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THE DETERMINATION OF CALORIC

MORPHISMS ON EUCLIDEAN DOMAINS
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Dedicated to Professor Masayuki Itô in honour of his sixtieth birthday

Abstract. Let D be a domain in R
m+1

and E be a domain in R
n+1. A pair

of a smooth mapping f : D → E and a smooth positive function ϕ on D is
called a caloric morphism if ϕ · u ◦ f is a solution of the heat equation in D
whenever u is a solution of the heat equation in E. We give the characterization
of caloric morphisms, and then give the determination of caloric morphisms. In
the case of m < n, there are no caloric morphisms. In the case of m = n, caloric
morphisms are generated by the dilation, the rotation, the translation and the
Appell transformation. In the case of m > n, under some assumption on f ,
every caloric morphism is obtained by composing a projection with a direct
sum of caloric morphisms of Rn+1.

§1. Introduction

For a non-negative integer k, R
k+1 denotes the k + 1-dimensional Eu-

clidean space. The coordinates in R
k+1 is denoted by (t, x) or (x0, x) where

x = (x1, . . . , xk).

We shall use the following notation:

∇ =

(

∂

∂x1
, . . . ,

∂

∂xk

)

, ∆ =
k

∑

j=1

∂2

∂x2
j

, H =
∂

∂t
− ∆.

A C2-function h is said to be caloric if h satisfies the heat equation

Hh = 0.

Since the heat operatorH is hypoelliptic (see, e.g. [9]), every caloric function

is infinitely differentiable.
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Let m,n be positive integers and D a domain in R
m+1. We denote by

(t, x) = (t, x1, . . . , xm), (τ, y) = (τ, y1, . . . , yn) the points of R
m+1, R

n+1 re-

spectively. We consider a mapping f(t, x) = (f0(t, x), f1(t, x), . . . , fn(t, x)) :

D → R
n+1 and a weight function ϕ which preserve solutions of the heat

equation in the following sense. A pair (f, ϕ) of C2-mapping f : D → R
n+1

and a positive C2-function ϕ on D is said to be a caloric morphism if

f(D) is a domain in R
n+1 and if for every caloric function u on f(D),

ϕ(t, x)(u ◦ f)(t, x) is also a caloric function on D.

In the case of m = n, the following three typical caloric morphisms are

known.

The Appell transformation

Let D = (0,∞) × R
n (resp. = (−∞, 0) × R

n). Put

f(t, x) =
(

− 1

t
,
x

t

)

, ϕ(t, x) =
1

√

4π|t|n
e−|x|2/4t.

Then f(D) = (−∞, 0) × R
n (resp. = (0,∞) × R

n) and (f, ϕ) is a caloric

morphism.

The dilation and the rotation in x

Let λ > 0 and U be an (n, n)-orthogonal matrix. Put

f(t, x) = (λ2t, λUx), ϕ(t, x) = 1.

Then (f, ϕ) is a caloric morphism from R
n+1 onto R

n+1.

The translation

Let a ∈ R and b, c ∈ R
n. Put

f(t, x) = (t+ a, x+ tb+ c), ϕ(t, x) = e
1
4
|b|2t+ 1

2
b·x.

Then (f, ϕ) is a caloric morphism from R
n+1 onto R

n+1.

We give two simple examples in the case of m > n.

Example 1. The symmetrization in R
m with respect to a subspace

with codimension 2.

Let m = 4, n = m − 2 and D = {(t, x) ; t > 0, |x′| > 0} (resp.

D = {(t, x); t < 0, |x′| > 0}), where x′ = (x1, x2, x3, 0, . . . , 0) for x =

(x1, . . . , xm). Put






f0(t) = −t−1,

f1(t, x) = t−1|x′|,
fj(t, x) = t−1xj+2, 2 5 j 5 n,
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ϕ(t, x) = |x′|−1|t|−(m−2)/2 exp
(

− |x|2
4t

)

.

Then f(D) = {(τ, y); τ < 0, y1 > 0} (resp. f(D) = {(τ, y); τ > 0, y1 < 0})
and (f, ϕ) is a caloric morphism.

Example 2. The projection in x.

Let h be an arbitrary positive caloric function on R
m−n+1. Put

f(t, x1, . . . , xm) = (t, x1, . . . , xn), ϕ(t, x) = h(t, xn+1, . . . , xm).

Then (f, ϕ) is a caloric morphism from R
m+1 onto R

n+1.

In the case of m = n, Leutwiler [7] proved that every caloric morphism

has the following form:

f(t, x) =
(αt+ β

γt+ δ
,
Rx+ tv +w

γt+ δ

)

,

ϕ(t, x) =











C
|γt+δ|n/2 exp

[

− |γRx+γw−δv|2

γ|γt+δ|

]

, γ 6= 0, (0)

C exp
[

|v|2

4 t+ 1
2v · Rx

]

, γ = 0,

where α, β, γ, δ are real numbers with αδ − βγ = 1, v,w ∈ R
n, R is an

n-dimensional orthogonal matrix, C > 0 and · denotes the inner product of

R
n. It is a composition of the above three morphisms: the Appell transfor-

mation, the dilation, the translation.

The aim of this paper is to extend this to the case of m 6= n.

We first give a general characterization of caloric morphisms, which

is essentially obtained by Leutwiler. As its corollary, there are no caloric

morphism if m < n. Also by virtue of the characterization, we obtain a

new systematic way to construct a caloric morphism by a “direct sum” of

caloric morphisms in the case of m > n. It is remarkable that the direct

sum gives caloric morphisms of new type such that f0 is a sum of fractional

linear functions. Note that in the case of m = n, f0 is just a fractional linear

function.

Our main result is the determination of caloric morphisms (f, ϕ) in the

case of m > n under the assumption that each fi, 1 5 i 5 n is a polynomial

in x for every t and that f0 is real analytic. Under the assumption, we can

give an explicit form of caloric morphisms (Theorem 7 below). Although it

seems to be complicated, it turns out to be a direct sum of the caloric mor-

phisms of form (0) composed with a projection, as is shown in Corollary 10.
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§2. Characterization of caloric morphisms

Definition 1. A pair (f, ϕ) of C2-mapping f : D → R
n+1 and a

positive C2-function on D is said to be a caloric morphism, if f(D) is a

domain and if for every caloric function u on f(D), ϕ(t, x)(u ◦ f)(t, x) is

also a caloric function on D.

Remark 1. Using derivatives in the sense of distribution, we may as-

sume f and ϕ to be continuous rather than of C2. For the sake of simplicity,

we assume here that f and ϕ are of C2.

Theorem 1. Let f = (f0, f1, . . . , fn) : D → R
n+1 be a C2-mapping

such that f(D) is a domain and let ϕ be a positive C2-function on D. Then

the following statements are equivalent :

(i) (f, ϕ) is a caloric morphism.

(ii) For every polynomial P (τ, y) which is caloric and of degree 5 4,

ϕ(t, x)(P ◦ f)(t, x)

is caloric on D.

(iii) f and ϕ satisfy the following equations:

Hϕ = 0,(1)

ϕHfi = 2∇ϕ · ∇fi, 1 5 i 5 n,(2)

∇f0 = 0,(3)

∇fi(t, x) · ∇fj(t, x) = δij
df0

dt
(t), 1 5 i, j 5 n,(4)

where · denotes the inner product in R
m.

(iv) There exists a continuous function λ(t) = 0 on D such that

H{ϕ(u ◦ f)}(t, x) = λ(t)2ϕ(t, x)(Hu ◦ f)(t, x)(5)

holds for every C2 function u on f(D) where H in the right hand side

means the heat operator on R
n+1.

Remark 2. By (3), f0 depends only on t. And (4) shows that df0/dt = 0

and |∇fj(t, x)|2 is independent of x, where | · | denotes the norm of R
m.
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Proof.

(i)⇒(ii) is trivial.

(ii)⇒(iii): By the chain rule,

H{ϕ(P ◦ f)} = Hϕ(P ◦ f) +

n
∑

i=0

(ϕHfi − 2∇ϕ · ∇fi)
∂P

∂yi
◦ f(6)

− ϕ

n
∑

i,j=0

(∇fi · ∇fj)
∂2P

∂yi∂yj
◦ f.

Let P = 1. Then we have Hϕ = 0. Let P (y0, y) = yi, 1 5 i 5 n in the

equation (6). Then we obtain

ϕHfi = 2∇ϕ · ∇fi, 1 5 i 5 n.

Take a point p ∈ D and put q = f(p). Let P (y0, y) = (yi − qi)(yj − qj),

1 5 i, j 5 n, i 6= j in the equation (6). Since (∂2P/∂yi∂yj)(q) = 1 and the

other derivatives of P vanish at q, we have

∇fi(p) · ∇fj(p) = 0, 1 5 i, j 5 n, i 6= j.

Since p is arbitrary,

∇fi · ∇fj = 0, 1 5 i, j 5 n, i 6= j,(7)

in D. Let P (y0, y) = (y0 − q0)2 +(y0− q0)(yi − qi)2 + 1
12(yi − qi)4, 1 5 i 5 n.

Since (∂2P/∂y2
0)(q) = 1 and the other derivatives of order 5 2 vanish at q,

we have

|∇f0(p)|2 = 0, and thus ∇f0(p) = 0.(8)

Since p is arbitrary, (3) holds. Finally, let P (y0, y) = y0 − q0 + 1
2(yi − qi)

2,

1 5 i 5 n. Since (∂P/∂y0)(q) = (∂2P/∂y2
i )(q) = 1 and the other derivatives

vanish at q, we have

ϕ(p)Hf0(p) = ϕ(p)|∇fi(p)|2, 1 5 i 5 n.(9)

Combining (7), (8) and (9), we obtain (4).

(iii)⇒(iv): Let u be of C2 in f(D). By the chain rule

H{ϕ(u ◦ f)} = Hϕ(u ◦ f) +

n
∑

i=0

(ϕHfi − 2∇ϕ · ∇fi)
∂u

∂yi
◦ f(10)

− ϕ

n
∑

i,j=0

(∇fi · ∇fj)
∂2u

∂yi∂yj
◦ f.
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Substituting (1)–(4) into (10), we have

H{ϕ(u ◦ f)} = ϕHf0
∂u

∂y0
◦ f − ϕ

n
∑

i=1

|∇fi|2
∂2u

∂y2
i

◦ f = ϕ
df0

dt
Hu ◦ f.

Putting λ(t) = (df0/dt(t))
1/2, we obtain

H{ϕ(u ◦ f)}(t, x) = λ(t)2ϕ(t, x)(Hu ◦ f)(t, x).

Note that λ(t) = |∇fi(t, x)| by (4).

(iv)⇒(i) is evident.

Corollary 2. For every caloric morphism (f, ϕ), f and ϕ are of C∞.

Proof. By (2), ϕfi is caloric (1 5 i 5 n), so ϕfi is of C∞. Since ϕ > 0

and ϕ is caloric, fi is of C∞, 1 5 i 5 n. f0 is of C∞ by (4). Thus f is a

C∞-mapping.

Corollary 3. Let (f, ϕ) be a caloric morphism from D to R
n+1. Then

for any C2-function u on f(D), we have the following implications:

Hu = 0 =⇒ H{ϕ(u ◦ f)} = 0,

Hu 5 0 =⇒ H{ϕ(u ◦ f)} 5 0.

They immediately follow from (5).

Corollary 4. (i) Let (f, ϕ) = ((f0, . . . , fn), ϕ) be a caloric morphism

from D ⊂ R
m+1 to R

n+1. Then f ′0(t) > 0 on D.

(ii) If n > m, there are no caloric morphisms.

Proof. (i) Suppose that f ′0(t0) = 0 for some (t0, x0) ∈ D. Let I ⊂ R

be the connected component of {t; f ′0(t) = 0} such that t0 ∈ I. Since f0 is

a non-decreasing function, f0(t) 6= f0(t0) for all t /∈ I. So we have

f({(t, x) ∈ D; t ∈ I}) = f(D) ∩ {(τ, y) ∈ R
n+1; τ = f0(t0)}.

Then by (4)

∇fi(t, x) = 0, (t, x) ∈ D, t ∈ I, 1 5 i 5 n.
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This and (2) imply

∂fi

∂t
(t, x) = 2∇ logϕ · ∇fi = 0, (t, x) ∈ D, t ∈ I, 1 5 i 5 n.

Therefore the set f({(t, x) ∈ D; t ∈ I}) consists of one point. Thus the

set f(D) ∩ {(τ, y); τ = f0(t0)} consists of one point. It is contrary to the

condition that f(D) is a domain. Therefore f ′0(t) > 0 for all t.

(ii) Let m < n. By virtue of (4), ∇f1, . . . ,∇fn are n orthogonal vectors

in R
m with same length. Since n > m, we have ∇f1 = · · · = ∇fn = 0 in D.

Then (4) gives f ′0 = 0 in D. This contradicts to (i).

Let m,n, k be positive integers and let D,E be domains in R
m+1, in

R
n+1, respectively. If (f, ϕ) : E → R

k+1 and (g, ψ) : D → R
n+1 are caloric

morphisms such that g(D) ⊂ E, then we can make a caloric morphism

(F,Φ) : D → R
k+1 from (f, ϕ) and (g, ψ) by the composition (F,Φ) =

(f ◦ g, (ϕ ◦ g)ψ).

The next proposition provides a manner for the construction of new

caloric morphisms.

Proposition 5. Let l,m1, . . . ,ml, n be positive integers and I be an

open interval. For each j = 1, . . . , l, suppose that Dj is a domain in R
mj

and that (gj , ϕj) = ((gj0, gj1, . . . , gjn), ϕj) is a caloric morphism : I ×Dj ⊂
R

mj+1 → R
n+1. Put

f0(t) = g10(t) + · · · + gl0(t),

fi(t, x1, . . . , xm1+···+ml
) = g1i(t, x1, . . . , xm1)

+ g2i(t, xm1+1, . . . , xm1+m2) + · · ·
+ gli(t, xm1+···+ml−1+1, . . . , xm1+···+ml

), 1 5 i 5 n,

ϕ(t, x1, . . . , xm1+···+ml
) = ϕ1(t, x1, . . . , xm1)ϕ2(t, xm1+1, . . . , xm1+m2) · · ·

ϕl(t, xm1+···+ml−1+1, . . . , xm1+···+ml
).

Then (f, ϕ) : I ×D1 × · · · ×Dl ⊂ R
m1+···+ml+1 → R

n+1 is a caloric mor-

phism.

We call the above caloric morphism (f, ϕ) the direct sum of

(g1, ϕ1), . . . , (gl, ϕl).
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Proof. For each j, we denote by Hj, ∇j and ∆j the heat operator, the

gradient and the Laplacian in R
mj+1. The heat operator, the gradient and

the Laplacian in R
m1+···+ml+1 are denoted by H, ∇ and ∆. Since (gj , ϕj)

is a caloric morphism, (1), (2) and (4) show

Hjϕj = 0, ϕjHjgji = 2∇jϕj · ∇jgji, ∇jgji · ∇jgjk = δik
dgj0

dt
,

1 5 i, k 5 n, 1 5 j 5 l.

Using

∇fi = (∇1g1i,∇2g2i, . . . ,∇lgli),

∇ϕ = ϕ
(∇1ϕ1

ϕ1
,
∇2ϕ2

ϕ2
, . . . ,

∇lϕl

ϕl

)

,

Hfi = H1g1i +H2g2i + · · · +Hlgli,

we have

2∇ϕ · ∇fi = ϕ
(2∇1ϕ1 · ∇1g1i

ϕ1
,
2∇2ϕ2 · ∇2g2i

ϕ2
, . . . ,

2∇lϕl · ∇lgli

ϕl

)

= ϕ(H1g1i +H2g2i + · · · +Hlgli)

= ϕHfi, 1 5 i 5 n,

and

∇fi · ∇fk = ∇1g1i · ∇1g1k + ∇2g2i · ∇2g2k + · · · + ∇lgli · ∇lglk

= δik

(dg10

dt
+
dg20

dt
+ · · · + dgl0

dt

)

= δik
df0

dt
.

On the other hand, since

∂ϕ

∂t
= ϕ

( 1

ϕ1

∂ϕ1

∂t
+

1

ϕ2

∂ϕ2

∂t
+ · · · + 1

ϕl

∂ϕl

∂t

)

,

∆ϕ = ϕ
(∆1ϕ1

ϕ1
+

∆2ϕ2

ϕ2
+ · · · + ∆lϕl

ϕl

)

,

we obtain Hϕ = 0. Thus (f, ϕ) is a caloric morphism.
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§3. Main result

In the case of m = n, the form of caloric morphism is explicitly deter-

mined by Leutwiler [7]. So hereafter, we assume m > n in the rest of this

paper.

In the sequel, we shall determine caloric morphisms (f, ϕ), f = (f0, f1,

. . . , fn) in the case that fi, 1 5 i 5 n is a polynomial of x for each t and

that f0 is real analytic.

Proposition 6. Let (f, ϕ) be a caloric morphism and assume that

fi, 1 5 i 5 n is a polynomial of x for each fixed t. Then

fi(t, x) =
m

∑

j=1

aij(t)xj + bi(t), 1 5 i 5 n,

where aij , bi, 1 5 i 5 n, 1 5 j 5 m are C∞-functions.

Proof. Let t be fixed. Suppose that fi(t, x) is a polynomial of degree

l = 1. Write fi(t, x) = h(t, x)+g(t, x), where h is a homogeneous polynomial

of degree l and g is a polynomial of degree 5 l−1. Since ∇h 6= 0, the degree

of the polynomial |∇fi|2 = |∇h|2+2∇h·∇g+|∇g|2 is equal to 2l−2. On the

other hand, |∇fi|2 is of degree 0 by (4) of Theorem 1. Thus deg fi 5 1.

Remark 3. We cannot replace real analytic functions in the place of

polynomials in the above proposition. In the above Example 1, f1 is not a

polynomial.

Main result of this paper is the following

Theorem 7. Let (f, ϕ) = ((f0, f1, . . . , fn), ϕ) be a caloric morphism

defined on a domain D ⊂ R
m+1. Assume that for each 1 5 i 5 n and each

t, fi(t, x) is a polynomial of x and that f0(t) is real analytic.

Then there exist a positive integer k 5 m/n and an orthogonal coordi-

nate of R
m denoted by (x1, . . . , xm) again with four families αi, 1 5 i 5 k,

βi, 1 5 i 5 k, δi, 0 5 i 5 n and γij, 1 5 i 5 n, 1 5 j 5 k of real num-

bers satisfying αi > 0 and βi 6= βj , i 6= j, and a positive caloric function

h = h(t, xkn+1, . . . , xm) (in the case of m = nk, h is a positive constant)

such that f and ϕ are of form (I) or (II).
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(I)

f0(t) =
k

∑

j=1

α2
j

βj − t
+ δ0,

fi(t, x) =

k
∑

j=1

αj

βj − t
(x(j−1)n+i + γij) + δi, 1 5 i 5 n,

ϕ(t, x) = h

k
∏

j=1

1

|βj − t|n/2
exp

n
∑

i=1

(x(j−1)n+i + γij)
2

4(βj − t)
,

(II)

f0(t) = α2
1t+

∑

1<j5k

α2
j

βj − t
+ δ0,

fi(t, x) = α1(xi + γi1t) +
∑

1<j5k

αj

βj − t
(x(j−1)n+i + γij) + δi, 1 5 i 5 n,

ϕ(t, x) = h exp

n
∑

i=1

[γ2
i1

4
t+

γi1

2
xi

]

∏

1<j5k

1

|βj − t|n/2
exp

n
∑

i=1

(x(j−1)n+i + γij)
2

4(βj − t)
.

First we shall prove the assertion of the theorem in the case of n = 1

under the assumption that logϕ is a polynomial of x of degree 5 2.

Lemma 8. Let (f, ϕ) = ((f0, f1), ϕ) be a caloric morphism from D ⊂
R

m+1 to R
1+1. Assume that f1 and ϕ are of the following form:

f1(t, x) =

m
∑

j=1

aj(t)xj + b(t),

ϕ(t, x) = exp
(1

4
x · U(t)x+ v(t) · x+ w(t)

)

,

where a1, . . . , am, b and w are C∞-functions, v is a C∞-vector and where

U is a symmetric (m,m)-matrix of C∞-functions.

Then there exist a positive integer k 5 m and an orthogonal coordinate

of R
m denoted by (x1, . . . , xm) again with four families αi, 1 5 i 5 k, βi,

1 5 i 5 k, δi, i = 0, 1 and γi, 1 5 i 5 k of real numbers satisfying αi > 0

and βi 6= βj , i 6= j, and a positive caloric function h = h(t, xk+1, . . . , xm)
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(in the case of m = k, h is a positive constant) such that f and ϕ are of

form (1) or (2).

(1)

f0(t) =

k
∑

j=1

α2
j

βj − t
+ δ0,

f1(t, x) =

k
∑

j=1

αj

βj − t
(xj + γj) + δ1,

ϕ(t, x) = h(t, x)

k
∏

j=1

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
,

if U(t0) is invertible or a(t0) is orthogonal to the zero-eigenspace of U(t0)

for some t0.

(2)

f0(t) = α2
1t+

∑

1<j5k

α2
j

βj − t
+ δ0,

f1(t, x) = α1(x1 + γ1t) +
∑

1<j5k

αj

βj − t
(xj + γj) + δ1,

ϕ(t, x) = h(t, x) exp
[γ2

1

4
t+

γ1

2
x1

]

∏

1<j5k

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
,

otherwise.

Proof of Lemma 8. We may assume t0 = 0 by some translation of t.

Since (f, ϕ) is a caloric morphism, f1 and logϕ satisfy the equations

∂ logϕ

∂t
− ∆ logϕ− |∇ logϕ|2 = 0,

Hf1 = 2∇ logϕ · ∇f1,

by (1) and (2). Then we have the following differential equations

U ′ = U2, v′ = Uv, w′ =
|v|2
4

+
trU

2
,

a′ = Ua, b′ = a · v,
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where a = (a1, . . . , am) and trU denotes the trace of the matrix U .

Since U(0) is real symmetric, we have the spectral decomposition

U(0) =
∑l

j=1 λjPj , where λj is a real eigenvalue of U(0) with multiplic-

ity nj, and Pj is the orthogonal projection of R
m to the corresponding

eigenspace. Since U(t) is the solution of U ′ = U2,

U(t) =

l
∑

j=1

λj

1 − λjt
Pj ,

and so the solutions of a′ = Ua, v′ = Uv are

a(t) =

l
∑

j=1

1

1 − λjt
Pja0, v(t) =

l
∑

j=1

1

1 − λjt
Pjv0,

where a0 = a(0) and v0 = v(0).

Let k be the cardinal of {Pj ;Pja0 6= 0} (note that a0 6= 0 because of (4)

and Corollary 4). We may assume Pja0 6= 0, 1 5 j 5 k, Pja0 = 0, k < j 5 l

and λj 6= 0, 1 < j 5 k, k + 1 < j 5 l by some rearrangement of λ1, . . . , λl,

if necessary.

Assume that U(0) is invertible. Then λj 6= 0 for all j and the solutions

of b′ = a · v and w′ = |v|2/4 + trU/2 are

b(t) =
k

∑

j=1

Pja0 · Pjv0
λj(1 − λjt)

+ δ1,

w(t) =

l
∑

j=1

( |Pjv0|2
4λj(1 − λjt)

− nj

2
log(1 − λjt)

)

+ δ2

with some constants δ1 and δ2. By f ′0 = |∇f1|2 we have

f0(t) =

∫

|a(t)|2 dt =

k
∑

j=1

|Pja0|2
λj(1 − λjt)

+ δ0

with some constant δ0. Put

αj =
|Pja0|
|λj|

> 0, ej =
λjPja0

|λjPja0|
∈ R

m, βj =
1

λj
, 1 5 j 5 k.

Note that β1, . . . , βk are mutually distinct. Adding m − k eigenvectors of

U(0) to {e1, . . . , ek}, in the case of m > k, we obtain an orthonormal basis
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{e1, . . . , em} of R
m. For j > k, we denote by λj the eigenvalue of U(0)

corresponding to ej and put βj =
1

λj
. By the orthogonal coordinate of R

m

defined by {e1, . . . , em}, we write x = (x1, . . . , xm) again for every x ∈ R
m.

Putting γj = ej ·
∑l

i=1 Piv0/λi, 1 5 j 5 m, we obtain

f0(t) =

k
∑

j=1

α2
j

βj − t
+ δ0,

f1(t, x) =

k
∑

j=1

αj

βj − t
(xj + γj) + δ1,

ϕ(t, x) = C
m
∏

j=1

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
,

where C is a positive constant.

Put

h(t, x) = C
∏

k<j5m

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
.

Then h = h(t, xk+1, . . . , xm) is a positive caloric function and

ϕ(t, x) = h

k
∏

j=1

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
.

Assume that U(0) is not invertible. Then there are two cases: a0 is

not orthogonal to the zero-eigenspace of U(0), or a0 is orthogonal to the

zero-eigenspace. They are equivalent to λ1 = 0, or λk+1 = 0, respectively.

If λ1 = 0, then b(t), w(t) are given by

b(t) = P1a0 · P1v0t+
∑

1<j5k

Pja0 · Pjv0
λj(1 − λjt)

+ δ1,

w(t) =
|P1v0|2

4
t+

∑

1<j5l

( |Pjv0|2
4λj(1 − λjt)

− nj

2
log(1 − λjt)

)

+ δ2

with some constants δ1 and δ2. Thus

f0(t) = |P1a0|2t+
∑

1<j5k

|Pja0|2
λj(1 − λjt)

+ δ0
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with some constant δ0. Put

αj =











|Pja0|, j = 1,

|Pja0|
|λj|

, j > 1,
ej =















Pja0

|Pja0|
, j = 1,

λjPja0

|λjPja0|
, j > 1,

βj =
1

λj
, 1 < j 5 k.

Note that βj are mutually distinct. Adding m − k eigenvectors of U(0)

to {e1, . . . , ek}, in the case of m > k, we obtain an orthonormal basis

{e1, . . . , em} of R
m. If j > k and U(0)ej = λiej for some λi 6= 0, we put

βj = 1/λi. By the orthogonal coordinate of R
m defined by {e1, . . . , em}, we

write x = (x1, . . . , xm) again for every x ∈ R
m.

Putting γj = ej · (P1v0 +
∑

1<i5l Piv0/λi), 1 5 j 5 m, we obtain

f0(t) = α2
1t+

∑

1<j5k

α2
j

βj − t
+ δ0,

f1(t, x) = α1(x1 + γ1t) +
∑

1<j5k

αj

βj − t
(xj + γj) + δ1,

ϕ(t, x) = C
∏

j∈J0

exp
[γ2

j

4
t+

γj

2
xj

]

∏

j∈J1

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
,

where J0 = {j;U(0)ej = 0}, J1 = {j;U(0)ej 6= 0} and where C is a positive

constant.

Put

h(t, x) = C
∏

j∈J0

k<j5m

exp
[γ2

j

4
t+

γj

2
xj

]

∏

j∈J1

k<j5m

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
.

Then h = h(t, xk+1, . . . , xm) is a positive caloric function and

ϕ(t, x) = h exp
[γ2

1

4
t+

γ1

2
x1

]

∏

1<j5k

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
.

Finally, if λk+1 = 0, then b(t), w(t) are given by

b(t) =
∑

15j5k

Pja0 · Pjv0
λj(1 − λjt)

+ δ1,
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w(t) =
|Pk+1v0|2

4
t+

∑

j 6=k+1

( |Pjv0|2
4λj(1 − λjt)

− nj

2
log(1 − λjt)

)

+ δ2

with some constants δ1 and δ2. Thus

f0(t) =
∑

15j5k

|Pja0|2
λj(1 − λjt)

+ δ0

with some constant δ0. Put

αj =
|Pja0|
|λj|

, ej =
λjPja0

|λjPja0|
, βj =

1

λj
, 1 5 j 5 k.

Note that βj are mutually distinct. Adding m − k eigenvectors of U(0)

to {e1, . . . , ek}, in the case of m > k, we obtain an orthonormal basis

{e1, . . . , em} of R
m. If j > k and U(0)ej = λiej for some λi 6= 0, we put

βj = 1/λi. By the orthogonal coordinate of R
m defined by {e1, . . . , em}, we

write x = (x1, . . . , xm) again for every x ∈ R
m.

Putting γj = ej · (Pk+1v0 +
∑

15i5l, i6=k+1 Piv0/λi), 1 5 j 5 m, we obtain

f0(t) =

k
∑

j=1

α2
j

βj − t
+ δ0,

f1(t, x) =

k
∑

j=1

αj

βj − t
(xj + γj) + δ1,

ϕ(t, x) = C
∏

j∈J0

exp
[γ2

j

4
t+

γj

2
xj

]

∏

j∈J1

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
,

where J0 = {j;U(0)ej = 0}, J1 = {j;U(0)ej 6= 0} and where C is a positive

constant.

Since 1, . . . , k ∈ J1,

h(t, x) = C
∏

j∈J0

exp
[γ2

j

4
t+

γj

2
xj

]

∏

j∈J1
k<j5m

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
.

is a positive caloric function and

ϕ(t, x) = h
∏

15j5k

1

|βj − t|1/2
exp

(xj + γj)
2

4(βj − t)
.
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For the proof of Theorem 7, we may assume that f is a caloric morphism

of the form

fi(t, x) =

m
∑

j=1

aij(t)xj + bi(t), 1 5 i 5 n,(11)

by virtue of Proposition 6. Denote by ai(t) the row-vector (ai1(t), . . . , aim(t)).

We introduce the functions pk(t), qk(t), k = 1 which will be used in the

proof of Theorem 7. We define p1(t) and q1(t) by

p1(t) =
f ′′0 (t)

2f ′0(t)
, q1(t) =

1√
3
(p′1(t) − p1(t)

2)1/2.

(Recall that f ′0(t) > 0 for all t by virtue of Corollary 4). For k = 2, we

define pk(t) and qk(t) inductively by

pk(t) =
q′k−1(t)

kqk−1(t)
+
k − 2

k
pk−1(t),(12)

qk(t) =
k√

2k + 1

(

p′k(t) − p2
k(t) +

2k − 3

(k − 1)2
q2k−1(t)

)1/2
,(13)

if qk−1(t) 6= 0. We put ri(t) ∈ R
m, 1 5 i 5 n by

ri(t) =
1

|ai(t)|
ai(t),

(Note that |ai(t)| =
√

f ′0(t) > 0 for all i and t because of (4)). And we put

rn+1(t), . . . , rkn(t) inductively by

ri+n(t) =























1

q1(t)
r′i(t), 1 5 i 5 n,

1

qj(t)
(r′i(t) + qj−1(t)ri−n(t)),

(j − 1)n+ 1 5 i 5 jn, 2 5 j 5 k − 1,

(14)

if qj(t) 6= 0, 1 5 j 5 k − 1.

The following is the key lemma to prove Theorem 7.

Lemma 9. Let l be a positive integer. Assume that q1, . . . , ql are de-

fined on an open interval I ⊂ R. Then the following statements hold.

(i) If ql 6= 0 on I, then r1(t), . . . , r(l+1)n(t) defined in (14) are orthonor-

mal C∞-vectors of R
m. Adding arbitrary C∞-vectors r(l+1)n+1(t), . . . , rm(t)
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such that {r1(t), . . . , rm(t)} forms an orthonormal basis of R
m for each

t ∈ I, in the case of m = (l + 1)n+ 1, we take the change of variables

{

τ = t,

ξj = rj(t) · x, 1 5 j 5 m,

on D∩ (I×R
m). Then there exists a C∞-function ψl+1(τ, ξln+1, . . . , ξm) on

D ∩ (I × R
m) such that

logϕ(τ, ξ) =

l
∑

k=1

(

kn
∑

i=(k−1)n+1

1

4
pk(τ)ξ

2
i +

1

2k
qk(τ)ξiξi+n + βi(τ)ξi + ρi(τ)

)

+ ψl+1(τ, ξln+1, . . . , ξm),

∂ψl+1

∂ξi
=

1

2
pl+1(τ)ξi +

1

2(l + 1)

m
∑

j=ln+1

(r′i(τ) · rj(τ))ξj + βi(τ),

ln+ 1 5 i 5 (l + 1)n,

and

∂ψl+1

∂τ
− ∆ξψl+1 −

m
∑

k=ln+1

∂ψl+1

∂ξk

(∂ψl+1

∂ξk
−

m
∑

j=ln+1

(r′k(τ) · rj(τ))ξj
)

+

(l+1)n
∑

i=ln+1

(2l − 1

4l2
ql(τ)

2ξ2i +
l − 1

l
ql(τ)βi−n(τ)ξi

)

= 0,

where

βi =















































b′i
2
√

f ′0
, 1 5 i 5 n,

1

2q1
(β′i−n − p1βi−n), n+ 1 5 i 5 2n,

k

(k + 1)qk
(β′i−n − pkβi−n +

k − 2

k − 1
qk−1βi−2n),

kn+ 1 5 i 5 (k + 1)n, 2 5 k 5 l,

and

ρi(τ) =

∫

(1

2
pk(τ) + β2

i (τ)
)

dτ,(15)

(k − 1)n+ 1 5 i 5 kn, 1 5 k 5 l.
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(ii) If ql(t) = 0 for all t ∈ I, then r1(t), . . . , rln(t) defined in (14) are

orthonormal C∞-vectors of R
m and satisfies the equations

r′(l−1)n+i(t) =

{

0, if l = 1,

−ql−1(t)r(l−2)n+i(t), if l = 2,
1 5 i 5 n,(16)

for all t ∈ I. Add arbitrary C∞-vectors rln+1(t), . . . , rm(t) such that

{r1(t), . . . , rm(t)} forms an orthonormal basis of R
m for each t ∈ I, if nec-

essary. We take the change of variables (t, x) 7→ (τ, ξ) defined in (1). Then

there exists a C∞-function ψl+1(τ, ξln+1, . . . , ξm) on D∩ (I×R
m) such that

logϕ(τ, ξ)(17)

=

l−1
∑

k=1

(

kn
∑

i=(k−1)n+1

1

4
pk(τ)ξ

2
i +

1

2k
qk(τ)ξiξi+n + βi(τ)ξi + ρi(τ)

)

+

ln
∑

i=(l−1)n+1

(1

4
pl(τ)ξ

2
i + βi(τ)ξi + ρi(τ)

)

+ ψl+1(τ, ξln+1, . . . , ξm),

and

∂ψl+1

∂τ
− ∆ξψl+1 − |∇ξψl+1|2 +

m
∑

j,k=ln+1

(r′k(τ) · rj(τ))ξj
∂ψl+1

∂ξk
= 0,(18)

where βi and ρi, 1 5 i 5 ln are defined in (i).

Proof. We shall show the lemma by induction.

First we shall deal with the case of l = 1. By (4) and Corollary 4,

ai(t) · aj(t) = ∇fi(t, x) · ∇fj(t, x) = δijf
′
0(t) > 0, 1 5 i 5 n,

which shows that {r1(t), . . . , rn(t)} is an orthonormal system of R
m for

each t. Let rn+1(t), . . ., rm(t) be m− n orthonormal C∞-vectors such that

{r1(t), . . . , rm(t)} is an orthonormal basis of R
m. By the chain rule,

∂

∂t
=
∂τ

∂t

∂

∂τ
+

m
∑

j=1

∂ξj
∂t

∂

∂ξj
=

∂

∂τ
+

m
∑

j=1

r′j(τ) · x
∂

∂ξj

=
∂

∂τ
+

m
∑

j,k=1

(r′j(τ) · rk(τ))ξk
∂

∂ξj ,

∂

∂xi
=

∂τ

∂xi

∂

∂τ
+

m
∑

j=1

∂ξj
∂xi

∂

∂ξj
=

m
∑

j=1

rji(τ)
∂

∂ξj ,
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where ri(τ) = (ri1(τ), . . . , rim(τ)), 1 5 i 5 m. Since r1(τ), . . . , rm(τ) is

orthonormal, we have

∆x = ∆ξ,

∇xu · ∇xv = ∇ξu · ∇ξv.

Since (f, ϕ) is a caloric morphism, Theorem 1 (2) and Proposition 6 imply

2∇ logϕ · ∇fi =
∂fi

∂t
, 1 5 i 5 n.(19)

By (11) we have

fi(τ, ξ) =
√

f ′0(τ)ξi + bi(τ)(20)

and hence

Hfi =
∂fi

∂t
=

f ′′0 (τ)

2
√

f ′0(τ)
ξi +

√

f ′0(τ)

m
∑

j=1

(r′i(τ) · rj(τ))ξj + b′i(τ).

Then (19) becomes

∂ logϕ

∂ξi
=

1

2
p1(τ)ξi +

1

2

m
∑

j=1

(r′i(τ) · rj(τ))ξj + βi(τ).(21)

Hence we have

r′i(τ) · rj(τ) = ri(τ) · r′j(τ), 1 5 i, j 5 n,(22)

because (∂/∂ξj)(∂ logϕ/∂ξi) = r′i(τ) · rj(τ). On the other hand, ri(τ) ·
rj(τ) = δij implies

r′i(τ) · rj(τ) = −ri(τ) · r′j(τ), 1 5 i, j 5 m.(23)

Therefore

r′i(τ) · rj(τ) = 0, 1 5 i, j 5 n.(24)

Then by (21) and (24),

ψ2 = logϕ−
n

∑

i=1

(1

4
p1(τ)ξ

2
i +

1

2

m
∑

j=n+1

(r′i(τ) · rj(τ))ξiξj + βi(τ)ξi + ρi(τ)
)
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is a C∞-function of τ, ξn+1, . . . , ξm. Thus we have

logϕ(τ, ξ)(25)

=
n

∑

i=1

(1

4
p1(τ)ξ

2
i +

1

2

m
∑

j=n+1

(r′i(τ) · rj(τ))ξiξj + βi(τ)ξi + ρi(τ)
)

+ ψ2(τ, ξn+1, . . . , ξm).

On the other hand, ψ1 := logϕ satisfies

∂ψ1

∂t
− ∆ψ1 − |∇ψ1|2 = 0

because ϕ is a positive caloric function. In the coordinate (τ, ξ1, . . . , ξm),

the above equation is

∂ψ1

∂τ
+

m
∑

j,k=1

(r′j(τ) · rk(τ))ξk
∂ψ1

∂ξj
− ∆ξψ1 − |∇ξψ1|2 = 0.(26)

Then from (25), we have

∂ψ1

∂τ
=

n
∑

i=1

(1

4
p′1(τ)ξ

2
i +

1

2

m
∑

j=n+1

(r′i(τ) · rj(τ))′ξiξj + β′i(τ)ξi + ρ′i(τ)
)

+
∂ψ2

∂τ
,

∂ψ1

∂ξk
=























1

2
p1(τ)ξk +

1

2

m
∑

j=n+1

(r′k(τ) · rj(τ))ξj + βk(τ), 1 5 k 5 n,

1

2

n
∑

i=1

(r′i(τ) · rk(τ))ξi +
∂ψ2

∂ξk
, n+ 1 5 k 5 m,

∆ξψ1 =
n

2
p1(τ) + ∆ξψ2.

Substituting these into (26) and comparing the coefficients with respect to

ξ1, . . . , ξn, we obtain the following:

1

4
(p′1(τ) − p2

1(τ))δij −
3

4

m
∑

k=n+1

(r′i(τ) · rk(τ))(r′j(τ)·rk(τ)) = 0,(27)

1 5 i, j 5 n,

1

2

m
∑

j=n+1

(r′i(τ) · rj(τ))′ξj + (β′i(τ) − p1(τ)βi(τ))(28)
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− 2

m
∑

k=n+1

(r′i(τ) · rk(τ))
∂ψ2

∂ξk

+
1

2

m
∑

j,k=n+1

(r′i(τ) · rk(τ))(r′k(τ) · rj(τ))ξj = 0, 1 5 i 5 n,

and

∂ψ2

∂τ
− ∆ξψ2 −

m
∑

k=n+1

∂ψ2

∂ξk

(∂ψ2

∂ξk
−

m
∑

j=n+1

(r′k(τ) · rj(τ))ξj
)

(29)

+
1

4

n
∑

i=1

m
∑

j,k=n+1

(r′i(τ) · rj(τ))(r′i(τ) · rk(τ))ξjξk = 0.

Since r′i(τ) · rj(τ) = 0, 1 5 i, j 5 n, r′i(τ) =

m
∑

k=n+1

(r′i(τ) · rk(τ))rk(τ) for

1 5 i 5 n. Hence (27) gives

r′i(τ) · r′j(τ) = q1(τ)
2δij , 1 5 i, j 5 n.(30)

(Note that q1(τ)
2 = |r′i(τ)|2 = 0.)

If q1 6= 0 on an open interval I, then (24) and (30) show that r1(τ), . . . ,

rn(τ), r′1(τ), . . . , r
′
n(τ) are linearly independent for all τ ∈ I. Therefore m =

2n. Putting

ri+n(τ) =
r′i(τ)

q1(τ)
, 1 5 i 5 n,

we have an orthonormal system {r1(τ), . . . , r2n(τ)} of R
m. Adding m− 2n

C∞-vectors r2n+1(τ), . . . , rm(τ) if m = 2n + 1, we obtain an orthonormal

basis {r1(τ), . . . , rm(τ)} of R
m. Then

r′i(τ)·rj(τ) = q1(τ)ri+n(τ)·rj(τ) = q1(τ)δi+n, j, 1 5 i 5 n, n+1 5 j 5 m.

By (25), (28) and (29)

logϕ(τ, ξ) =
n

∑

i=1

(1

4
p1(τ)ξ

2
i +

1

2
q1(τ)ξiξi+n + βi(τ)ξi + ρi(τ)

)

+ ψ2(τ, ξn+1, . . . , ξm),
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1

2
q′1(τ)ξi+n + β′i(τ) − p1(τ)βi(τ) − 2q1(τ)

∂ψ2

∂ξi+n

+
1

2
q1(τ)

m
∑

j=n+1

(r′i+n(τ) · rj(τ))ξj = 0, 1 5 i 5 n,

and

∂ψ2

∂τ
− ∆ξψ2 −

m
∑

k=n+1

∂ψ2

∂ξk

(∂ψ2

∂ξk
−

m
∑

j=n+1

(r′k(τ) · rj(τ))ξj
)

+
1

4
q1(τ)

2
n

∑

i=1

ξ2i+n = 0.

If q1(τ) = 0 for all τ ∈ I, then by (30), r′i = 0, 1 5 i 5 n on I so that

logϕ(τ, ξ) =
n

∑

i=1

(1

4
p1(τ)ξ

2
i + βi(τ)ξi + ρi(τ)

)

+ ψ2(τ, ξn+1, . . . , ξm),

and
∂ψ2

∂τ
− ∆ξψ2 − |∇ξψ2|2 +

m
∑

j,k=n+1

(r′k(τ) · rj(τ))ξj
∂ψ2

∂ξk
= 0.

Thus the assertion in the case of l = 1 is shown.

Assume l = 2 and that the assertion for 1, . . . , l−1 holds. Suppose that

q1 6= 0, . . . , ql−1 6= 0 on some open interval I. Then ql is defined on I and

r1(τ), . . . , rln(τ) defined in (14) are orthonormal C∞-vectors on R
m. By the

assumption on 1, . . . , l−1, there exists a C∞-function ψl(τ, ξ(l−1)n+1, . . . , ξm)

such that

logϕ(τ, ξ)(31)

=

l−1
∑

k=1

(

kn
∑

i=(k−1)n+1

1

4
pk(τ)ξ

2
i +

1

2k
qk(τ)ξiξi+n + βi(τ)ξi + ρi(τ)

)

+ ψl(τ, ξ(l−1)n+1, . . . , ξm),

∂ψl

∂ξi
=

1

2
pl(τ)ξi +

1

2l

m
∑

j=(l−1)n+1

(r′i(τ) · rj(τ))ξj + βi(τ),(32)

(l − 1)n+ 1 5 i 5 ln,
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and

∂ψl

∂τ
− ∆ξψl −

m
∑

k=(l−1)n+1

∂ψl

∂ξk

(∂ψl

∂ξk
−

m
∑

j=(l−1)n+1

(r′k(τ) · rj(τ))ξj
)

(33)

+

ln
∑

i=(l−1)n+1

( 2l − 3

4(l − 1)2
ql−1(τ)

2ξ2i +
l − 2

l − 1
ql−1(τ)βi−n(τ)ξi

)

= 0.

By (23) and (32)

r′i(τ) · rj(τ) = 0, (l − 1)n+ 1 5 i, j 5 ln(34)

for τ ∈ I. Put

ψl+1(35)

= ψl −
ln

∑

i=(l−1)n+1

(1

4
pl(τ)ξ

2
i − 1

2l

m
∑

j=ln+1

(r′i(τ) · rj(τ))ξiξj + βi(τ)ξi + ρi(τ)
)

.

Then ψl+1 is a C∞-function of τ, ξln+1, . . . , ξm (in the case of m = ln, we

have (1/2l)
∑m

j=ln+1(r
′
i(τ) · rj(τ))ξj = 0 and ψl+1 depends only on τ). From

(35) follow

∂ψl

∂τ
=

ln
∑

i=(l−1)n+1

(1

4
p′l(τ)ξ

2
i +

1

2l

m
∑

j=ln+1

(r′i(τ) · rj(τ))′ξiξj + β′i(τ)ξi + ρ′i(τ)
)

+
∂ψl+1

∂τ
,

∂ψl

∂ξk
=







































1

2
pl(τ)ξk +

1

2l

m
∑

j=ln+1

(r′k(τ) · rj(τ))ξj + βk(τ),

(l − 1)n+ 1 5 k 5 ln,

1

2l

ln
∑

i=(l−1)n+1

(r′i(τ) · rk(τ))ξi +
∂ψl+1

∂ξk
, ln+ 1 5 k 5 m,
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∂ψl

∂ξk
−

m
∑

j=(l−1)n+1

(r′k(τ) · rj(τ))ξj

=











































1

2
pl(τ)ξk − 2l − 1

2l

m
∑

j=ln+1

(r′k(τ) · rj(τ))ξj + βk(τ),

(l − 1)n+ 1 5 k 5 ln,

2l + 1

2l

ln
∑

i=(l−1)n+1

(r′i(τ) · rk(τ))ξi −
m

∑

j=ln+1

(r′k(τ) · rj(τ))ξj +
∂ψl+1

∂ξk
,

ln+ 1 5 k 5 m,

and

∆ξψl =
n

2
pl(τ) + ∆ξψl+1.

Substituting these into (33) and comparing the coefficients with respect

to ξ(l−1)n+1, . . . , ξln, we obtain the following:

1

4

(

p′l(τ) − pl(τ)
2 +

2l − 3

(l − 1)2
ql−1(τ)

2
)

δij(36)

− 2l + 1

4l2

m
∑

k=ln+1

(r′i(τ) · rk(τ))(r′j(τ) · rk(τ)) = 0,

(l − 1)n+ 1 5 i, j 5 ln,

l + 1

l

m
∑

k=ln+1

(r′i(τ) · rk(τ))
∂ψl+1

∂ξk
(37)

=
1

2l

m
∑

j=ln+1

{(r′i(τ) · rj(τ))′ + (l − 1)pl(τ)(ri(τ)
′ · rj(τ))}ξj

+
1

2l

m
∑

j,k=ln+1

(r′i(τ) · rk(τ))(r′k(τ) · rj(τ))ξj

+ β′i(τ) − pl(τ)βi(τ) +
l − 2

l − 1
ql−1(τ)βi−n(τ),

(l − 1)n+ 1 5 i 5 ln,
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and

∂ψl+1

∂τ
− ∆ξψl+1 −

m
∑

k=ln+1

∂ψl+1

∂ξk

(∂ψl+1

∂ξk
−

m
∑

j=ln+1

(r′k(τ) · rj(τ))ξj
)

(38)

+
2l − 1

4l2

ln
∑

i=(l−1)n+1

m
∑

j,k=ln+1

(r′i(τ) · rj(τ))(r′i(τ) · rk(τ))ξjξk

+
l − 1

l

ln
∑

i=(l−1)n+1

m
∑

j=ln+1

βi(τ)(r
′
i(τ) · rj(τ))ξj = 0.

Let Pl = Pl(τ) be the orthogonal projection of R
m to the orthogonal com-

plement of the subspace generated by {r1(τ), . . . , rln(τ)}. By (36) and (13),

we have

Plr
′
i · Plr

′
j = q2l δij , (l − 1)n+ 1 5 i, j 5 ln.(39)

We shall show that

Plr
′
i = r′i + ql−1ri−n, (l − 1)n+ 1 5 i 5 ln.(40)

By recalling the definition of Pl, (34) implies

Plr
′
i = r′i −

(l−1)n
∑

j=1

(r′i · rj)rj .

If 1 5 j 5 (l − 1)n, then by (14),

r′j =

{

q1rj+n, 1 5 j 5 n,

qkrj+n − qk−1rj−n, (k − 1)n+ 1 5 j 5 kn, 2 5 k 5 l − 1,

and so

r′i · rj = −ri · r′j = −ql−1δi, j+n,(41)

(l − 1)n+ 1 5 i 5 ln, 1 5 j 5 (l − 1)n.

Thus (40) holds.

If ql(t) 6= 0 for all t ∈ I, then (39) and (41) imply that

r1(τ), . . . , r(l+1)n(τ) defined in (14) are orthonormal C∞-vectors of R
m on

I where

ri+n(τ) =
1

ql(τ)
(r′i(τ) + ql−1(τ)ri−n(τ)), (l − 1)n+ 1 5 i 5 ln.
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In the case ofm > (l+1)n, we choose arbitrary C∞-vectors r(l+1)n+1(τ), . . . ,

rm(τ) such that {r1(τ), . . . , rm(τ)} forms an orthonormal basis of R
m for

each t ∈ I. Then we have

r′i(τ) · rj(τ) = ql(τ)δi+n, j (l − 1)n+ 1 5 i 5 ln, ln+ 1 5 j 5 m.

From (35) follows

ψl(τ, ξ(l−1)n+1,...,ξm)

=
ln

∑

i=(l−1)n+1

(1

4
pl(τ)ξ

2
i − 1

2l
ql(τ)ξiξi+n + βi(τ)ξi + ρi(τ)

)

+ ψl+l(τ, ξln+1, . . . , ξm),

which implies

logϕ(τ, ξ)

=
l

∑

k=1

kn
∑

i=(k−1)n+1

(1

4
pk(τ)ξ

2
i +

1

2k
qk(τ)ξiξi+n + βi(τ)ξi + ρi(τ)

)

+ ψl+1(τ, ξln+1, . . . , ξm).

From (37) and (38) follow

∂ψl+1

∂ξi
=

1

2(l + 1)

(q′l(τ)

ql(τ)
− (l − 1)pl(τ)

)

ξi

+
1

2(l + 1)

m
∑

j=(l+1)n+1

(r′i(τ) · rj(τ))ξj + βi(τ),

ln+ 1 5 i 5 (l + 1)n,

and

∂ψl+1

∂τ
− ∆ξψl+1 −

m
∑

k=ln+1

∂ψl+1

∂ξk

(∂ψl+1

∂ξk
−

m
∑

j=ln+1

(r′k(τ) · rj(τ))ξj
)

+

(l+1)n
∑

i=ln+1

(2l − 1

4l2
ql(τ)

2ξ2i +
l − 1

l
ql(τ)βi−n(τ)ξi

)

= 0.

Assume ql(t) = 0 for all t ∈ I. Then (39) gives

Plr
′
i = 0, (l − 1)n+ 1 5 i 5 ln.
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This and (40) show

r′i(τ) = −ql−1(τ)ri−n(τ), (l − 1)n+ 1 5 i 5 ln.

Substituting this into (35), we have

ψl(τ, ξ(l−1)n+1, . . . , ξm) =

ln
∑

i=(l−1)n+1

(1

4
pl(τ)ξ

2
i + βi(τ)ξi + ρi(τ)

)

+ ψl+1(τ, ξln+1, . . . , ξm),

which implies

logϕ(τ, ξ)

=

l−1
∑

k=1

kn
∑

i=(k−1)n+1

(1

4
pk(τ)ξ

2
i +

1

2k
qk(τ)ξiξi+n + βi(τ)ξi + ρi(τ)

)

+

ln
∑

i=(l−1)n+1

(1

4
pl(τ)ξ

2
i + βi(τ)ξi + ρi(τ)

)

+ ψl+1(τ, ξln+1, . . . , ξm).

From (38) follows

∂ψl+1

∂τ
− ∆ξψl+1 − |∇ξψl+1|2 +

m
∑

j,k=ln+1

(r′k(τ) · rj(τ))ξj
∂ψl−1

∂ξk
= 0.

Thus the assertion for l is shown.

Proof of Theorem 7. For each t ∈ D, there exists a positive integer

l 5 m/n such that ql(t) = 0. In fact, if q1(t) 6= 0, . . . , qk(t) 6= 0, then by

Lemma 9, (k + 1)n 5 m.

Assume that q1 6= 0, . . . , ql−1 6= 0 and ql = 0 on an open interval I.

Then by (14) and (16), we obtain n systems of linear differential equations:

d

dt











ri
rn+i

...

r(l−1)n+i











=













0 q1 0
−q1 0

. . .
. . .

. . . ql−1

0 −ql−1 0























ri
rn+i

...

r(l−1)n+i











(42)

=: Q











ri
rn+i

...

r(l−1)n+i











,
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for 1 5 i 5 n. Fix arbitrary t0 ∈ I and let S(t) = (sjk(t))
l
j,k=1 be the

solution of the initial value problem







d

dt
S(t) = Q(t)S(t),

S(t0) = Il,

(43)

where Il is the (l, l) unit matrix. Then S(t) is an orthogonal matrix for

every t ∈ I, because Q(t) is skew symmetric. Then by (42), we have











ri(t)

rn+i(t)
...

r(l−1)n+i(t)











= S(t)











ri(t0)

rn+i(t0)
...

r(l−1)n+i(t0)











, 1 5 i 5 n.

This means that r1(t), r2(t), . . . , rln(t) are contained in the ln-dimensional

space V spanned by the constant vectors r1(t0), r2(t0), . . . , rln(t0) for every

t. Therefore we can choose constant vectors rln+1, . . . , rm which are the

orthonormal basis of the orthogonal complement of V . Put xj = rj(t0) · x,
1 5 j 5 m for x ∈ R

m. Then

ξ(j−1)n+i =

l
∑

k=1

sjk(t)x(k−1)n+i, 1 5 i 5 n, 1 5 j 5 l,(44)

and if m = ln+ 1,

ξj = xj, ln+ 1 5 j 5 m.

Then ψl+1 is a C∞-function of t, xln+1, . . . , xm and so the equation (18)

reduces to
∂ψl+1

∂t
− ∆ψl+1 − |∇ψl+1|2 = 0.

Therefore ϕl+1(t, xln+1, . . . , xm) = expψl+1 is a positive caloric function (in

the case of m = ln, ψl+1 is equal to a constant). From (20) follows

fi =

l
∑

k=1

λ(t)s1k(t)x(k−1)n+i + bi(t),

where λ(t) =
√

f ′0(t). On the other hand, by (17) and (44) we have
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logϕ

=
n

∑

i=1

[ l
∑

j,k=1

1

4
ujk(t)x(j−1)n+ix(k−1)n+i +

l
∑

j=1

1

2
vij(t)x(j−1)n+i + wi(t)

]

+ ψl+1,

where

uij =

l
∑

k=1

pkskiskj +

l−1
∑

k=1

qk
k

(skisk+1, j + sk+1, iskj), 1 5 i, j 5 l,

and

vij =
l

∑

k=1

2β(k−1)n+iskj , wi =
l

∑

k=1

ρ(k−1)n+i, 1 5 i 5 n, 1 5 j 5 l.

Put

gi1(t, x1, . . . , xl) =

l
∑

j=1

λ(t)s1j(t)xj + bi(t), 1 5 i 5 n,(45)

gi(t, x1, . . . , xl) = (f0(t), gi1(t, x1, . . . , xl)), 1 5 i 5 n,

ϕi(t, x1, . . . , xl) = exp
[

l
∑

j,k=1

1

4
ujk(t)xjxk +

l
∑

j=1

1

2
vij(t)xj + wi(t)

]

,(46)

1 5 i 5 n.

Then

fi(t, x) = gi1(t, xi, xn+i, . . . , x(l−1)n+i),

ϕ(t, x) = ϕl+1

n
∏

i=1

ϕi(t, xi, xn+i, . . . , x(l−1)n+i).

We shall prove that each pair (gi, ϕi), 1 5 i 5 n is a caloric morphism from

I × R
l to R

1+1. By Hgi1 = ∂gi1/∂t and (43), we have

Hgi1 =

n
∑

j=1

(λ′(t)s1j(t)xj + λ(t)s′1j(t)xj) + b′i(t)

=

n
∑

j=1

(λ′(t)s1j(t)xj + λ(t)q1(t)s2j(t)xj) + b′i(t).
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On the other hand,

2∇ logϕi · ∇gi1 =
l

∑

j,k=1

1

2
λ(ujks1k + ukjs1k)xj +

l
∑

j=1

λvijs1j

=

l
∑

j=1

λ(p1s1jxj + q1s2jxj + 2βi),

because uij = uji and S is orthogonal. Hence

Hgi1 = 2∇ logϕi · ∇gi1, 1 5 i 5 n.

Since f ′0 = λ2,
df0

dt
= |∇gi1|2.

By the assumption, ϕ(t, x) and ϕl+1 are caloric functions, ϕl+1 is indepen-

dent of x1, . . . , xln and

n
∏

i=1

ϕi(t, xi, xn+1, . . . , x(l−1)n+i)

is a caloric function. Hence we have

n
∑

i=1

(Kϕi)(t, xi, xn+i, . . . , x(l−1)n+i) = 0,

where Kϕi = (1/ϕi)Hϕi. We have also Kϕi = (∂ logϕi/∂t) − ∆ logϕi −
|∇ logϕi|2. Comparing the coefficients with respect to xj, we see that Kϕi

depends only on t. Therefore

∂ logϕi

∂t
− ∆ logϕi − |∇ logϕi|2 =

l
∑

j=1

(

ρ′(j−1)n+i −
1

2
ujj −

1

4
v2
ij

)

.

Since







u11 . . . u1l
...

. . .
...

ul1 . . . ull






= tS















p1 q1 0
q1 p2

. . .
. . .

. . . ql−1

l−1

0 ql−1

l−1 pl















S,
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and

(vi1, . . . , vil) = 2(βi, βn+i, . . . , β(l−1)n+i)S,

we have

l
∑

j=1

(

ρ′(j−1)n+i −
1

2
ujj −

1

4
v2
ij

)

=

l
∑

j=1

(

ρ′(j−1)n+i −
pj

2
− β2

(j−1)n+i

)

= 0

by the definition of ρj in (15). Therefore each ϕi is a positive caloric function.

Thus (gi, ϕi) is a caloric morphism. By (45) and (46), each (gi, ϕi) satisfies

the assumption of Lemma 8. Therefore there exist a positive integer k 5 l,

an orthogonal coordinate of R
m denoted by (x1, . . . , xm) again and positive

caloric functions hi = hi(t, xkn+i, . . . , x(l−1)n+i), 1 5 i 5 n (in the case of

k = l, h1, . . . , hn are positive constants) such that f and ϕ are of form (1)

or (2) with four families αi, 1 5 i 5 k, βi, 1 5 i 5 k, δi, 0 5 i 5 n and γij ,

1 5 i 5 n, 1 5 j 5 k of real numbers satisfying αi > 0 and βi 6= βj , i 6= j:

(1)

f0(t) =
k

∑

j=1

α2
j

βj − t
+ δ0,

fi(t, x) = gi1(t, xi, . . . , x(l−1)n+i) =

k
∑

j=1

αj

βj − t
(x(j−1)n+i + γij) + δi,

ϕ(t, x) = ϕl+1

n
∏

i=1

ϕi(t, xi, . . . , x(l−1)n+i)

= ϕl+1

n
∏

i=1

hi

k
∏

j=1

1

|βj − t|1/2
exp

(x(j−1)n+i + γij)
2

4(βj − t)
,

(2)

f0(t) = α2
1t+

∑

1<j5k

α2
j

βj − t
+ δ0,

fi(t, x) = gi1(t, xi, . . . , x(l−1)n+i)

= α1(xi + γi1t) +
∑

1<j5k

αj

βj − t
(x(j−1)n+i + γij) + δi,
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ϕ(t, x) = ϕl+1

n
∏

i=1

ϕi(t, xi, . . . , x(l−1)n+i)

= ϕl+1

n
∏

i=1

hi exp
[γ2

i1

4
t+

γi1

2
xi

]

×
∏

1<j5k

1

|βj − t|1/2
exp

(x(j−1)n+i + γij)
2

4(βj − t)
.

Put h = ϕl+1h1 · · · hn. Then h = h(t, xkn+1, . . . , xm) is a positive caloric

function. We obtain the required form of (f, ϕ) on D ∩ (I × R
m). Since f0

is of C∞, the form of (f, ϕ) holds on the closure Ī of I, if Ī is contained in

the interval where f0 is defined. Thus (f, ϕ) has the required form on each

open interval where q1 > 0, . . . , ql−1 > 0. Fix an open interval I such that

q1 > 0, . . . , ql−2 > 0. The analyticity of f0 and (13) implies that ql−1 is an

analytic function on I. Therefore, the zero-points of ql−1 is discrete, which

is denoted by {σν}N
ν=M (M,N may be −∞,∞, respectively). For each ν,

f0 is of form

f0(t) =



























k
∑

j=1

α2
j

βj − t
+ δ0, t ∈ (σν−1, σν ],

k̃
∑

j=1

α̃2
j

β̃j − t
+ δ̃0, t ∈ [σν , σν+1),

in the case of (1). Then k̃ = k, α̃j = αj , β̃j = βj and δ̃0 = δ0, because f0 is

of C∞. Therefore (f, ϕ) has the required form on each interval where q1 >

0, . . . , ql−2 > 0. In the case of (2), the same argument holds. Consequently,

(f, ϕ) is of a required form on D. This completes the proof of Theorem 7.

Corollary 10. Let (f, ϕ) be the same as in Theorem 7. Then (f, ϕ)

is equal to the composition of a the direct sum of k caloric morphisms of

R
n+1 and a projection R

m+1 → R
kn+1.

Proof. In the case of (I), we put

gj0(t) =



















α2
1

β1 − t
+ δ0, j = 1,

α2
j

βj − t
, j > 1,
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gji(t, x1, . . . , xn) =











α1

β1 − t
(xi + γij) + δi, j = 1,

αj

βj − t
(xi + γij), j > 1,

ϕj(t, x1, . . . , xn) =
1

|βj − t|n/2
exp

n
∑

i=1

(xi + γij)
2

4(βj − t)
,

for 1 5 i 5 n and 1 5 j 5 k. In the case of (II), we put

gj0(t) =















α2
1t+ δ0, j = 1,

α2
j

βj − t
, j > 1,

gji(t, x1, . . . , xn) =











α1(xi + γi1t) + δ1, j = 1,

αj

βj − t
(xi + γij), j > 1,

ϕj(t, x1, . . . , xn) =























exp
n

∑

i=1

[γ2
i1

4
t+

γi1

2
xi

]

, j = 1,

1

|βj − t|n/2
exp

n
∑

i=1

(xi + γij)
2

4(βj − t)
, j > 1,

for 1 5 i 5 n and 1 5 j 5 k. Then each pair (gj , ϕj) = ((gj0, . . . , gjn), ϕj),

1 5 j 5 k is a caloric morphism. (g1, ϕ1) is defined on R
n \ {t 6= β1}

in the case of (I) and on R
n in the case of (I). For j > 1, (gj , ϕj) is de-

fined on R
n \ {t 6= βj}. Let (p, ψ) be the projection R

m+1 → R
kn+1 such

that p0(t) = t, pi(t, x1, . . . , xm) = xi, 1 5 i 5 kn and ψ(t, x1, . . . , xm) =

h(t, xkn+1, . . . , xm). Then (f, ϕ) is equal to the composition of the direct

sum of (g1, ϕ1),. . . ,(gk, ϕk) and (p, ψ).
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