \mathbb{R}^{m}. Then
$r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)=q_{1}(\tau) r_{i+n}(\tau) \cdot r_{j}(\tau)=q_{1}(\tau) \delta_{i+n, j}, \quad 1 \leqq i \leqq n, n+1 \leqq j \leqq m$.
By (25), (28) and (29)

$$
\begin{aligned}
\log \varphi(\tau, \xi)=\sum_{i=1}^{n} & \left(\frac{1}{4} p_{1}(\tau) \xi_{i}^{2}+\frac{1}{2} q_{1}(\tau) \xi_{i} \xi_{i+n}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& +\psi_{2}\left(\tau, \xi_{n+1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} q_{1}^{\prime}(\tau) \xi_{i+n}+\beta_{i}^{\prime}(\tau)-p_{1}(\tau) \beta_{i}(\tau)-2 q_{1}(\tau) \frac{\partial \psi_{2}}{\partial \xi_{i+n}} \\
& \quad+\frac{1}{2} q_{1}(\tau) \sum_{j=n+1}^{m}\left(r_{i+n}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}=0, \quad 1 \leqq i \leqq n
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial \psi_{2}}{\partial \tau}-\Delta_{\xi} \psi_{2}-\sum_{k=n+1}^{m} \frac{\partial \psi_{2}}{\partial \xi_{k}}\left(\frac{\partial \psi_{2}}{\partial \xi_{k}}-\sum_{j=n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}\right) \\
& +\frac{1}{4} q_{1}(\tau)^{2} \sum_{i=1}^{n} \xi_{i+n}^{2}=0
\end{aligned}
$$

If $q_{1}(\tau)=0$ for all $\tau \in I$, then by (30), $r_{i}^{\prime}=0,1 \leqq i \leqq n$ on I so that

$$
\log \varphi(\tau, \xi)=\sum_{i=1}^{n}\left(\frac{1}{4} p_{1}(\tau) \xi_{i}^{2}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right)+\psi_{2}\left(\tau, \xi_{n+1}, \ldots, \xi_{m}\right)
$$

and

$$
\frac{\partial \psi_{2}}{\partial \tau}-\Delta_{\xi} \psi_{2}-\left|\nabla_{\xi} \psi_{2}\right|^{2}+\sum_{j, k=n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j} \frac{\partial \psi_{2}}{\partial \xi_{k}}=0
$$

Thus the assertion in the case of $l=1$ is shown.
Assume $l \geqq 2$ and that the assertion for $1, \ldots, l-1$ holds. Suppose that $q_{1} \neq 0, \ldots, q_{l-1} \neq 0$ on some open interval I. Then q_{l} is defined on I and $r_{1}(\tau), \ldots, r_{l n}(\tau)$ defined in (14) are orthonormal C^{∞}-vectors on \mathbb{R}^{m}. By the assumption on $1, \ldots, l-1$, there exists a C^{∞}-function $\psi_{l}\left(\tau, \xi_{(l-1) n+1}, \ldots, \xi_{m}\right)$ such that
(31) $\log \varphi(\tau, \xi)$

$$
\begin{aligned}
& =\sum_{k=1}^{l-1}\left(\sum_{i=(k-1) n+1}^{k n} \frac{1}{4} p_{k}(\tau) \xi_{i}^{2}+\frac{1}{2 k} q_{k}(\tau) \xi_{i} \xi_{i+n}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& \quad+\psi_{l}\left(\tau, \xi_{(l-1) n+1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

$$
\begin{array}{rl}
\frac{\partial \psi_{l}}{\partial \xi_{i}}=\frac{1}{2} p_{l}(\tau) \xi_{i}+\frac{1}{2 l} \sum_{j=(l-1) n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\beta_{i}(\tau) \tag{32}\\
(l-1) n+1 & i \leqq \ln
\end{array}
$$

and
(33) $\frac{\partial \psi_{l}}{\partial \tau}-\Delta_{\xi} \psi_{l}-\sum_{k=(l-1) n+1}^{m} \frac{\partial \psi_{l}}{\partial \xi_{k}}\left(\frac{\partial \psi_{l}}{\partial \xi_{k}}-\sum_{j=(l-1) n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}\right)$

$$
+\sum_{i=(l-1) n+1}^{l n}\left(\frac{2 l-3}{4(l-1)^{2}} q_{l-1}(\tau)^{2} \xi_{i}^{2}+\frac{l-2}{l-1} q_{l-1}(\tau) \beta_{i-n}(\tau) \xi_{i}\right)=0
$$

By (23) and (32)

$$
\begin{equation*}
r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)=0, \quad(l-1) n+1 \leqq i, j \leqq \ln \tag{34}
\end{equation*}
$$

for $\tau \in I$. Put
(35) $\quad \psi_{l+1}$

$$
=\psi_{l}-\sum_{i=(l-1) n+1}^{l n}\left(\frac{1}{4} p_{l}(\tau) \xi_{i}^{2}-\frac{1}{2 l} \sum_{j=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{i} \xi_{j}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right)
$$

Then ψ_{l+1} is a C^{∞}-function of $\tau, \xi_{l n+1}, \ldots, \xi_{m}$ (in the case of $m=l n$, we have $(1 / 2 l) \sum_{j=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}=0$ and ψ_{l+1} depends only on $\left.\tau\right)$. From (35) follow

$$
\begin{aligned}
\frac{\partial \psi_{l}}{\partial \tau}= & \sum_{i=(l-1) n+1}^{l n}\left(\frac{1}{4} p_{l}^{\prime}(\tau) \xi_{i}^{2}+\frac{1}{2 l} \sum_{j=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right)^{\prime} \xi_{i} \xi_{j}+\beta_{i}^{\prime}(\tau) \xi_{i}+\rho_{i}^{\prime}(\tau)\right) \\
& +\frac{\partial \psi_{l+1}}{\partial \tau}, \\
\frac{\partial \psi_{l}}{\partial \xi_{k}}= & \left\{\begin{array}{l}
\frac{1}{2} p_{l}(\tau) \xi_{k}+\frac{1}{2 l} \sum_{j=l n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\beta_{k}(\tau), \\
\\
\frac{1}{2 l} \sum_{i=(l-1) n+1}^{l n}(l-1) n+1 \leqq k \leqq l n, \\
\left.\sum_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \xi_{i}+\frac{\partial \psi_{l+1}}{\partial \xi_{k}}, \quad l n+1 \leqq k \leqq m,
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \psi_{l}}{\partial \xi_{k}}-\sum_{j=(l-1) n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j} \\
& =\left\{\begin{array}{l}
\frac{1}{2} p_{l}(\tau) \xi_{k}-\frac{2 l-1}{2 l} \sum_{j=l n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\beta_{k}(\tau), \\
(l-1) n+1 \leqq k \leqq l n, \\
\frac{2 l+1}{2 l} \sum_{i=(l-1) n+1}^{l n}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \xi_{i}-\sum_{j=l n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\frac{\partial \psi_{l+1}}{\partial \xi_{k}}, \\
l n+1 \leqq k \leqq m,
\end{array}\right.
\end{aligned}
$$

and

$$
\Delta_{\xi} \psi_{l}=\frac{n}{2} p_{l}(\tau)+\Delta_{\xi} \psi_{l+1} .
$$

Substituting these into (33) and comparing the coefficients with respect to $\xi_{(l-1) n+1}, \ldots, \xi_{l n}$, we obtain the following:

$$
\begin{align*}
& \frac{1}{4}\left(p_{l}^{\prime}(\tau)-p_{l}(\tau)^{2}+\frac{2 l-3}{(l-1)^{2}} q_{l-1}(\tau)^{2}\right) \delta_{i j} \tag{36}\\
& -\frac{2 l+1}{4 l^{2}} \sum_{k=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right)\left(r_{j}^{\prime}(\tau) \cdot r_{k}(\tau)\right)=0 \\
& \quad(l-1) n+1 \leqq i, j \leqq l n
\end{align*}
$$

(37) $\frac{l+1}{l} \sum_{k=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \frac{\partial \psi_{l+1}}{\partial \xi_{k}}$

$$
\begin{aligned}
= & \frac{1}{2 l} \sum_{j=l n+1}^{m}\left\{\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right)^{\prime}+(l-1) p_{l}(\tau)\left(r_{i}(\tau)^{\prime} \cdot r_{j}(\tau)\right)\right\} \xi_{j} \\
& +\frac{1}{2 l} \sum_{j, k=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right)\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j} \\
& +\beta_{i}^{\prime}(\tau)-p_{l}(\tau) \beta_{i}(\tau)+\frac{l-2}{l-1} q_{l-1}(\tau) \beta_{i-n}(\tau), \\
& \quad(l-1) n+1 \leqq i \leqq l n,
\end{aligned}
$$

and

$$
\begin{align*}
& \frac{\partial \psi_{l+1}}{\partial \tau}-\Delta_{\xi} \psi_{l+1}-\sum_{k=l n+1}^{m} \frac{\partial \psi_{l+1}}{\partial \xi_{k}}\left(\frac{\partial \psi_{l+1}}{\partial \xi_{k}}-\sum_{j=l n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}\right) \tag{38}\\
& \quad+\frac{2 l-1}{4 l^{2}} \sum_{i=(l-1) n+1}^{l n} \sum_{j, k=l n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right)\left(r_{i}^{\prime}(\tau) \cdot r_{k}(\tau)\right) \xi_{j} \xi_{k} \\
& \quad+\frac{l-1}{l} \sum_{i=(l-1) n+1}^{l n} \sum_{j=l n+1}^{m} \beta_{i}(\tau)\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}=0
\end{align*}
$$

Let $P_{l}=P_{l}(\tau)$ be the orthogonal projection of \mathbb{R}^{m} to the orthogonal complement of the subspace generated by $\left\{r_{1}(\tau), \ldots, r_{l n}(\tau)\right\}$. By (36) and (13), we have

$$
\begin{equation*}
P_{l} r_{i}^{\prime} \cdot P_{l} r_{j}^{\prime}=q_{l}^{2} \delta_{i j}, \quad(l-1) n+1 \leqq i, j \leqq \ln \tag{39}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
P_{l} r_{i}^{\prime}=r_{i}^{\prime}+q_{l-1} r_{i-n}, \quad(l-1) n+1 \leqq i \leqq l n \tag{40}
\end{equation*}
$$

By recalling the definition of P_{l}, (34) implies

$$
P_{l} r_{i}^{\prime}=r_{i}^{\prime}-\sum_{j=1}^{(l-1) n}\left(r_{i}^{\prime} \cdot r_{j}\right) r_{j}
$$

If $1 \leqq j \leqq(l-1) n$, then by (14),

$$
r_{j}^{\prime}= \begin{cases}q_{1} r_{j+n}, & 1 \leqq j \leqq n, \\ q_{k} r_{j+n}-q_{k-1} r_{j-n}, & (k-1) n+1 \leqq j \leqq k n, 2 \leqq k \leqq l-1\end{cases}
$$

and so

$$
\begin{align*}
& r_{i}^{\prime} \cdot r_{j}=-r_{i} \cdot r_{j}^{\prime}=-q_{l-1} \delta_{i, j+n} \tag{41}\\
&(l-1) n+1 \leqq i \leqq l n, 1 \leqq j \leqq(l-1) n
\end{align*}
$$

Thus (40) holds.
If $q_{l}(t) \neq 0$ for all $t \in I$, then (39) and (41) imply that
$r_{1}(\tau), \ldots, r_{(l+1) n}(\tau)$ defined in (14) are orthonormal C^{∞}-vectors of \mathbb{R}^{m} on I where

$$
r_{i+n}(\tau)=\frac{1}{q_{l}(\tau)}\left(r_{i}^{\prime}(\tau)+q_{l-1}(\tau) r_{i-n}(\tau)\right), \quad(l-1) n+1 \leqq i \leqq \ln
$$

In the case of $m>(l+1) n$, we choose arbitrary C^{∞}-vectors $r_{(l+1) n+1}(\tau), \ldots$, $r_{m}(\tau)$ such that $\left\{r_{1}(\tau), \ldots, r_{m}(\tau)\right\}$ forms an orthonormal basis of \mathbb{R}^{m} for each $t \in I$. Then we have

$$
r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)=q_{l}(\tau) \delta_{i+n, j} \quad(l-1) n+1 \leqq i \leqq \ln , \ln +1 \leqq j \leqq m
$$

From (35) follows

$$
\begin{aligned}
& \psi_{l}\left(\tau, \xi_{(l-1) n+1}, \ldots, \xi_{m}\right) \\
& \begin{aligned}
=\sum_{i=(l-1) n+1}^{l n}\left(\frac{1}{4} p_{l}(\tau) \xi_{i}^{2}-\right. & \left.\frac{1}{2 l} q_{l}(\tau) \xi_{i} \xi_{i+n}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& +\psi_{l+l}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right)
\end{aligned}
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \log \varphi(\tau, \xi) \\
&=\sum_{k=1}^{l} \sum_{i=(k-1) n+1}^{k n}\left(\frac{1}{4} p_{k}(\tau) \xi_{i}^{2}\right.\left.+\frac{1}{2 k} q_{k}(\tau) \xi_{i} \xi_{i+n}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
&+\psi_{l+1}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

From (37) and (38) follow

$$
\begin{aligned}
& \frac{\partial \psi_{l+1}}{\partial \xi_{i}}=\frac{1}{2(l+1)}\left(\frac{q_{l}^{\prime}(\tau)}{q_{l}(\tau)}-(l-1) p_{l}(\tau)\right) \xi_{i} \\
&+ \frac{1}{2(l+1)} \sum_{j=(l+1) n+1}^{m}\left(r_{i}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}+\beta_{i}(\tau) \\
& \quad l n+1 \leqq i \leqq(l+1) n
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial \psi_{l+1}}{\partial \tau}-\Delta_{\xi} \psi_{l+1}-\sum_{k=l n+1}^{m} \frac{\partial \psi_{l+1}}{\partial \xi_{k}}\left(\frac{\partial \psi_{l+1}}{\partial \xi_{k}}-\sum_{j=l n+1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j}\right) \\
& \quad+\sum_{i=l n+1}^{(l+1) n}\left(\frac{2 l-1}{4 l^{2}} q_{l}(\tau)^{2} \xi_{i}^{2}+\frac{l-1}{l} q_{l}(\tau) \beta_{i-n}(\tau) \xi_{i}\right)=0
\end{aligned}
$$

Assume $q_{l}(t)=0$ for all $t \in I$. Then (39) gives

$$
P_{l} r_{i}^{\prime}=0, \quad(l-1) n+1 \leqq i \leqq \ln .
$$

This and (40) show

$$
r_{i}^{\prime}(\tau)=-q_{l-1}(\tau) r_{i-n}(\tau), \quad(l-1) n+1 \leqq i \leqq \ln
$$

Substituting this into (35), we have

$$
\begin{aligned}
\psi_{l}\left(\tau, \xi_{(l-1) n+1}, \ldots, \xi_{m}\right)= & \sum_{i=(l-1) n+1}^{l n}\left(\frac{1}{4} p_{l}(\tau) \xi_{i}^{2}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& +\psi_{l+1}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \log \varphi(\tau, \xi) \\
& =\sum_{k=1}^{l-1} \sum_{i=(k-1) n+1}^{k n}\left(\frac{1}{4} p_{k}(\tau) \xi_{i}^{2}+\frac{1}{2 k} q_{k}(\tau) \xi_{i} \xi_{i+n}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right) \\
& \quad+\sum_{i=(l-1) n+1}^{l n}\left(\frac{1}{4} p_{l}(\tau) \xi_{i}^{2}+\beta_{i}(\tau) \xi_{i}+\rho_{i}(\tau)\right)+\psi_{l+1}\left(\tau, \xi_{l n+1}, \ldots, \xi_{m}\right)
\end{aligned}
$$

From (38) follows

$$
\frac{\partial \psi_{l+1}}{\partial \tau}-\Delta_{\xi} \psi_{l+1}-\left|\nabla_{\xi} \psi_{l+1}\right|^{2}+\sum_{j, k=\ln +1}^{m}\left(r_{k}^{\prime}(\tau) \cdot r_{j}(\tau)\right) \xi_{j} \frac{\partial \psi_{l-1}}{\partial \xi_{k}}=0
$$

Thus the assertion for l is shown.

Proof of Theorem 7. For each $t \in D$, there exists a positive integer $l \leqq m / n$ such that $q_{l}(t)=0$. In fact, if $q_{1}(t) \neq 0, \ldots, q_{k}(t) \neq 0$, then by Lemma $9,(k+1) n \leqq m$.

Assume that $q_{1} \neq 0, \ldots, q_{l-1} \neq 0$ and $q_{l}=0$ on an open interval I. Then by (14) and (16), we obtain n systems of linear differential equations:
(42) $\frac{d}{d t}\left(\begin{array}{c}r_{i} \\ r_{n+i} \\ \vdots \\ r_{(l-1) n+i}\end{array}\right)=\left(\begin{array}{cccc}0 & q_{1} & & 0 \\ -q_{1} & 0 & \ddots & \\ & \ddots & \ddots & q_{l-1} \\ 0 & & -q_{l-1} & 0\end{array}\right)\left(\begin{array}{c}r_{i} \\ r_{n+i} \\ \vdots \\ r_{(l-1) n+i}\end{array}\right)$

$$
=: Q\left(\begin{array}{c}
r_{i} \\
r_{n+i} \\
\vdots \\
r_{(l-1) n+i}
\end{array}\right),
$$

for $1 \leqq i \leqq n$. Fix arbitrary $t_{0} \in I$ and let $S(t)=\left(s_{j k}(t)\right)_{j, k=1}^{l}$ be the solution of the initial value problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} S(t)=Q(t) S(t) \tag{43}\\
S\left(t_{0}\right)=I_{l}
\end{array}\right.
$$

where I_{l} is the (l, l) unit matrix. Then $S(t)$ is an orthogonal matrix for every $t \in I$, because $Q(t)$ is skew symmetric. Then by (42), we have

$$
\left(\begin{array}{c}
r_{i}(t) \\
r_{n+i}(t) \\
\vdots \\
r_{(l-1) n+i}(t)
\end{array}\right)=S(t)\left(\begin{array}{c}
r_{i}\left(t_{0}\right) \\
r_{n+i}\left(t_{0}\right) \\
\vdots \\
r_{(l-1) n+i}\left(t_{0}\right)
\end{array}\right), \quad 1 \leqq i \leqq n
$$

This means that $r_{1}(t), r_{2}(t), \ldots, r_{l n}(t)$ are contained in the $l n$-dimensional space V spanned by the constant vectors $r_{1}\left(t_{0}\right), r_{2}\left(t_{0}\right), \ldots, r_{l n}\left(t_{0}\right)$ for every t. Therefore we can choose constant vectors $r_{l n+1}, \ldots, r_{m}$ which are the orthonormal basis of the orthogonal complement of V. Put $x_{j}=r_{j}\left(t_{0}\right) \cdot x$, $1 \leqq j \leqq m$ for $x \in \mathbb{R}^{m}$. Then

$$
\begin{equation*}
\xi_{(j-1) n+i}=\sum_{k=1}^{l} s_{j k}(t) x_{(k-1) n+i}, \quad 1 \leqq i \leqq n, \quad 1 \leqq j \leqq l \tag{44}
\end{equation*}
$$

and if $m \geqq l n+1$,

$$
\xi_{j}=x_{j}, \quad \ln +1 \leqq j \leqq m
$$

Then ψ_{l+1} is a C^{∞}-function of $t, x_{l n+1}, \ldots, x_{m}$ and so the equation (18) reduces to

$$
\frac{\partial \psi_{l+1}}{\partial t}-\Delta \psi_{l+1}-\left|\nabla \psi_{l+1}\right|^{2}=0
$$

Therefore $\varphi_{l+1}\left(t, x_{l n+1}, \ldots, x_{m}\right)=\exp \psi_{l+1}$ is a positive caloric function (in the case of $m=l n, \psi_{l+1}$ is equal to a constant). From (20) follows

$$
f_{i}=\sum_{k=1}^{l} \lambda(t) s_{1 k}(t) x_{(k-1) n+i}+b_{i}(t)
$$

where $\lambda(t)=\sqrt{f_{0}^{\prime}(t)}$. On the other hand, by (17) and (44) we have
$\log \varphi$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left[\sum_{j, k=1}^{l} \frac{1}{4} u_{j k}(t) x_{(j-1) n+i} x_{(k-1) n+i}+\sum_{j=1}^{l} \frac{1}{2} v_{i j}(t) x_{(j-1) n+i}+w_{i}(t)\right] \\
& \quad+\psi_{l+1}
\end{aligned}
$$

where

$$
u_{i j}=\sum_{k=1}^{l} p_{k} s_{k i} s_{k j}+\sum_{k=1}^{l-1} \frac{q_{k}}{k}\left(s_{k i} s_{k+1, j}+s_{k+1, i} s_{k j}\right), \quad 1 \leqq i, j \leqq l
$$

and

$$
v_{i j}=\sum_{k=1}^{l} 2 \beta_{(k-1) n+i} s_{k j}, \quad w_{i}=\sum_{k=1}^{l} \rho_{(k-1) n+i}, \quad 1 \leqq i \leqq n, 1 \leqq j \leqq l
$$

Put

$$
\begin{align*}
& g_{i 1}\left(t, x_{1}, \ldots, x_{l}\right)=\sum_{j=1}^{l} \lambda(t) s_{1 j}(t) x_{j}+b_{i}(t), \tag{45}\\
& 1 \leqq i \leqq n \\
& g_{i}\left(t, x_{1}, \ldots, x_{l}\right)=\left(f_{0}(t), g_{i 1}\left(t, x_{1}, \ldots, x_{l}\right)\right), \quad 1 \leqq i \leqq n \\
& \varphi_{i}\left(t, x_{1}, \ldots, x_{l}\right)=\exp \left[\sum_{j, k=1}^{l} \frac{1}{4} u_{j k}(t) x_{j} x_{k}+\sum_{j=1}^{l} \frac{1}{2} v_{i j}(t) x_{j}+w_{i}(t)\right] \\
& 1 \leqq i \leqq n
\end{align*}
$$

Then

$$
\begin{aligned}
f_{i}(t, x) & =g_{i 1}\left(t, x_{i}, x_{n+i}, \ldots, x_{(l-1) n+i}\right) \\
\varphi(t, x) & =\varphi_{l+1} \prod_{i=1}^{n} \varphi_{i}\left(t, x_{i}, x_{n+i}, \ldots, x_{(l-1) n+i}\right)
\end{aligned}
$$

We shall prove that each pair $\left(g_{i}, \varphi_{i}\right), 1 \leqq i \leqq n$ is a caloric morphism from $I \times \mathbb{R}^{l}$ to \mathbb{R}^{1+1}. By $H g_{i 1}=\partial g_{i 1} / \partial t$ and (43), we have

$$
\begin{aligned}
H g_{i 1} & =\sum_{j=1}^{n}\left(\lambda^{\prime}(t) s_{1 j}(t) x_{j}+\lambda(t) s_{1 j}^{\prime}(t) x_{j}\right)+b_{i}^{\prime}(t) \\
& =\sum_{j=1}^{n}\left(\lambda^{\prime}(t) s_{1 j}(t) x_{j}+\lambda(t) q_{1}(t) s_{2 j}(t) x_{j}\right)+b_{i}^{\prime}(t)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
2 \nabla \log \varphi_{i} \cdot \nabla g_{i 1} & =\sum_{j, k=1}^{l} \frac{1}{2} \lambda\left(u_{j k} s_{1 k}+u_{k j} s_{1 k}\right) x_{j}+\sum_{j=1}^{l} \lambda v_{i j} s_{1 j} \\
& =\sum_{j=1}^{l} \lambda\left(p_{1} s_{1 j} x_{j}+q_{1} s_{2 j} x_{j}+2 \beta_{i}\right)
\end{aligned}
$$

because $u_{i j}=u_{j i}$ and S is orthogonal. Hence

$$
H g_{i 1}=2 \nabla \log \varphi_{i} \cdot \nabla g_{i 1}, \quad 1 \leqq i \leqq n
$$

Since $f_{0}^{\prime}=\lambda^{2}$,

$$
\frac{d f_{0}}{d t}=\left|\nabla g_{i 1}\right|^{2}
$$

By the assumption, $\varphi(t, x)$ and φ_{l+1} are caloric functions, φ_{l+1} is independent of $x_{1}, \ldots, x_{l n}$ and

$$
\prod_{i=1}^{n} \varphi_{i}\left(t, x_{i}, x_{n+1}, \ldots, x_{(l-1) n+i}\right)
$$

is a caloric function. Hence we have

$$
\sum_{i=1}^{n}\left(K \varphi_{i}\right)\left(t, x_{i}, x_{n+i}, \ldots, x_{(l-1) n+i}\right)=0
$$

where $K \varphi_{i}=\left(1 / \varphi_{i}\right) H \varphi_{i}$. We have also $K \varphi_{i}=\left(\partial \log \varphi_{i} / \partial t\right)-\Delta \log \varphi_{i}-$ $\left|\nabla \log \varphi_{i}\right|^{2}$. Comparing the coefficients with respect to x_{j}, we see that $K \varphi_{i}$ depends only on t. Therefore

$$
\frac{\partial \log \varphi_{i}}{\partial t}-\Delta \log \varphi_{i}-\left|\nabla \log \varphi_{i}\right|^{2}=\sum_{j=1}^{l}\left(\rho_{(j-1) n+i}^{\prime}-\frac{1}{2} u_{j j}-\frac{1}{4} v_{i j}^{2}\right)
$$

Since

$$
\left(\begin{array}{ccc}
u_{11} & \ldots & u_{1 l} \\
\vdots & \ddots & \vdots \\
u_{l 1} & \ldots & u_{l l}
\end{array}\right)={ }^{t} S\left(\begin{array}{cccc}
p_{1} & q_{1} & & 0 \\
q_{1} & p_{2} & \ddots & \\
& \ddots & \ddots & \frac{q_{l-1}}{l-1} \\
0 & & \frac{q_{l-1}}{l-1} & p_{l}
\end{array}\right) S
$$

and

$$
\left(v_{i 1}, \ldots, v_{i l}\right)=2\left(\beta_{i}, \beta_{n+i}, \ldots, \beta_{(l-1) n+i}\right) S
$$

we have

$$
\sum_{j=1}^{l}\left(\rho_{(j-1) n+i}^{\prime}-\frac{1}{2} u_{j j}-\frac{1}{4} v_{i j}^{2}\right)=\sum_{j=1}^{l}\left(\rho_{(j-1) n+i}^{\prime}-\frac{p_{j}}{2}-\beta_{(j-1) n+i}^{2}\right)=0
$$

by the definition of ρ_{j} in (15). Therefore each φ_{i} is a positive caloric function. Thus $\left(g_{i}, \varphi_{i}\right)$ is a caloric morphism. By (45) and (46), each $\left(g_{i}, \varphi_{i}\right)$ satisfies the assumption of Lemma 8 . Therefore there exist a positive integer $k \leqq l$, an orthogonal coordinate of \mathbb{R}^{m} denoted by $\left(x_{1}, \ldots, x_{m}\right)$ again and positive caloric functions $h_{i}=h_{i}\left(t, x_{k n+i}, \ldots, x_{(l-1) n+i}\right), 1 \leqq i \leqq n$ (in the case of $k=l, h_{1}, \ldots, h_{n}$ are positive constants) such that f and φ are of form (1) or (2) with four families $\alpha_{i}, 1 \leqq i \leqq k, \beta_{i}, 1 \leqq i \leqq k, \delta_{i}, 0 \leqq i \leqq n$ and $\gamma_{i j}$, $1 \leqq i \leqq n, 1 \leqq j \leqq k$ of real numbers satisfying $\alpha_{i}>0$ and $\beta_{i} \neq \beta_{j}, i \neq j$:

$$
\begin{align*}
f_{0}(t) & =\sum_{j=1}^{k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0} \tag{1}\\
f_{i}(t, x) & =g_{i 1}\left(t, x_{i}, \ldots, x_{(l-1) n+i}\right)=\sum_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{(j-1) n+i}+\gamma_{i j}\right)+\delta_{i} \\
\varphi(t, x) & =\varphi_{l+1} \prod_{i=1}^{n} \varphi_{i}\left(t, x_{i}, \ldots, x_{(l-1) n+i}\right) \\
& =\varphi_{l+1} \prod_{i=1}^{n} h_{i} \prod_{j=1}^{k} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{(j-1) n+i}+\gamma_{i j}\right)^{2}}{4\left(\beta_{j}-t\right)} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
f_{0}(t) & =\alpha_{1}^{2} t+\sum_{1<j \leqq k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0} \\
f_{i}(t, x) & =g_{i 1}\left(t, x_{i}, \ldots, x_{(l-1) n+i}\right) \\
& =\alpha_{1}\left(x_{i}+\gamma_{i 1} t\right)+\sum_{1<j \leqq k} \frac{\alpha_{j}}{\beta_{j}-t}\left(x_{(j-1) n+i}+\gamma_{i j}\right)+\delta_{i}
\end{aligned}
$$

$$
\begin{aligned}
\varphi(t, x)= & \varphi_{l+1} \prod_{i=1}^{n} \varphi_{i}\left(t, x_{i}, \ldots, x_{(l-1) n+i}\right) \\
= & \varphi_{l+1} \prod_{i=1}^{n} h_{i} \exp \left[\frac{\gamma_{i 1}^{2}}{4} t+\frac{\gamma_{i 1}}{2} x_{i}\right] \\
& \times \prod_{1<j \leqq k} \frac{1}{\left|\beta_{j}-t\right|^{1 / 2}} \exp \frac{\left(x_{(j-1) n+i}+\gamma_{i j}\right)^{2}}{4\left(\beta_{j}-t\right)}
\end{aligned}
$$

Put $h=\varphi_{l+1} h_{1} \cdots h_{n}$. Then $h=h\left(t, x_{k n+1}, \ldots, x_{m}\right)$ is a positive caloric function. We obtain the required form of (f, φ) on $D \cap\left(I \times \mathbb{R}^{m}\right)$. Since f_{0} is of C^{∞}, the form of (f, φ) holds on the closure \bar{I} of I, if \bar{I} is contained in the interval where f_{0} is defined. Thus (f, φ) has the required form on each open interval where $q_{1}>0, \ldots, q_{l-1}>0$. Fix an open interval I such that $q_{1}>0, \ldots, q_{l-2}>0$. The analyticity of f_{0} and (13) implies that q_{l-1} is an analytic function on I. Therefore, the zero-points of q_{l-1} is discrete, which is denoted by $\left\{\sigma_{\nu}\right\}_{\nu=M}^{N}(M, N$ may be $-\infty, \infty$, respectively). For each ν, f_{0} is of form

$$
f_{0}(t)= \begin{cases}\sum_{j=1}^{k} \frac{\alpha_{j}^{2}}{\beta_{j}-t}+\delta_{0}, & t \in\left(\sigma_{\nu-1}, \sigma_{\nu}\right] \\ \sum_{j=1}^{\tilde{k}} \frac{\tilde{\alpha}_{j}^{2}}{\tilde{\beta}_{j}-t}+\tilde{\delta}_{0}, & t \in\left[\sigma_{\nu}, \sigma_{\nu+1}\right)\end{cases}
$$

in the case of (1). Then $\tilde{k}=k, \tilde{\alpha}_{j}=\alpha_{j}, \tilde{\beta}_{j}=\beta_{j}$ and $\tilde{\delta}_{0}=\delta_{0}$, because f_{0} is of C^{∞}. Therefore (f, φ) has the required form on each interval where $q_{1}>$ $0, \ldots, q_{l-2}>0$. In the case of (2), the same argument holds. Consequently, (f, φ) is of a required form on D. This completes the proof of Theorem 7.

Corollary 10. Let (f, φ) be the same as in Theorem 7. Then (f, φ) is equal to the composition of a the direct sum of k caloric morphisms of \mathbb{R}^{n+1} and a projection $\mathbb{R}^{m+1} \rightarrow \mathbb{R}^{k n+1}$.

Proof. In the case of (I), we put

$$
g_{j 0}(t)= \begin{cases}\frac{\alpha_{1}^{2}}{\beta_{1}-t}+\delta_{0}, & j=1 \\ \frac{\alpha_{j}^{2}}{\beta_{j}-t}, & j>1\end{cases}
$$

$$
\begin{aligned}
& g_{j i}\left(t, x_{1}, \ldots, x_{n}\right)= \begin{cases}\frac{\alpha_{1}}{\beta_{1}-t}\left(x_{i}+\gamma_{i j}\right)+\delta_{i}, & j=1 \\
\frac{\alpha_{j}}{\beta_{j}-t}\left(x_{i}+\gamma_{i j}\right), & j>1\end{cases} \\
& \varphi_{j}\left(t, x_{1}, \ldots, x_{n}\right)=\frac{1}{\left|\beta_{j}-t\right|^{n / 2}} \exp \sum_{i=1}^{n} \frac{\left(x_{i}+\gamma_{i j}\right)^{2}}{4\left(\beta_{j}-t\right)},
\end{aligned}
$$

for $1 \leqq i \leqq n$ and $1 \leqq j \leqq k$. In the case of (II), we put

$$
\begin{aligned}
& g_{j 0}(t)= \begin{cases}\alpha_{1}^{2} t+\delta_{0}, & j=1, \\
\frac{\alpha_{j}^{2}}{\beta_{j}-t}, & j>1,\end{cases} \\
& g_{j i}\left(t, x_{1}, \ldots, x_{n}\right)= \begin{cases}\alpha_{1}\left(x_{i}+\gamma_{i 1} t\right)+\delta_{1}, & j=1, \\
\frac{\alpha_{j}}{\beta_{j}-t}\left(x_{i}+\gamma_{i j}\right), & j>1,\end{cases} \\
& \varphi_{j}\left(t, x_{1}, \ldots, x_{n}\right)= \begin{cases}\exp \sum_{i=1}^{n}\left[\frac{\gamma_{i 1}^{2}}{4} t+\frac{\gamma_{i 1}}{2} x_{i}\right], & j=1, \\
\frac{1}{\left|\beta_{j}-t\right|^{n / 2}} \exp \sum_{i=1}^{n} \frac{\left(x_{i}+\gamma_{i j}\right)^{2}}{4\left(\beta_{j}-t\right)}, & j>1\end{cases}
\end{aligned}
$$

for $1 \leqq i \leqq n$ and $1 \leqq j \leqq k$. Then each pair $\left(g_{j}, \varphi_{j}\right)=\left(\left(g_{j 0}, \ldots, g_{j n}\right), \varphi_{j}\right)$, $1 \leqq j \leqq k$ is a caloric morphism. $\left(g_{1}, \varphi_{1}\right)$ is defined on $\mathbb{R}^{n} \backslash\left\{t \neq \beta_{1}\right\}$ in the case of (I) and on \mathbb{R}^{n} in the case of (I). For $j>1,\left(g_{j}, \varphi_{j}\right)$ is defined on $\mathbb{R}^{n} \backslash\left\{t \neq \beta_{j}\right\}$. Let (p, ψ) be the projection $\mathbb{R}^{m+1} \rightarrow \mathbb{R}^{k n+1}$ such that $p_{0}(t)=t, p_{i}\left(t, x_{1}, \ldots, x_{m}\right)=x_{i}, 1 \leqq i \leqq k n$ and $\psi\left(t, x_{1}, \ldots, x_{m}\right)=$ $h\left(t, x_{k n+1}, \ldots, x_{m}\right)$. Then (f, φ) is equal to the composition of the direct sum of $\left(g_{1}, \varphi_{1}\right), \ldots,\left(g_{k}, \varphi_{k}\right)$ and (p, ψ).

References

[1] P. Appell, Sur l'équation $\partial^{2} z / \partial x^{2}-\partial z / \partial y$ et la théorie de la chaleur, J. Math. Pures Appl., 8 (1892), 186-216.
[2] B. Fuglede, Harmonic Morphisms Between Riemannian Manifolds, Ann. Inst. Fourier(Grenoble), 28 (1978), no. 2, 107-144.
[3] B. Fuglede, Harmonic Morphisms, Complex Analysis, Joensuu 1978, Lecture Notes in Math., $\mathbf{7 4 7}$ (1979), Springer-Verlag, Berlin (1979), 123-131.
[4] B. Fuglede, Harmonic morphisms between semi-riemannian manifolds, Ann. Acad. Sci. Fenn. Math., 21 (1996), 31-50.
[5] F. W. Gehring and H. Haahti, The transformations which preserve the harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 293 (1960), 1-12.
[6] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), no. 2, 215-229.
[7] H. Leutwiler, On the Appell Transformation, Potential Theory (1988), Plenum, New York, 215-222.
[8] K. Shimomura, Caloric morphisms and a generalization of the Appell transformation, Proceedings of the Seventh International Colloquium on Differential Equations (1997), VSP Press, Netherlands, 389-394.
[9] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.

Department of Mathematical Sciences
Ibaraki University
Mito, Ibaraki, 310
Japan
shimomur@mito.ipc.ibaraki.ac.jp

[^0]: Received November 12, 1998.
 2000 Mathematics Subject Classification: 31B99, 35K99, 35A30

