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ON THE DOMAIN AND RANGE OF

THE MAXIMAL OPERATOR

ALBERTO FIORENZA1 and MIROSLAV KRBEC2

Abstract. We give a detailed survey, known and new results on the domain
and the range of the maximal operator. In particular we employ the grand Lp

spaces and logarithmic Lebesgue spaces.

§1. Introduction

We shall systematically treat the problem of the domain and of the

range of the maximal operator. Considering this problem has been moti-

vated by questions how strong are assumptions about the maximal func-

tion, varying from the finiteness of the maximal function at a single point

to Lr integrability, where 0 < r < 1, and questions about the range of the

maximal operator under minimal necessary hypothesis about the space on

which it acts, employing spaces obtained by various extrapolation proce-

dures, in particular, Lp) spaces (Iwaniec and Sbordone [IS]) and the loga-

rithmic Lebesgue spaces (Edmunds and Triebel [ET]).

We shall use standard notation Lp for the Lebesgue spaces; we shall

denote by |E| the Lebesgue measure of a set E ⊂ R
N and by BR(x) the

open ball centered at x with radius R.

For f ∈ L1
loc(R

N ), N ≥ 1 we consider the (global, centered ) maximal

function

Mf(x) = sup
R>0

1

|BR(x)|

∫

BR(x)
|f(y)| dy, x ∈ R

N ,

and we denote

D = {f ∈ L1
loc(R

N ) ; Mf 6≡ ∞}.
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In view of Theorem 2.2 and the sublinearity of the maximal operator, D

is a linear subspace of L1
loc(R

N ). We shall refer to it as the domain of the

maximal operator.

Let us note that not every function in L1
loc(R

N ) is in D: it suffices to

consider, for instance, the function norm in R
N .

It is well known that using, more generally, balls containing x or cubes

(centered or off-centered with respect to x) with sides parallel to coordinate

axes, or families of regular sets instead of balls in the definition of the

maximal function yields an equivalent operator ([DS]).

For simplicity and without loss of generality we shall work only with

non-negative functions so that we shall omit the absolute values everywhere.

In Section 2 we study the domain of the maximal operator, proving

some necessary and sufficient conditions; after recalling that L1(RN ) ⊂
D, examples are given showing that L1

loc(R
N ) ∩ ⋃

0<r<1 Lr(RN ) 6⊂ D 6⊂
L1(RN ) + L∞(RN ). In Section 3 we shall recall some known properties of

Mf when f ∈ D, and we shall fix our attention to the properties of Mf

when f ∈ L1(RN ) + L∞(RN ). Among the consequences of our results, we

get for instance that for every 0 < r, s < 1, α > 0, we have

f ∈ Lr(RN ) ∩ L1
loc(R

N ) and Mf ∈ Ls({Mf > α}) =⇒ f ∈ L1(RN ).

In Section 4 we study the local maximal operator MΩf on open bounded

sets Ω in R
N . This operator is a powerful tool in many areas of Analysis, for

instance, in the theory of quasi-conformal mappings ([BI]), when proving the

regularity of solutions of P.D.E. or minimizers of functionals of the Calculus

of Variations (for instance, see [FS1], [FS2]), or, recently, when dealing with

homogenization problems without regularity in the coefficients [CP]. We

shall put in evidence the different properties with respect to the maximal

operator in R
N ; we shall prove a characterization of the domain DΩ of

the local maximal operator and we shall see some examples, for instance,

functions in DΩ \L1
loc(Ω). In our treatment the grand Lp spaces (introduced

in [IS]) and logarithmic Lebesgue spaces (see [ET]) will be involved.

§2. The domain of the maximal operator

In 1939 Wiener [Wie] found a subspace of L1
loc(R

N ) contained in D;

namely, he proved the following

Theorem 2.1. If f ∈ L1(RN ), then Mf < ∞ a.e. in R
N .
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Plainly L∞(RN ) ⊂ D so that by the sublinearity of the maximal opera-

tor L1(RN ) + L∞(RN ) ⊂ D. Therefore the Lebesgue Lp(RN ) (1 ≤ p ≤ ∞),

Orlicz LA(RN ) (A Young function) and Lorentz spaces are subsets of D. We

shall show that D is effectively larger than L1(RN ) + L∞(RN ), but it does

not contain any space of the type L1
loc(R

N ) ∩ (Lr(RN ) + L∞(RN )) where

0 < r < 1. We begin with the following characterization of D.

Theorem 2.2. Let f ∈ L1
loc(R

N ). Then the following statements are

equivalent :

(i) there exists x0 ∈ R
N such that Mf(x0) < ∞ ;

(ii) there exists x0 ∈ R
N such that

lim sup
R→∞

1

|BR(x0)|

∫

BR(x0)
f(y) dy < ∞ ;

(iii) there exists K > 0 such that

lim sup
R→∞

1

|BR(x0)|

∫

BR(x0)
f(y) dy = K < ∞

for every x0 ∈ R
N ;

(iv) Mf(x) < ∞ a.e. in R
N ;

(v) f ∈ D.

Proof. The implications (iv) ⇒ (v) ⇒ (i) are obvious. Also, if (i) holds,

then the same x0 satisfies (ii). We shall prove (ii) ⇒ (iii) ⇒ (iv).

Let (ii) hold and choose a sequence {%n}n≥1 so that

lim
n→∞

1

|B%n(x0)|

∫

B%n(x0)
f(y) dy = lim sup

R→∞

1

|BR(x0)|

∫

BR(x0)
f(y) dy

and let x̄ be any point in R
N \ {x0}. Since

B%n+|x̄−x0|(x̄) ⊃ B%n(x0)

we have (ωN denotes the measure of the unit ball in R
N )

1

|B%n+|x̄−x0|(x̄)|

∫

B%n+|x̄−x0|
(x̄)

f(y) dy



46 A. FIORENZA AND M. KRBEC

=
1

ωN (%n + |x̄ − x0|)N
∫

B%n+|x̄−x0|
(x̄)

f(y) dy

≥ 1

ωN (%n + |x̄ − x0|)N
∫

B%n (x0)
f(y) dy

=

(

%n

%n + |x̄ − x0|

)N 1

ωN%N
n

∫

B%n (x0)
f(y) dy.

This yields

lim sup
R→∞

1

|BR(x̄)|

∫

BR(x̄)
f(y) dy ≥ lim sup

R→∞

1

|BR(x0)|

∫

BR(x0)
f(y) dy.(2.1)

Replacing x̄ by x0 and vice versa in the above argument gives equality

in (2.1), which proves (iii).

Let (iii) hold. Denote An = {n−1 < |x| < n}, n ∈ N. Then fn = fχAn ∈
L1. By virtue of Theorem 2.1, Mfn is finite a.e. in R

N . Let En ⊂ An be

a set of zero measure such that Mfn(x) < ∞ for all x ∈ An \ En and

denote E =
⋃∞

i=1 Ei ∪
(
⋃

n≥0{|x| = n}
)

. We claim that Mf(x) < ∞ for all

x ∈ R
N \E. Let x0 ∈ R

N \E, then x0 ∈ An \En for some n. Let r0 satisfy

Br0(x0) ⊂ An and fix R0 such that 1
|BR(x0)|

∫

BR(x0) f(y) dy < 2K for all

R ≥ R0. If R ≤ r0, then 1
|BR(x0)|

∫

BR(x0) f(y) dy ≤ Mfn(x0) < ∞; further, if

r0 < R < R0, then 1
|BR(x0)|

∫

BR(x0) f(y) dy ≤ 1
|Br0(x0)|

∫

BR0
(x0) f(y) dy, and,

finally, if R ≥ R0, then 1
|BR(x0)|

∫

BR(x0) f(y) dy < 2K. Hence Mf(x0) < ∞
and (iv) is true.

Remark 2.3. Let Ω be an open set in R
N . The John-Nirenberg space

BMO(Ω) is defined as the space of the measurable functions f such that

‖f‖BMO(Ω) = sup
Q⊂Ω

1

|Q|

∫

Q

∣

∣

∣

∣

f(x) − 1

|Q|

∫

Q
f(y) dy

∣

∣

∣

∣

dx < +∞

where the supremum is taken over all cubes Q with sides parallel to the

coordinate axes.

We remark that the implication (i) ⇒ (iv) from the previous theorem

has been shown to hold for f ∈ BMO(RN ) ∩ D in the book by Bennett-

Sharpley (cf. [BS, pp. 399–400]), by using the inequality

1

|Q|

∫

Q
Mf(x) dx ≤ c‖f‖BMO(RN ) + inf

x∈Q
Mf(x),(2.2)
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true for every Q cube in R
N , f ∈ BMO(RN ). Our proof here states this

interesting property generally for f ∈ L1
loc(R

N ) and it is much simpler than

that using (2.2). Notice that D 6⊂ BMO(RN ) (see next Example 2.8). Also

a rather sophisticated proof of (i) ⇒ (iv) for f ∈ L1
loc(R

N ) was given by

Wik [Wik].

Finally, we remark that it is also BMO(RN ) 6⊂ D; it suffices to consider

f = | log |x|| (cf. [BS, p. 400]).

We present two examples showing that if 0 < r < 1, then we have

L1
loc(R

N ) ∩ Lr(RN ) 6⊂ D 6⊂ L1(RN ) + L∞(RN ). Notice that the functions f

we are going to consider are supported on sets of finite measure, therefore,

every level set {f(x) > α}, α ≥ 0, is of finite measure.

Example 2.4. Let An = {n− 1 < |x| < n}, n ∈ N, and let Fn be any

measurable subset of An such that |Fn| = 2−n. Put f =
∑∞

n=1 anχFn with

an = 2n. Then f ∈ L1
loc(R

N ), f /∈ L1(RN ) + L∞(RN ). At the same time

f ∈ D, in fact,

1

|B%(0)|

∫

B%(0)
f(y) dy ≤ 1

ωN%N

[%+1]
∑

n=1

an|Fn|, % > 0,

where [ · ] denotes here the integer part and therefore we have

lim sup
%→∞

1

|B%(0)|

∫

B%(0)
f(y) dy < ∞,

from which f ∈ D by Theorem 2.2. Notice that since
∫

RN (f(y))r dy =
∑∞

n=1 ar
n|Fn| < ∞, we have f ∈ Lr(RN ) for all 0 < r < 1.

Example 2.5. Let us put an =
(

2(r+1)/2r
)n

with some fixed 0 < r < 1

in the previous example. Then f ∈ L1
loc(R

N ) ∩ Lr(RN ), f /∈ D. Note that

f /∈ L1(RN ).

Remark 2.6. Let Ω be an open set in R
N . The space BLO(Ω) is defined

as the subspace of BMO(Ω) of the functions f such that

sup
Q⊂Ω

(

1

|Q|

∫

Q
f(x) dx − ess inf

Q
f

)

< +∞.

It is possible to prove that (cf. [BS, (8.38) p. 400]; see also [T, p. 204])

M : D ∩ BMO(RN ) −→ BLO(RN ) ⊂ BMO(RN ),
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and that such operator is surjective, i.e.,

BLO(RN ) = M(D ∩ BMO(RN )) + L∞(RN )(2.3)

Remark 2.7. The Sobolev spaces are in D, but also functions in

L1
loc(R

N ) with weak derivatives in Lp(RN ), 1 ≤ p < N are in D since

they, up to a constant, belong to some Lebesgue or Orlicz space (cf. [Sc,

p. 40], or [Ma, p. 424]).

Example 2.8. Functions in D can be very bad indeed, for instance,

the measure of every level set can be infinite, hence these functions can-

not be rearranged (for general reference about rearrangements see for in-

stance [B], [Mo], [K]). Let us have a look at the following one-dimensional

example: Put

f(t) =
∞

∑

n=1

nχ(n3,n3+1)(t), t ∈ R
1.

Clearly f ∈ L1
loc(R

1) and

0 ≤ lim
t→∞

∫ t

−t
f(y) dy ≤ lim

n→∞

1

2n3

∫ n3+1

−n3−1
f(y) dy

= lim
n→∞

n(n + 1)

4n3
= 0,

therefore, f ∈ D by Theorem 2.2. Notice that the measure of every level set

of f is infinite, and, since f ≤ Mf , also the measure of every level set of

Mf is infinite. Finally, notice that f /∈ BMO(R1).

§3. The range of the maximal operator

We shall first survey known properties of the maximal operator. Let

f ∈ D. Then Mf is measurable lower semicontinuous function. By the

Lebesgue Differentiation Theorem, f ≤ Mf , and if N > 2 an equality can

hold even without f being a constant (this result is true for the spherical

maximal operator; see [F1]). In terms of membership in various function

spaces we recall that if f 6≡ 0 a.e. in R
N then Mf /∈ Lr(RN ) ∀ 0 < r ≤ 1

and log(1 + Mf) /∈ L1(RN ) (since there is c > 0 such that Mf(x) ≥ c/|x|N
for all |x| > 1, cf., e.g., [BS, p. 117]). The behaviour of M in Lebesgue

spaces has been studied thoroughly: M acts continuously from Lp(RN ) into

Lp(RN ) if 1 < p ≤ ∞ and from L1(RN ) into the weak-L1(RN ). Passing to
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finer scales of spaces, it is possible to find criteria for the boundedness of M

in Lorentz and Orlicz spaces, in particular then in Lorentz-Zygmund spaces.

A curious phenomenon occurs, namely, a deterioration of the behaviour of

M near L1, expressed in the classical form of the Zygmund inequality, a

feature common to other classical operators. This is now well understood

also in a more abstract setting as a general property of operators of weak

type (1, 1) or its generalizations. From numerous references let us recall at

least [Gu], [GCRF], [T], [BR], [BS], [KK].

Now let us begin by studying the properties of Mf . Starting only from

the assumption f ∈ D it may happen that Mf /∈ L1
loc(R

N ); it suffices to

consider the following well-known

Example 3.1. Let us put f(x) = χ]0,1/2[(x)/(x log2 x), x ∈ R
1 a.e.

(cf. [BS, p. 118], or [T, p. 77]). Then f ∈ D, Mf /∈ L1
loc(R

N ). We observe

that Mf ∈ L1(log L)−1(]0, 1/2[).

Example 3.1 shows that also starting from f ∈ L1(RN ) generally we

have not Mf ∈ L1
loc(R

N ). As we are going to see, in this case it is possible

to find optimal spaces to which Mf belongs.

First of all, by virtue of the Kolmogorov inequality (cf., e.g., [Sa, Thm. 6.1,

p. 190], or [S3, p. 43]),

‖Mf‖r
Lr(A) ≤

c(N)|A|1−r

1 − r
‖f‖r

L1(RN ) ∀f ∈ L1(RN ), r ∈ ]0, 1[ ,(3.1)

true for every set A ⊂ R
N , |A| < ∞, the function Mf is in every Lr(A)

with 0 < r < 1 provided f ∈ L1(RN ), where A is any set of R
N with finite

measure. Furthermore, Mf belongs to any space on A resulting from an ex-

trapolation procedure based on (3.1), which preserves a finite (quasi-)norm

on the right hand side. The extrapolation theory as developed up to now

offers two reasonable candidates. The first is given by using an analogue of

the approach considered for p > 1 in [ET],

∫ ε0

0
εσ−1‖Mf‖L1−ε(A) dε ≤ c(N, |A|, ε0, σ)‖f‖L1(RN ),(3.2)

where ε0 ∈ (0, 1) is chosen arbitrarily, σ > 1 is a parameter, or by using its

discrete variant, the Σ-method due to Milman [Mi]. Going along the lines

of the proof in [ET], where spaces Lp(log L)−σ(A) with 1 < p < ∞ are

considered, it is not difficult to prove that the quasinorm on the left hand
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side of (3.2) is equivalent to the quasinorm in the (generalized) Orlicz space

L1(log L)−σ(A). Hence we have the following

Proposition 3.2. If f ∈ L1(RN ), then Mf ∈ ⋂

σ>1 L1(log L)−σ(A)

for every A ⊂ R
N of finite measure.

This assertion is optimal in the scale of logarithmic Lebesgue spaces,

as we are going to see from the following

Example 3.3. Let us consider the function

f(x) =
1

x| log x| log2 | log x|
χ]0,a[(x), x ∈ R

1 \ {0, 1, e},

where a = exp(− exp(1)). It is f ∈ L1(RN ) because

∫ a

0
f(x) dx =

[

1

log | log x|

]x=a

x→0

=
1

log | log a| .

On the other hand we have

Mf

(

x

2

)

≥ 1

x

∫ x

0
f(t) dt =

1

x log | log x| , x ∈
]

0,
a

2

[

,

and therefore, since log | log x| > 1 ∀x ∈ ]0, a/2[, we get

Mf
(

x
2

)

log
(

e + Mf
(

x
2

)) ≥
1

x log | log x|

log
(

e + 1
x log | log x|

) ≥ 1

x log | log x| log
(

e + 1
x

)

≥ 1

x log | log x| log 2
x

≥ 1

2x| log x| log | log x| ,

from which Mf /∈ L1(log L)−1(]0, a[ ).

The second approach follows from another estimate consequence of

(3.1), namely, a bound for the quasinorm of Mf in L1)(A), the grand L1

space, which is a particular case of spaces introduced by Iwaniec and Sbor-

done [IS] and investigated in details, e.g., in Greco [Gr]:

‖Mf‖L1)(A) ≤ c(N, |A|)‖f‖L1(RN )
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Let us recall that the quasinorm in L1)(A) is given by

‖f‖L1)(A) = sup
0<ε<ε0

(

ε
1

|A|

∫

A
|f(y)|1−ε dy

)1/(1−ε)

,

where ε0 ∈ (0, 1); observe that only values of ε near zero are relevant. Hence

we have the following

Proposition 3.4. If f ∈ L1(RN ), then Mf ∈ L1)(A) for every A ⊂
R

N of finite measure.

Let us remark that this approach is better in terms of inclusions of

functions spaces, because it is

L1(log L)−1(A) ⊂ L1)(A) ⊂
⋂

σ>1

L1(log L)−σ(A)

for every A of finite measure.

In Example 2.8 we showed that if f ∈ D, then the measure of every

level set of Mf can be infinite, considering a function f having the same

property. The next theorem shows among others that such phenomenon

may occur even if the measure of every level set of f is finite (namely, when

f /∈ L1(RN ) + L∞(RN ), as in the Example 2.4.

Theorem 3.5. Let f ∈ L1
loc(R

N ) and ϕ : [0,∞[ → [0,∞[, ϕ strictly

increasing, ϕ(∞) = ∞, limt→∞ ϕ(t)/ts = 0 for some 0 < s < 1. Then the

following statements are equivalent :

(i) f ∈ L1(RN ) + L∞(RN );

(ii) there is α > 0 such that f ∈ L1({f > α});

(iii) there is α > 0 such that |{Mf > α}| < ∞ ;

(iv) there is α > 0 and 0 < r < 1 such that Mf ∈ Lr({Mf > α});

(v) there is α > 0 such that Mf ∈ Lr({Mf > α}) for all 0 < r < 1;

(vi) there is 0 < r < 1 such that Mf ∈ Lr(RN ) + L∞(RN );

(vii) Mf ∈ ⋂

0<r<1 Lr(RN ) + L∞(RN );

(viii) ϕ(Mf) ∈ L1(RN ) + L∞(RN );
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(ix) there is α > 0 such that |{Mf > α}| < ∞ and

Mf ∈ L1)({Mf > α}) + L∞(RN );

(x) there is α > 0 such that |{Mf > α}| < ∞ and

Mf ∈
⋂

σ>1

L1(log L)−σ({Mf > α}) + L∞(RN ).

Proof. We shall prove (i) ⇒ (iii) ⇒ (ii) ⇒ (i) and (iii) ⇒ (v) ⇒ (viii)

⇒ (iii) and (v) ⇒ (vii) ⇒ (vi) ⇒ (iv) ⇒ (iii) and (iii) ⇒ (ix) ⇒ (x) ⇒ (vi).

Step 1, (i) ⇒ (iii): If f ∈ L1(RN ) + L∞(RN ), then there is α > 0

such that f = fχ{f>α} + fχ{f≤α} ≡ f1 + f2 with f1 ∈ L1(RN ). We have

Mf ≤ Mf1 + Mf2 ≤ Mf1 + α and thus {Mf > β} ⊂ {Mf1 + α > β} =

{Mf1 > β − α} for all β ≥ α.

Step 2, (iii) ⇒ (ii): This is an immediate consequence of the reverse

inequality of weak type (1, 1) of M , namely, there exist constants c1, c2 > 0

depending on N such that (see [S3, p. 43], for instance):

|{x ∈ R
N : Mf(x) > c1α}| ≥

c2

α

∫

|f |>α
|f | dx, ∀α > 0.

Step 3, (ii) ⇒ (i): It suffices to write f = fχ{f>α} + fχ{f≤α}.

Step 4, (iii) ⇒ (v): Fix 0 < r < 1. By Step 2 there exists α > 0 such

that fχ{f>α} ∈ L1(RN ), therefore
∫

Mf>α
(Mf)r dx ≤

∫

Mf>α
[M(fχ{f>α})]

r dx

+

∫

Mf>α
[M(fχ{f≤α})]

r dx < ∞.

The first term on the right hand side is finite in view of the Kolmogorov

inequality since {Mf > α} has a finite measure.

Step 5, (v) ⇒ (viii): Let ts (0 < s < 1) be such that ϕ(t) ≤ ts, t ≥ ts
and put K = max(ts, α). Then

Mf = (Mf)χ{Mf>K} + (Mf)χ{Mf≤K}.

Step 6, (viii) ⇒ (iii): Let α > 0 be such that ϕ(Mf) ∈ L1({Mf > α}).
If |{Mf > α}| = ∞, then

∫

{Mf>α}
ϕ(Mf) dx > ϕ(α)|{Mf > α}| = ∞,
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which is a contradiction.

Step 7, (v) ⇒ (vii): It suffices to write Mf = (Mf)(χ{Mf>α}) +

(Mf)(χ{Mf≤α}).

Step 8, (vii) ⇒ (vi): This is obvious.

Step 9, (vi) ⇒ (iv): It suffices to apply (i) ⇒ (ii) to (Mf)r.

Step 10, (iv) ⇒ (iii): It suffices to argue as in Step 6, replacing ϕ(t)

by tr.

Step 11, (iii) ⇒ (ix): Arguing as in Step 4 and using the quantitative

form of the Kolmogorov inequality we get, for 0 < r < 1,
∫

Mf>α
(Mf)r dx ≤

∫

Mf>α
[M(fχ{f>α})]

r dx +

∫

Mf>α
[M(fχ{f≤α})]

r dx

≤ c

1 − r
|{Mf > α}|1−r‖fχ{f>α}‖r

L1({Mf>α}) + αr|{Mf > α}|,

for some constant c independent of r. Hence

sup
0<r<1−ε0

(

1 − r

|{Mf > α}|

∫

Mf>α
(Mf)r dx

)1/r

≤ c1

(‖fχ{f>α}‖L1({Mf>α})

|{Mf > α}| + 1

)

for some c1 independent of r, which yields Mf ∈ L1)({Mf > α}). Hence

Mf ∈ L1)({Mf > α}) + L∞(RN ).

Step 12, (ix) ⇒ (x): This follows by the known inclusion properties

of L1) (see [Gr]).

Step 13, (x) ⇒ (vi): This follows by the known inclusion theorems of

Orlicz spaces.

Remark 3.6. The condition (ii) in Theorem 3.5 says that f is integrable

over a special set of a finite measure. Examples 2.4 and 2.5 show that this

cannot be replaced by integrability of f over any set of finite measure.

Furthermore, the condition (iii) in Theorem 3.5 implies that all level sets

of the maximal functions in the examples recalled are of infinite measure.

Remark 3.7. Notice that assuming f ∈ L1−ε(RN )∩L1
loc(R

N ) for some

ε ∈ (0, 1) and Mf ∈ Lr({Mf > α}) for some 0 < r < 1 and α > 0, then in

view of Theorem 3.5 we have f ∈ L1(RN ).

Next theorem is a well-known variant of Stein’s L log L theorem ([S1],

[S2]) for the maximal function. We state it here for completeness.
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Theorem 3.8. Let f ∈ L1
loc(R

N ) and σ ≥ 1. Then the following

statements are equivalent :

(i) f [log(1 + f)]σ ∈ L1(RN ) + L∞(RN );

(ii) there is α > 0 such that f [log(1 + f)]σ ∈ L1({f > α});

(iii) there is α > 0 such that Mf ∈ L1(log L)σ−1({f > α});

(iv) Mf ∈ L1(log L)σ−1(RN ) + L∞(RN ).

What follows is a scheme of some of the sets of functions we have

considered up to now, ordered by the strength of the conditions involved:

f measurable in R
N −−−−−−→ f /∈ L1

loc(R
N )

↓

f ∈ L1
loc(R

N ) −−−−−−→
(Ex. 2.5)

f /∈ D

↓

f ∈ D −−−−−−→
(Ex. 2.8)

|{f > α}| = ∞ ∀α ≥ 0

↓

∃α > 0 : |{f > α}| < ∞ −−−−−−→
(Ex. 2.4)

|{Mf > α}| = ∞ ∀α ≥ 0

↓

∃α > 0 : |{Mf > α}| < ∞ −−−−−−→
(Ex. 3.3)

Mf /∈ L1

log L
({f > α}) ∀α ≥ 0

↓

∃α > 0 : Mf ∈ L1

log L
({f > α}) −−−−−−→

(Ex. 3.1)
Mf /∈ L1({f > α}) ∀α ≥ 0

↓
∃α > 0 : Mf ∈ L1({f > α})

§4. The local maximal function on open bounded sets

The symbol Ω will now stand for an open bounded subset of R
N , func-

tions in Ω will be assumed to be measurable and non-negative.
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The local maximal function of f is defined by

MΩf(x) = sup
Q3x

Q⊂Ω
Q cube

1

|Q|

∫

Q
f(y) dy, x ∈ Ω,

where edges of cubes Q are parallel with coordinate axes. If Ω 6= R
N , then

MΩ preserves only some of the properties of M as we are going to see.

We shall first consider the case Ω = Q0, cube in R
N . Putting

f̄ =

{

f in Q0,

0 in R
N \ Q0,

it is easy to prove that

MQ0f = (MRN f̄)
∣

∣

Q0
.

As a consequence of Theorem 2.2, we have

Proposition 4.1. It is MQ0f < ∞ a.e. in Q0 if and only if f ∈
L1(Q0).

After the considerations of Section 3, we have some information about

the range of MQ0 : if f ∈ L1(Q0), then we have Mf ∈ L1)(Q0) and also that

Mf ∈ ⋂

σ>1 L1(log L)−σ(Q0); in particular, Mf ∈ ⋂

0<r<1 Lr(Q0). Also,

Example 3.1 shows that Mf need not be locally integrable in Q0.

Let us recall some known results about the range of MQ0 when f is

“better” than L1(Q0): by the Stein’s L log L result [S1], f ∈ L log L(Q0)

iff MQ0f ∈ L1(Q0) and f belongs to the Orlicz space LA(Q0), where

inf t>0 tA′(t)/A(t) > 1, iff MQ0 belongs to the same space. For other imbed-

ding properties of the maximal operator see [T], [LZ], [GIM].

We shall turn our attention to the local maximal function with respect

to a general domain Ω. In this case MΩ is different from (MRN f̄)
∣

∣

Ω
. In

general MΩf ≤ (M
RN f̄)

∣

∣

Ω
and these functions need not be equivalent. We

shall give an example of this curious phenomenon.

Example 4.2. Let N = 2,

Ω = {z = (x, y) ; |z − 1| < 1},

and let f = 1 in Ω ∩ {y > 2/
√

5} and 0 otherwise in Ω. Then

(MΩf)
∣

∣

Ω∩{y≤0}
= 0 while (M

RN f̄)
∣

∣

Ω∩{y≤0}
> 0.
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Hence it turns out that the assumption f̄ ∈ D is a sufficient condition

to get f ∈ DΩ. Next example shows that such assumption is too strong

when looking for the functions in DΩ. A necessary and sufficient condition

for a function f to be in DΩ will be given in Theorem 4.5.

Figure 1.

Example 4.3. Let us consider the situation illustrated by the upper

part of Fig. 1, that is, let N = 2 and consider a sequence of open cubes

Q1, Q2, . . . such that their bottom sides lay on the positive axe x, the right

vertical side of Qk+1 is subset of the left vertical side of Qk and the left

upper corners of all Qk lay on a line y = kx with some k > 0. Let Ω be

the triangle domain whose boundary is contained in the positive axe x, the

line y = kx, and the line containing the right vertical side of Q1. Denote by

Q1/2,Q2/2, . . . , concentric cubes with sidelength equal to the half of the

sides of Q1, Q2, . . . . Let (ai), be any sequence of positive real numbers such
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that
∞
∑

i=1

ai|Qi| = ∞

and put

f =
∞

∑

i=1

aiχQi/2.

Then f is supported in a compact set and f /∈ L1(Ω). If we fix x ∈ Ω, then

every cube Q such that Q 3 x, Q ⊂ Ω, intersect at most two of the cubes

Qi, thus MΩ is finite a.e.

The preceding example shows that f need not be integrable over every

compact subset of its support in order to have MΩf < ∞ a.e. in Ω. Of

course f must be integrable over cubes contained in Ω, this is, however, not

sufficient for MΩf < ∞ a.e. in Ω. Indeed, f can be integrable over cubes in

Ω, and still MΩ need not be a.e. finite, as shown by the following

Example 4.4. Let us consider Ω1 as Ω from Example 4.3 united with

a rectangle pasted from below to Ω, with the left vertical side on the axe y

and the upper horizontal side on the axe x and put

f =

∞
∑

i=1

i

|Qi|
χQi/2.

Let Q′
1 be the translation of Q1 having the left upper corner on the origin,

and Q′′
1 6= Q′

1 be any fixed translation of Q1, contained in Ω1, such that

the left upper corner of Q′′
1 stays on the line y = kx and such that the set

E = Q′
1 ∩ Q′′

1 has positive measure. Then for every Qi, i sufficiently large,

there exists a translation of Q1 containing E ∪Qi, therefore, if x ∈ E, since

MΩf(x) ≥ 1

|Q1|

∫

Qi

f(y) dy =
i

4|Q1|
,

we have MΩf = ∞ in E. Hence MΩf is not finite a.e. while f is integrable

over every cube contained in Ω.

Taking a closer look at the foregoing two examples we see that in both

cases there exists a sequence of cubes such that the averages of f blow up.

In the former case the edges tend to zero and this is not necessarily in the

latter example. It turns out that this property is in fact crucial for DΩ;

indeed, we have
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Theorem 4.5. Let f ∈ L1(Q) for all Q ⊂ Ω. Then the following

statements are equivalent :

(i) MΩf < ∞ a.e. in Ω;

(ii) sup
|Q|>ε

Q cube
Q⊂Ω

1

|Q|

∫

Q
f(y) dy < ∞ for all ε > 0.

Proof. Let (ii) hold and assume that MΩ is not finite a.e. in Ω. Then

there exists a cube C ⊂ Ω such that (MΩf)|C is not finite a.e. Let

Cε = {x ∈ C ; dist(x, ∂C) > ε}

and choose ε so that |C \ Cε| < |{(MΩf)|C = ∞}|. Since f ∈ L1(Cε) we

have MCεf < ∞ a.e. in Cε and there exists x ∈ Cε such that MΩf(x) = ∞
and MCεf(x) < ∞. Consequently, one can find cubes Qn ⊂ Ω such that

x ∈ ⋂

Qn, |Qn|−1
∫

Qn
f(y) dy → ∞, and at the same time Qn 6⊂ Cε for every

sufficiently large n, which yields |Qn| > ε. This contradicts (ii), thus (i)

holds.

Let us suppose that (i) is true and choose ε0 such that

sup
|Q|>ε0
Q cube
Q⊂Ω

1

Q

∫

Q
f(x) dx = ∞;

further, let Qn ⊂ Ω, n ∈ N, satisfy |Qn|−1
∫

Qn
f(x) dx → ∞, |Qn| > ε0. De-

note by xn the centre of Qn. Since Ω is bounded there exists a subsequence

(xnk
) convergent to some x ∈ R

N . But x ∈ Ω because |Qn| > ε0 for all n

and cubes Qnk
with sufficiently large k contain the cube Q(x, ε

1/N
0 ) centered

at x and with sidelength ε
1/N
0 ; hence MΩf(y) = ∞ for all y ∈ Q(x, ε

1/N
0 ).

This contradicts (i) and the proof is complete.

Remark 4.6. If Ω is a cube Q0, then (ii) is equivalent to f ∈ L1(Q0).

Furthermore, Theorem 4.5 remains to be true for Ω = R
N by virtue of

Theorem 2.2.

Let us observe that the proof of Theorem 4.5 can be modified, admitting

unbounded Ω.

We turn our attention to the problem of the range of the local maxi-

mal function. If f ∈ DΩ, then MΩ trivially enjoys the standard properties,
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namely, it is lower semicontinuous and f ≤ MΩf a.e. in Ω. On the other

hand, in contrast to the behaviour of M
RN and MQ0 , it is not generally

true that MΩf ∈ Lr(Ω). Let us consider, for instance, Example 4.3 with

ai = i exp(1/|Qi|2). Then

∫

Ω
f r dx =

∞
∑

i=1

|Qi|
4

ir exp

(

r

|Qi|2
)

= ∞, 0 < r < 1,

therefore MΩf /∈ Lr(Ω). This example indicates that the integrability prop-

erties of MΩ depend heavily on the geometric properties of Ω. In particular,

if Ω is a cube Q0, then MQ0f ∈ Lr(Q0) for all 0 < r < 1.

Let us remark also that if Ω is a cube Q0, in contrast to the behaviour

of M
RN , BMO(Q0) ⊂ DQ0 because BMO(Q0) ⊂ L1(Q0), and, modulo

bounded functions, BLO(Q0) is exactly the range of MQ0 on BMO(Q0):

in fact we have the following analogous of (2.3) (see [BS, p. 390])

BLO(Q0) = MQ0(BMO(Q0)) + L∞(Q0).

In spite of this we have the following easy analogue of (x) of Theo-

rem 3.5:

Theorem 4.7. Let f ∈ L1(Ω). Then MΩf ∈ L1)(Ω), therefore, MΩf ∈
⋂

σ>1 L1(log L)−σ(Ω)

Proof. Let Q0 ⊃ Ω be a cube and put f̄(x) = f(x) for x ∈ Ω and

f̄(x) = 0 in R
N\Ω. The claims now follow since MΩf ≤ MQ0 f̄ = (MRN f̄)|Q0

and f ∈ L1(Q0).

Remark 4.8. If Ω is a cube Q0 and MQ0f ∈ L1(log L)−1(Q0), then the

L1 norm of f can be estimated as follows ([F2]):

∫

Q0

f(x) dx ≤ 2N+1

∫

Q0

MQ0f(x)

log

(

e +
MQ0

f(x)

|MQ0
f(x)|Q0

) dx,

where |MQ0f(x)|Q0 = |Q0|−1
∫

Q0
MQ0f(x) dx.
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