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TANGENT LOCI AND CERTAIN LINEAR

SECTIONS OF ADJOINT VARIETIES
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Abstract. An adjoint variety X( � ) associated to a complex simple Lie algebra� is by definition a projective variety in � ∗(
� ) obtained as the projectivization

of the (unique) non-zero, minimal nilpotent orbit in � . We first describe the
tangent loci of X( � ) in terms of ��� 2-triples. Secondly for a graded decomposition
of contact type � = �

−2≤i≤2

�
i, we show that the intersection of X( � ) and

the linear subspace � ∗(
�
1) in � ∗(

� ) coincides with the cubic Veronese variety
associated to � .

Introduction

The purpose of this article is to study tangent loci and certain linear

sections of adjoint varieties.

Let g be a complex simple Lie algebra, G the inner automorphism of g,

λ the highest root of g with respect to some Cartan subalgebra and to some

basis of the roots, and X±λ the root vectors such that (Xλ,H, X−λ) forms

an sl2-triple for some H ∈ g. Consider the adjoint orbit G ·Xλ ⊆ g, which is

the (unique) non-zero, minimal nilpotent orbit. We call its projectivization

π(G · Xλ) ⊆ P∗(g) the adjoint variety associated to g, and set

X(g) := π(G · Xλ),

where π : g \ {0} → P∗(g) is the canonical projection with P∗(g) := (g \

{0})/C
× (see, for example, [KOY]).

For a smooth projective variety X ⊆ P
N , the tangent locus Θz with

respect to a point z ∈ P
N is defined by

Θz := {x ∈ X | TxX 3 z},

where TxX denotes the embedded tangent space to X at x, that is, the

unique linear subspace L of P
N such that the (abstract) tangent spaces
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to X and to L at x coincide in that of P
N as vector subspaces (see, for

example, [FR]).

The first result here describes tangent loci of adjoint varieties as follows:

Theorem A. For x, y ∈ X(g) in general position, we have

Θ[x,y] = {x, y},

where we set [x, y] := π([π−1x, π−1y]).

Let SecX(g) be the secant variety of X(g) ⊆ P∗(g), that is, the closure

of the union of all projective lines which contain two or more points of X(g).

According to [KOY, Proposition 5.3], the adjoint orbit G · πH is dense in

Sec X(g). Therefore from Theorem A it turns out that for z ∈ SecX(g) in

general position, Θz consists of exactly two points and if Θz = {x, y}, then

there exists an sl2-triple (X,K, Y ) such that πX = x, πY = y and πK = z.

Note that Sec X(g) coincides with the tangential variety, that is, the union

of all embedded tangent spaces of X(g) (see [KOY, §5]).

Next, we set

gi := {Y ∈ g | (ad H)Y = iY },

M := {Y ∈ g1 | Y 6= 0, (ad Y )2g−2 = 0}.

We obtain a linear subspace P∗(g1) of P∗(g). The second result is

Theorem B. We have

X(g) ∩ P∗(g1) = πM.

The projective varieties πM ⊆ P∗(g1) appeared above are known as the

cubic Veronese varieties, while M are known as Freudenthal’s varieties of

planes (see, for example, [F], [M]).

§1. Preliminaries

Lemma 1. (cf. [KOY, §3]) We have

G · Xλ = {Y ∈ g | Y 6= 0, (adY )2g ⊆ C · Y }.
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Proof. For the inclusion ⊆, it suffices to show that (adXλ)2g ⊆ C ·Xλ,

and this is clear since Xλ is a highest root vector.

For the converse, let Y ∈ g be a non-zero element such that (ad Y )2g ⊆

C · Y . Since Y is nilpotent with (adY )3 = 0, according to a theorem of

Jacobson-Morozov (see, for example, [CM, §3.3]), there exist K,Z ∈ g such

that (Y,K,Z) forms an sl2-triple with semi-simple element K. Set g′i :=

{X ∈ g | (adK)X = iX}. Then g =
⊕

i∈Z
g′i, and g′i = 0 if |i| > 2 (see, for

example, [CM, §§3.4–3.5]). Moreover, it follows from (ad Y )2g ⊆ C · Y that

g′2 = C · Y.

Indeed, we have (adY )2 ◦ (adZ)2|g′
2

= 4 idg
′
2
, whose image is contained in

C · Y . This implies that Y is a highest root vector with respect to some

Cartan subalgebra h′ containing K and to the lexicographic order on the

roots defined by a basis of h′ of the form, H1 := K,H2, . . . ,Hl with rk g = l.

Thus, we have Y ∈ G · Xλ.

Lemma 2. We have

G · Xλ ∩ g1 ⊆ M.

Proof. If Y ∈ G · Xλ ∩ g1, then it follows from Lemma 1 that

(adY )2X−λ ∈ C · Y ∩ g0 ⊆ g1 ∩ g0 = {0}.

Therefore (ad Y )2X−λ = 0, that is, Y ∈ M .

Following [A1], [A2], we introduce a skew-symmetric form

〈 , 〉 : g1 × g1 −→ C

and a symmetric bi-linear product

× : g1 × g1 −→ g0,

which are respectively defined by

2〈P,Q〉Xλ := [P,Q],

−2P × Q := [P [Q,X−λ]] + [Q[P,X−λ]],

for P,Q,R ∈ g1. Note that using this notation we have

M = {P ∈ g1 | P 6= 0, P × P = 0}.
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Proposition 1. (a) For P,Q ∈ g1, we have

P × Q = 0, P ∈ M =⇒ 〈P,Q〉 = 0.

(b) For P ∈ g1, Z ∈ g0, set Z# := [P,Z] ∈ g1. Then we have

P ∈ M =⇒ P × Z# = 0,

hence 〈P,Z#〉 = 0.

Proof. (a) Since P ∈ M , using the Jacobi identity we have

[P [[P,X−λ]Q]] = −[Q[P [P,X−λ]]] − [[P,X−λ][Q,P ]]

= −[Q, 0] + 2〈P,Q〉[[P,X−λ]Xλ]

= 2〈P,Q〉P.

On the other hand, we have

[P [[P,X−λ]Q]] = −[P [[Q,P ]X−λ]] − [P [[X−λ, Q]P ]]

= −2〈Q,P 〉[P,H] − [P, (−2P × Q − [Q[P,X−λ]])]

= −2〈P,Q〉P + 2[P,P × Q] + [P [Q[P,X−λ]]],

so that [P [[P,X−λ]Q]] = −〈P,Q〉P since P × Q = 0. Therefore it follows

3〈P,Q〉P = 0, hence 〈P,Q〉 = 0 whether P = 0 or not.

(b) Using the Jacobi identity and the assumption P ∈ M , since

[Z,X−λ] ∈ g−2, we have

[P [Z#,X−λ]] = [P [[P,Z]X−λ]]

= −[P [[Z,X−λ]P ]] − [P [[X−λ, P ]Z]]

= −[P [[X−λ, P ]Z]],

[Z#[P,X−λ]] = [[P,Z], [P,X−λ]]

= −[[Z[P,X−λ]]P ] − [[[P,X−λ]P ]Z]

= −[[Z[P,X−λ]]P ].

Thus we obtain P × Z# = −1
2

{

[P [Z#,X−λ]] + [Z#[P,X−λ]]
}

= 0.

Next we consider a subalgebra of g0 as follows:

D0 := {Z ∈ g0 | (ad Z)g−2 = 0}.
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Lemma 3. [g0, g0] ⊆ D0.

Proof. Since [g0,H] = 0, we have [g0, g0] = [D0 ⊕ C ·H, D0 ⊕ C ·H] =

[D0,D0] ⊆ D0.

Proposition 2. (a) g1 × g1 ⊆ D0.

(b) For Y ∈ g−1, P ∈ g1, we have

[Y, P ] = −Y + × P − 〈Y +, P 〉H,

where we set Y + := [Xλ, Y ].

Proof. (a) It follows from the Jacobi identity that for P1, P2 ∈ g1 we

have

[[Pi[Pj ,X−λ]]Xλ] = −[[[Pj ,X−λ]Xλ]Pi] − [[Xλ, Pi], [Pj ,X−λ]]

= −[Pj , Pi] − [0, [Pj ,X−λ]]

= [Pi, Pj ],

where [Xλ, Pi] ∈ g3 = 0. Therefore we have

−2[P1×P2,Xλ] = [([P1[P2,Xλ]]+[P2[P1,Xλ]]),Xλ] = [P1, P2]+[P2, P1] = 0,

so that P1 × P2 ∈ D0.

(b) Dividing into two, applying the Jacobi identity to the latter term

below, we have

[Y, P ] = [[X−λ, Y +]P ]

=
1

2
[[X−λ, Y +]P ] +

1

2
[[X−λ, Y +]P ]

=
1

2
[[X−λ, Y +]P ] +

1

2

(

− [[Y +, P ]X−λ] − [[P,X−λ]Y +]
)

=
1

2

(

[[X−λ, Y +]P ] + [[X−λ, P ]Y +]
)

− 〈Y +, P 〉[Xλ,X−λ]

= −Y + × P − 〈Y +, P 〉H.
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§2. Tangent loci

Proof of Theorem A. We first show that

ΘπH = {πXλ, πX−λ}.

Since TπP X(g) = P∗([g, P ]) for P ∈ G · Xλ (see [KOY, Lemma 2.1]), in

terms of Lie algebra, this is equivalent to showing that

{P ∈ G · Xλ | [g, P ] 3 H} = C
× · Xλ t C

× · X−λ.

Since the inclusion ⊇ is trivial, it suffices to show that for g ∈ G and Y ∈ g

we have

H = [Y, gXλ] =⇒ gXλ ∈ g2 ∪ g−2.

Here we have

gXλ ∈ gi

for some i with −2 ≤ i ≤ 2: Indeed, it follows from Lemma 1 that

[H, gXλ] = [[Y, gXλ]gXλ] = (ad gXλ)2Y ∈ C · gXλ,

so that gXλ is an eigenvector of adH.

If we write Y =
∑2

j=−2 Yj with Yj ∈ gj, then we have

H = [Y, gXλ] =

2
∑

j=−2

[Yj , gXλ].

Since H ∈ g0 and [Yj , gXλ] ∈ gi+j , by taking the component of degree 0 we

obtain

H = [Y−i, gXλ].

Thus taking Y := Y−i, we may assume Y ∈ g−i.

Now we first claim that i 6= 0. Suppose i = 0: it follows from Lemma 3

that

H = [Y, gXλ] ∈ [g0, g0] ⊆ D0,

that is, H ∈ D0. This contradicts to [H,Xλ] = 2Xλ 6= 0. Thus we have

i 6= 0.

Next we claim that i 6= ±1. Suppose i = 1: we have Y ∈ g−1, gXλ ∈ g1,

and it follows from Proposition 2 (b) that

H = [Y, gXλ] = −Y + × gXλ − 〈Y +, gXλ〉H.
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Taking account of the decomposition g0 = D0⊕C ·H and Proposition 2 (a),

comparing both sides above, we obtain two equalities,

Y + × gXλ = 0 and 〈Y +, gXλ〉 = −1.

Now it follows from Lemma 2 that gXλ ∈ M . Therefore, by Proposi-

tion 1 (a) we obtain from the former equality that 〈Y +, gXλ〉 = 0. But

this contradicts to the latter equality. Thus, i 6= 1. Similarly we obtain

i 6= −1.

Therefore i = 2 or i = −2, and this completes the proof of our claim.

Now the statement for general case follows from the claim above. In-

deed, there exists g ∈ G such that

([x, y], x, y) = g · (h, x+, x−),

since the orbit G · (x+, x−) is dense in X(g)×X(g), where we set h := πH

and x± := πX±λ. The density is checked by counting the dimension of

the orbit G · (x+, x−). Indeed, in terms of the stabilizers CG(x±) of x±,

respectively, the stabilizer of (x+, x−) is given by CG(x+)∩CG(x−), whose

Lie algebra is g0 since the Lie algebras of CG(x±) are respectively equal to

g0 ⊕ g±1 ⊕ g±2. Therefore,

dim G · (x+, x−) = dim
⊕

i6=0

gi = 2dim X(g).

§3. Cubic veronese varieties

Proof of Theorem B. The claim obviously follows from

G · Xλ ∩ g1 = M,

and we here show the inclusion ⊇: the converse is just Lemma 2. By virtue

of Lemma 1, it suffices to show that if Y ∈ M , then

(ad Y )2Z ∈ C · Y

for all Z ∈ gi with −2 ≤ i ≤ 2.

In case of i = −2, this is obvious from the definition of M . If i > 0,

then the claim follows since (adY )2Z ∈ gi+2 = 0 with i + 2 > 2.
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In case of i = 0, set Z# := [Y,Z]. According to Proposition 1 (b), we

have 〈Y,Z#〉 = 0, that is, [Y,Z#] = 0 and the claim follows.

In case of i = −1, set Z+ := [Xλ, Z]. We have (adY )2Z = 4〈Y,Z+〉Y .

Indeed, applying the Jacobi identity twice, we have

(ad Y )2Z = [Y [Y [X−λ, Z+]]]

= −[Y [X−λ[Z+, Y ]]] − [Y [Z+[Y,X−λ]]]

= −2〈Z+, Y 〉[Y [X−λ,Xλ]]

+
{

[Z+[[Y,X−λ]Y ]] + [[Y,X−λ], [Y,Z+]]
}

= −2〈Z+, Y 〉[Y,−H ] + [Z+, 0] + 2〈Y,Z+〉[[Y,X−λ]Xλ]

= 2〈Y,Z+〉Y + 0 + 2〈Y,Z+〉Y

= 4〈Y,Z+〉Y.

We finally give a few examples where, using Theorem B, one can easily

as well as geometrically determine cubic Veronese varieties.

Example 1. The cubic Veronese variety πM ⊆ P∗(g1) is P
l−2 t P

l−2,

a disjoint union of two linear subspaces in P
2l−3 ' P∗(g1) if g is of type

Al. Indeed, in this case, X(g) is realized as the projectivization of the set

of traceless matrices [zij ]0≤i,j≤l with rank 1 (see, for example [FH, p. 389]).

On the other hand, taking H := diag(1,0, . . . , 0,−1), we have that g1 is the

subspace given by z00 = z0l = zll = 0 and zij = 0 for all i, j with i > 0

and j < l. Therefore the intersection X(g) ∩ P∗(g1) is the (disjoint) union

of linear subspaces defined by z00 = z0l = zij = 0 for all i, j with i > 0 and

by z0l = zll = zij = 0 for all i, j with j < l.

Example 2. The cubic Veronese variety πM ⊆ P∗(g1) is empty if g is

of type Cl. Indeed, in this case, X(g) is the Veronese embedding of P
2l−1 of

degree 2 (see, for example [KOY, §5]), then a simple calculation shows that

X(g) ∩ TπXλ
X(g) = {πXλ}.

On the other hand, for any adjoint variety X(g) we have

TπXλ
X(g) ⊇ P∗(g1) 63 πXλ.

Therefore the intersection X(g) ∩ P∗(g1) is empty.
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