TANGENT LOCI AND CERTAIN LINEAR SECTIONS OF ADJOINT VARIETIES

HAJIME KAJI and OSAMI YASUKURA

Abstract

An adjoint variety $X(\mathfrak{g})$ associated to a complex simple Lie algebra \mathfrak{g} is by definition a projective variety in $\mathbb{P}_{*}(\mathfrak{g})$ obtained as the projectivization of the (unique) non-zero, minimal nilpotent orbit in \mathfrak{g}. We first describe the tangent loci of $X(\mathfrak{g})$ in terms of $\mathfrak{s l}_{2}$-triples. Secondly for a graded decomposition of contact type $\mathfrak{g}=\bigoplus_{-2 \leq i \leq 2} \mathfrak{g}_{i}$, we show that the intersection of $X(\mathfrak{g})$ and the linear subspace $\mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ in $\mathbb{P}_{*}(\mathfrak{g})$ coincides with the cubic Veronese variety associated to \mathfrak{g}.

Introduction

The purpose of this article is to study tangent loci and certain linear sections of adjoint varieties.

Let \mathfrak{g} be a complex simple Lie algebra, G the inner automorphism of \mathfrak{g}, λ the highest root of \mathfrak{g} with respect to some Cartan subalgebra and to some basis of the roots, and $X_{ \pm \lambda}$ the root vectors such that $\left(X_{\lambda}, H, X_{-\lambda}\right)$ forms an $\mathfrak{s l}_{2}$-triple for some $H \in \mathfrak{g}$. Consider the adjoint orbit $G \cdot X_{\lambda} \subseteq \mathfrak{g}$, which is the (unique) non-zero, minimal nilpotent orbit. We call its projectivization $\pi\left(G \cdot X_{\lambda}\right) \subseteq \mathbb{P}_{*}(\mathfrak{g})$ the adjoint variety associated to \mathfrak{g}, and set

$$
X(\mathfrak{g}):=\pi\left(G \cdot X_{\lambda}\right)
$$

where $\pi: \mathfrak{g} \backslash\{0\} \rightarrow \mathbb{P}_{*}(\mathfrak{g})$ is the canonical projection with $\mathbb{P}_{*}(\mathfrak{g}):=(\mathfrak{g} \backslash$ $\{0\}) / \mathbb{C}^{\times}$(see, for example, $[\mathrm{KOY}]$).

For a smooth projective variety $X \subseteq \mathbb{P}^{N}$, the tangent locus Θ_{z} with respect to a point $z \in \mathbb{P}^{N}$ is defined by

$$
\Theta_{z}:=\left\{x \in X \mid T_{x} X \ni z\right\}
$$

where $T_{x} X$ denotes the embedded tangent space to X at x, that is, the unique linear subspace L of \mathbb{P}^{N} such that the (abstract) tangent spaces

[^0]to X and to L at x coincide in that of \mathbb{P}^{N} as vector subspaces (see, for example, $[\mathrm{FR}]$).

The first result here describes tangent loci of adjoint varieties as follows:
Theorem A. For $x, y \in X(\mathfrak{g})$ in general position, we have

$$
\Theta_{[x, y]}=\{x, y\},
$$

where we set $[x, y]:=\pi\left(\left[\pi^{-1} x, \pi^{-1} y\right]\right)$.
Let $\operatorname{Sec} X(\mathfrak{g})$ be the secant variety of $X(\mathfrak{g}) \subseteq \mathbb{P}_{*}(\mathfrak{g})$, that is, the closure of the union of all projective lines which contain two or more points of $X(\mathfrak{g})$. According to [KOY, Proposition 5.3], the adjoint orbit $G \cdot \pi H$ is dense in $\operatorname{Sec} X(\mathfrak{g})$. Therefore from Theorem A it turns out that for $z \in \operatorname{Sec} X(\mathfrak{g})$ in general position, Θ_{z} consists of exactly two points and if $\Theta_{z}=\{x, y\}$, then there exists an $\mathfrak{s l}_{2}$-triple (X, K, Y) such that $\pi X=x, \pi Y=y$ and $\pi K=z$. Note that $\operatorname{Sec} X(\mathfrak{g})$ coincides with the tangential variety, that is, the union of all embedded tangent spaces of $X(\mathfrak{g})$ (see [KOY, $\S 5]$).

Next, we set

$$
\begin{aligned}
\mathfrak{g}_{i} & :=\{Y \in \mathfrak{g} \mid(\operatorname{ad} H) Y=i Y\} \\
M & :=\left\{Y \in \mathfrak{g}_{1} \mid Y \neq 0,(\operatorname{ad} Y)^{2} \mathfrak{g}_{-2}=0\right\}
\end{aligned}
$$

We obtain a linear subspace $\mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ of $\mathbb{P}_{*}(\mathfrak{g})$. The second result is
Theorem B. We have

$$
X(\mathfrak{g}) \cap \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)=\pi M
$$

The projective varieties $\pi M \subseteq \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ appeared above are known as the cubic Veronese varieties, while M are known as Freudenthal's varieties of planes (see, for example, $[\mathrm{F}],[\mathrm{M}]$).

§1. Preliminaries

Lemma 1. (cf. [KOY, §3]) We have

$$
G \cdot X_{\lambda}=\left\{Y \in \mathfrak{g} \mid Y \neq 0,(\operatorname{ad} Y)^{2} \mathfrak{g} \subseteq \mathbb{C} \cdot Y\right\}
$$

Proof. For the inclusion \subseteq, it suffices to show that $\left(\operatorname{ad} X_{\lambda}\right)^{2} \mathfrak{g} \subseteq \mathbb{C} \cdot X_{\lambda}$, and this is clear since X_{λ} is a highest root vector.

For the converse, let $Y \in \mathfrak{g}$ be a non-zero element such that $(\operatorname{ad} Y)^{2} \mathfrak{g} \subseteq$ $\mathbb{C} \cdot Y$. Since Y is nilpotent with $(\operatorname{ad} Y)^{3}=0$, according to a theorem of Jacobson-Morozov (see, for example, [CM, §3.3]), there exist $K, Z \in \mathfrak{g}$ such that (Y, K, Z) forms an $\mathfrak{s l}_{2}$-triple with semi-simple element K. Set $\mathfrak{g}_{i}^{\prime}:=$ $\{X \in \mathfrak{g} \mid(\operatorname{ad} K) X=i X\}$. Then $\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}^{\prime}$, and $\mathfrak{g}_{i}^{\prime}=0$ if $|i|>2$ (see, for example, $[\mathrm{CM}, \S \S 3.4-3.5])$. Moreover, it follows from $(\operatorname{ad} Y)^{2} \mathfrak{g} \subseteq \mathbb{C} \cdot Y$ that

$$
\mathfrak{g}_{2}^{\prime}=\mathbb{C} \cdot Y
$$

Indeed, we have $\left.(\operatorname{ad} Y)^{2} \circ(\operatorname{ad} Z)^{2}\right|_{\mathfrak{g}_{2}^{\prime}}=4 \operatorname{id}_{\mathfrak{g}_{2}^{\prime}}$, whose image is contained in $\mathbb{C} \cdot Y$. This implies that Y is a highest root vector with respect to some Cartan subalgebra \mathfrak{h}^{\prime} containing K and to the lexicographic order on the roots defined by a basis of \mathfrak{h}^{\prime} of the form, $H_{1}:=K, H_{2}, \ldots, H_{l}$ with $\mathrm{rk} \mathfrak{g}=l$. Thus, we have $Y \in G \cdot X_{\lambda}$.

Lemma 2. We have

$$
G \cdot X_{\lambda} \cap \mathfrak{g}_{1} \subseteq M
$$

Proof. If $Y \in G \cdot X_{\lambda} \cap \mathfrak{g}_{1}$, then it follows from Lemma 1 that

$$
(\operatorname{ad} Y)^{2} X_{-\lambda} \in \mathbb{C} \cdot Y \cap \mathfrak{g}_{0} \subseteq \mathfrak{g}_{1} \cap \mathfrak{g}_{0}=\{0\}
$$

Therefore $(\operatorname{ad} Y)^{2} X_{-\lambda}=0$, that is, $Y \in M$.
Following [A1], [A2], we introduce a skew-symmetric form

$$
\langle,\rangle: \mathfrak{g}_{1} \times \mathfrak{g}_{1} \longrightarrow \mathbb{C}
$$

and a symmetric bi-linear product

$$
\times: \mathfrak{g}_{1} \times \mathfrak{g}_{1} \longrightarrow \mathfrak{g}_{0},
$$

which are respectively defined by

$$
\begin{aligned}
2\langle P, Q\rangle X_{\lambda} & :=[P, Q] \\
-2 P \times Q & :=\left[P\left[Q, X_{-\lambda}\right]\right]+\left[Q\left[P, X_{-\lambda}\right]\right]
\end{aligned}
$$

for $P, Q, R \in \mathfrak{g}_{1}$. Note that using this notation we have

$$
M=\left\{P \in \mathfrak{g}_{1} \mid P \neq 0, P \times P=0\right\}
$$

Proposition 1. (a) For $P, Q \in \mathfrak{g}_{1}$, we have

$$
P \times Q=0, P \in M \Longrightarrow\langle P, Q\rangle=0
$$

(b) For $P \in \mathfrak{g}_{1}, Z \in \mathfrak{g}_{0}$, set $Z^{\#}:=[P, Z] \in \mathfrak{g}_{1}$. Then we have

$$
P \in M \Longrightarrow P \times Z^{\#}=0
$$

hence $\left\langle P, Z^{\#}\right\rangle=0$.
Proof. (a) Since $P \in M$, using the Jacobi identity we have

$$
\begin{aligned}
{\left[P\left[\left[P, X_{-\lambda}\right] Q\right]\right] } & =-\left[Q\left[P\left[P, X_{-\lambda}\right]\right]\right]-\left[\left[P, X_{-\lambda}\right][Q, P]\right] \\
& =-[Q, 0]+2\langle P, Q\rangle\left[\left[P, X_{-\lambda}\right] X_{\lambda}\right] \\
& =2\langle P, Q\rangle P
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
{\left[P\left[\left[P, X_{-\lambda}\right] Q\right]\right] } & =-\left[P\left[[Q, P] X_{-\lambda}\right]\right]-\left[P\left[\left[X_{-\lambda}, Q\right] P\right]\right] \\
& =-2\langle Q, P\rangle[P, H]-\left[P,\left(-2 P \times Q-\left[Q\left[P, X_{-\lambda}\right]\right]\right)\right] \\
& =-2\langle P, Q\rangle P+2[P, P \times Q]+\left[P\left[Q\left[P, X_{-\lambda}\right]\right]\right]
\end{aligned}
$$

so that $\left[P\left[\left[P, X_{-\lambda}\right] Q\right]\right]=-\langle P, Q\rangle P$ since $P \times Q=0$. Therefore it follows $3\langle P, Q\rangle P=0$, hence $\langle P, Q\rangle=0$ whether $P=0$ or not.
(b) Using the Jacobi identity and the assumption $P \in M$, since $\left[Z, X_{-\lambda}\right] \in \mathfrak{g}_{-2}$, we have

$$
\begin{aligned}
{\left[P\left[Z^{\#}, X_{-\lambda}\right]\right] } & =\left[P\left[[P, Z] X_{-\lambda}\right]\right] \\
& =-\left[P\left[\left[Z, X_{-\lambda}\right] P\right]\right]-\left[P\left[\left[X_{-\lambda}, P\right] Z\right]\right] \\
& =-\left[P\left[\left[X_{-\lambda}, P\right] Z\right]\right] \\
{\left[Z^{\#}\left[P, X_{-\lambda}\right]\right] } & =\left[[P, Z],\left[P, X_{-\lambda}\right]\right] \\
& =-\left[\left[Z\left[P, X_{-\lambda}\right]\right] P\right]-\left[\left[\left[P, X_{-\lambda}\right] P\right] Z\right] \\
& =-\left[\left[Z\left[P, X_{-\lambda}\right]\right] P\right] .
\end{aligned}
$$

Thus we obtain $P \times Z^{\#}=-\frac{1}{2}\left\{\left[P\left[Z^{\#}, X_{-\lambda}\right]\right]+\left[Z^{\#}\left[P, X_{-\lambda}\right]\right]\right\}=0$.
Next we consider a subalgebra of \mathfrak{g}_{0} as follows:

$$
\mathfrak{D}_{0}:=\left\{Z \in \mathfrak{g}_{0} \mid(\operatorname{ad} Z) \mathfrak{g}_{-2}=0\right\}
$$

Lemma 3. $\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subseteq \mathfrak{D}_{0}$.
Proof. Since $\left[\mathfrak{g}_{0}, H\right]=0$, we have $\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]=\left[\mathfrak{D}_{0} \oplus \mathbb{C} \cdot H, \mathfrak{D}_{0} \oplus \mathbb{C} \cdot H\right]=$ $\left[\mathfrak{D}_{0}, \mathfrak{D}_{0}\right] \subseteq \mathfrak{D}_{0}$.

Proposition 2. (a) $\mathfrak{g}_{1} \times \mathfrak{g}_{1} \subseteq \mathfrak{D}_{0}$.
(b) For $Y \in \mathfrak{g}_{-1}, P \in \mathfrak{g}_{1}$, we have

$$
[Y, P]=-Y^{+} \times P-\left\langle Y^{+}, P\right\rangle H
$$

where we set $Y^{+}:=\left[X_{\lambda}, Y\right]$.
Proof. (a) It follows from the Jacobi identity that for $P_{1}, P_{2} \in \mathfrak{g}_{1}$ we have

$$
\begin{aligned}
{\left[\left[P_{i}\left[P_{j}, X_{-\lambda}\right]\right] X_{\lambda}\right] } & =-\left[\left[\left[P_{j}, X_{-\lambda}\right] X_{\lambda}\right] P_{i}\right]-\left[\left[X_{\lambda}, P_{i}\right],\left[P_{j}, X_{-\lambda}\right]\right] \\
& =-\left[P_{j}, P_{i}\right]-\left[0,\left[P_{j}, X_{-\lambda}\right]\right] \\
& =\left[P_{i}, P_{j}\right]
\end{aligned}
$$

where $\left[X_{\lambda}, P_{i}\right] \in \mathfrak{g}_{3}=0$. Therefore we have $-2\left[P_{1} \times P_{2}, X_{\lambda}\right]=\left[\left(\left[P_{1}\left[P_{2}, X_{\lambda}\right]\right]+\left[P_{2}\left[P_{1}, X_{\lambda}\right]\right]\right), X_{\lambda}\right]=\left[P_{1}, P_{2}\right]+\left[P_{2}, P_{1}\right]=0$, so that $P_{1} \times P_{2} \in \mathfrak{D}_{0}$.
(b) Dividing into two, applying the Jacobi identity to the latter term below, we have

$$
\begin{aligned}
{[Y, P] } & =\left[\left[X_{-\lambda}, Y^{+}\right] P\right] \\
& =\frac{1}{2}\left[\left[X_{-\lambda}, Y^{+}\right] P\right]+\frac{1}{2}\left[\left[X_{-\lambda}, Y^{+}\right] P\right] \\
& =\frac{1}{2}\left[\left[X_{-\lambda}, Y^{+}\right] P\right]+\frac{1}{2}\left(-\left[\left[Y^{+}, P\right] X_{-\lambda}\right]-\left[\left[P, X_{-\lambda}\right] Y^{+}\right]\right) \\
& =\frac{1}{2}\left(\left[\left[X_{-\lambda}, Y^{+}\right] P\right]+\left[\left[X_{-\lambda}, P\right] Y^{+}\right]\right)-\left\langle Y^{+}, P\right\rangle\left[X_{\lambda}, X_{-\lambda}\right] \\
& =-Y^{+} \times P-\left\langle Y^{+}, P\right\rangle H .
\end{aligned}
$$

§2. Tangent loci

Proof of Theorem A. We first show that

$$
\Theta_{\pi H}=\left\{\pi X_{\lambda}, \pi X_{-\lambda}\right\}
$$

Since $T_{\pi P} X(\mathfrak{g})=\mathbb{P}_{*}([\mathfrak{g}, P])$ for $P \in G \cdot X_{\lambda}$ (see [KOY, Lemma 2.1]), in terms of Lie algebra, this is equivalent to showing that

$$
\left\{P \in G \cdot X_{\lambda} \mid[\mathfrak{g}, P] \ni H\right\}=\mathbb{C}^{\times} \cdot X_{\lambda} \sqcup \mathbb{C}^{\times} \cdot X_{-\lambda}
$$

Since the inclusion \supseteq is trivial, it suffices to show that for $g \in G$ and $Y \in \mathfrak{g}$ we have

$$
H=\left[Y, g X_{\lambda}\right] \Longrightarrow g X_{\lambda} \in \mathfrak{g}_{2} \cup \mathfrak{g}_{-2}
$$

Here we have

$$
g X_{\lambda} \in \mathfrak{g}_{i}
$$

for some i with $-2 \leq i \leq 2$: Indeed, it follows from Lemma 1 that

$$
\left[H, g X_{\lambda}\right]=\left[\left[Y, g X_{\lambda}\right] g X_{\lambda}\right]=\left(\operatorname{ad} g X_{\lambda}\right)^{2} Y \in \mathbb{C} \cdot g X_{\lambda}
$$

so that $g X_{\lambda}$ is an eigenvector of $\operatorname{ad} H$.
If we write $Y=\sum_{j=-2}^{2} Y_{j}$ with $Y_{j} \in \mathfrak{g}_{j}$, then we have

$$
H=\left[Y, g X_{\lambda}\right]=\sum_{j=-2}^{2}\left[Y_{j}, g X_{\lambda}\right]
$$

Since $H \in \mathfrak{g}_{0}$ and $\left[Y_{j}, g X_{\lambda}\right] \in \mathfrak{g}_{i+j}$, by taking the component of degree 0 we obtain

$$
H=\left[Y_{-i}, g X_{\lambda}\right] .
$$

Thus taking $Y:=Y_{-i}$, we may assume $Y \in \mathfrak{g}_{-i}$.
Now we first claim that $i \neq 0$. Suppose $i=0$: it follows from Lemma 3 that

$$
H=\left[Y, g X_{\lambda}\right] \in\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subseteq \mathfrak{D}_{\mathfrak{o}}
$$

that is, $H \in \mathfrak{D}_{0}$. This contradicts to $\left[H, X_{\lambda}\right]=2 X_{\lambda} \neq 0$. Thus we have $i \neq 0$.

Next we claim that $i \neq \pm 1$. Suppose $i=1$: we have $Y \in \mathfrak{g}_{-1}, g X_{\lambda} \in \mathfrak{g}_{1}$, and it follows from Proposition 2 (b) that

$$
H=\left[Y, g X_{\lambda}\right]=-Y^{+} \times g X_{\lambda}-\left\langle Y^{+}, g X_{\lambda}\right\rangle H
$$

Taking account of the decomposition $\mathfrak{g}_{0}=\mathfrak{D}_{0} \oplus \mathbb{C} \cdot H$ and Proposition 2 (a), comparing both sides above, we obtain two equalities,

$$
Y^{+} \times g X_{\lambda}=0 \quad \text { and } \quad\left\langle Y^{+}, g X_{\lambda}\right\rangle=-1
$$

Now it follows from Lemma 2 that $g X_{\lambda} \in M$. Therefore, by Proposition 1 (a) we obtain from the former equality that $\left\langle Y^{+}, g X_{\lambda}\right\rangle=0$. But this contradicts to the latter equality. Thus, $i \neq 1$. Similarly we obtain $i \neq-1$.

Therefore $i=2$ or $i=-2$, and this completes the proof of our claim.
Now the statement for general case follows from the claim above. Indeed, there exists $g \in G$ such that

$$
([x, y], x, y)=g \cdot\left(h, x_{+}, x_{-}\right),
$$

since the orbit $G \cdot\left(x_{+}, x_{-}\right)$is dense in $X(\mathfrak{g}) \times X(\mathfrak{g})$, where we set $h:=\pi H$ and $x_{ \pm}:=\pi X_{ \pm \lambda}$. The density is checked by counting the dimension of the orbit $G \cdot\left(x_{+}, x_{-}\right)$. Indeed, in terms of the stabilizers $C_{G}\left(x_{ \pm}\right)$of $x_{ \pm}$, respectively, the stabilizer of $\left(x_{+}, x_{-}\right)$is given by $C_{G}\left(x_{+}\right) \cap C_{G}\left(x_{-}\right)$, whose Lie algebra is \mathfrak{g}_{0} since the Lie algebras of $C_{G}\left(x_{ \pm}\right)$are respectively equal to $\mathfrak{g}_{0} \oplus \mathfrak{g}_{ \pm 1} \oplus \mathfrak{g}_{ \pm 2}$. Therefore,

$$
\operatorname{dim} G \cdot\left(x_{+}, x_{-}\right)=\operatorname{dim} \bigoplus_{i \neq 0} \mathfrak{g}_{i}=2 \operatorname{dim} X(\mathfrak{g})
$$

§3. Cubic veronese varieties

Proof of Theorem B. The claim obviously follows from

$$
G \cdot X_{\lambda} \cap \mathfrak{g}_{1}=M
$$

and we here show the inclusion \supseteq : the converse is just Lemma 2. By virtue of Lemma 1, it suffices to show that if $Y \in M$, then

$$
(\operatorname{ad} Y)^{2} Z \in \mathbb{C} \cdot Y
$$

for all $Z \in \mathfrak{g}_{i}$ with $-2 \leq i \leq 2$.
In case of $i=-2$, this is obvious from the definition of M. If $i>0$, then the claim follows since $(\operatorname{ad} Y)^{2} Z \in \mathfrak{g}_{i+2}=0$ with $i+2>2$.

In case of $i=0$, set $Z^{\#}:=[Y, Z]$. According to Proposition 1 (b), we have $\left\langle Y, Z^{\#}\right\rangle=0$, that is, $\left[Y, Z^{\#}\right]=0$ and the claim follows.

In case of $i=-1$, set $Z^{+}:=\left[X_{\lambda}, Z\right]$. We have $(\operatorname{ad} Y)^{2} Z=4\left\langle Y, Z^{+}\right\rangle Y$. Indeed, applying the Jacobi identity twice, we have

$$
\begin{aligned}
(\operatorname{ad} Y)^{2} Z= & {\left[Y\left[Y\left[X_{-\lambda}, Z^{+}\right]\right]\right] } \\
= & -\left[Y\left[X_{-\lambda}\left[Z^{+}, Y\right]\right]\right]-\left[Y\left[Z^{+}\left[Y, X_{-\lambda}\right]\right]\right] \\
= & -2\left\langle Z^{+}, Y\right\rangle\left[Y\left[X_{-\lambda}, X_{\lambda}\right]\right] \\
& +\left\{\left[Z^{+}\left[\left[Y, X_{-\lambda}\right] Y\right]\right]+\left[\left[Y, X_{-\lambda}\right],\left[Y, Z^{+}\right]\right]\right\} \\
= & -2\left\langle Z^{+}, Y\right\rangle[Y,-H]+\left[Z^{+}, 0\right]+2\left\langle Y, Z^{+}\right\rangle\left[\left[Y, X_{-\lambda}\right] X_{\lambda}\right] \\
= & 2\left\langle Y, Z^{+}\right\rangle Y+0+2\left\langle Y, Z^{+}\right\rangle Y \\
= & 4\left\langle Y, Z^{+}\right\rangle Y .
\end{aligned}
$$

We finally give a few examples where, using Theorem B, one can easily as well as geometrically determine cubic Veronese varieties.

Example 1. The cubic Veronese variety $\pi M \subseteq \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ is $\mathbb{P}^{l-2} \sqcup \mathbb{P}^{l-2}$, a disjoint union of two linear subspaces in $\mathbb{P}^{2 l-3} \simeq \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ if \mathfrak{g} is of type A_{l}. Indeed, in this case, $X(\mathfrak{g})$ is realized as the projectivization of the set of traceless matrices $\left[z_{i j}\right]_{0 \leq i, j \leq l}$ with rank 1 (see, for example [FH, p. 389]). On the other hand, taking $H:=\operatorname{diag}(1,0, \ldots, 0,-1)$, we have that \mathfrak{g}_{1} is the subspace given by $z_{00}=z_{0 l}=z_{l l}=0$ and $z_{i j}=0$ for all i, j with $i>0$ and $j<l$. Therefore the intersection $X(\mathfrak{g}) \cap \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ is the (disjoint) union of linear subspaces defined by $z_{00}=z_{0 l}=z_{i j}=0$ for all i, j with $i>0$ and by $z_{0 l}=z_{l l}=z_{i j}=0$ for all i, j with $j<l$.

Example 2. The cubic Veronese variety $\pi M \subseteq \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ is empty if \mathfrak{g} is of type C_{l}. Indeed, in this case, $X(\mathfrak{g})$ is the Veronese embedding of $\mathbb{P}^{2 l-1}$ of degree 2 (see, for example $[\mathrm{KOY}, \S 5]$), then a simple calculation shows that

$$
X(\mathfrak{g}) \cap T_{\pi X_{\lambda}} X(\mathfrak{g})=\left\{\pi X_{\lambda}\right\}
$$

On the other hand, for any adjoint variety $X(\mathfrak{g})$ we have

$$
T_{\pi X_{\lambda}} X(\mathfrak{g}) \supseteq \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right) \not \supset \pi X_{\lambda}
$$

Therefore the intersection $X(\mathfrak{g}) \cap \mathbb{P}_{*}\left(\mathfrak{g}_{1}\right)$ is empty.

Acknowledgements. The authors would like to thank the referee for his/her invaluable advice: In particular, the formulation of Lemma 1 is due to the referee. This work was done mainly from April 1997 through March 1998, and in that period the first author was partly supported by TOKUTEI-KADAI \#97A-331, Waseda University. The results here were announced in a symposium "Lie Groups and Geometry" (organized by S. Kaneyuki, December 3-5, 1997 at Yamaguchi University) and in a symposium "School on Commutative Algebra and Projective Varieties" (organized by C. Miyazaki and T. Fujisawa, March 11-13, 1998 at Hotel Mielparque Nagano).

References

[A1] H. Asano, On triple systems (in Japanese), Yokohama City Univ. Ronso, Ser. Natural Sci., 27 (1975), 7-31.
[A2] H. Asano, Symplectic triple systems and simple Lie algebras (in Japanese), RIMS Kokyuroku, Kyoto Univ., 308 (1977), 41-54.
[CM] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993.
[F] H. Freudenthal, Lie groups in the foundations of geometry, Advances in Math., $\mathbf{1}$ (1964), 145-190.
[FR] T. Fujita and J. Roberts, Varieties with small secant varieties: The extremal case, Amer. J. Math., 103 (1981), 953-976.
[FH] W. Fulton and J. Harris, Representation Theory: A First Course, GTM 129, Springer-Verlag, New York, 1991.
[H1] J. E. Humphreys, Introduction to Lie algebras and representation theory, GTM 9, Springer-Verlag, New York, 1972.
[H2] J. E. Humphreys, Linear Algebraic Groups, GTM 21, Springer-Verlag, New York, 1975.
[KOY] H. Kaji, M. Ohno and O. Yasukura, Adjoint varieties and their secant varieties, Indag. Math., 10 (1999), 45-57.
[M] S. Mukai, Projective geometry of homogeneous spaces (in Japanese), Proc. Symp. Algebraic Geometry, "Projective Varieties/Projective Geometry of Algebraic Varieties", Waseda University, Japan (1994), pp. 1-52.

Hajime Kaji
Department of Mathematical Sciences
School of Science and Engineering
Waseda University
Tokyo, 169-8555
Japan
kaji@mse.waseda.ac.jp

Osami Yasukura
Department of Mathematics
Fukui University
Fukui 910-8507
Japan
yasukura@edu00.f-edu.fukui-u.ac.jp

[^0]: Received March 25, 1999.
 1991 Mathematics Subject Classification: Primary 14M17, 17B70; Secondary 17B20, 14N05.

