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INTEGERS FREE OF SMALL PRIME FACTORS

IN ARITHMETIC PROGRESSIONS
∗

TI ZUO XUAN

Abstract. For real x ≥ y ≥ 2 and positive integers a, q, let Φ(x, y;a, q) denote
the number of positive integers ≤ x, free of prime factors ≤ y and satisfy-
ing n ≡ a (mod q). By the fundamental lemma of sieve, it follows that for
(a, q) = 1, Φ(x, y; a, q) = ϕ(q)−1, Φ(x, y){1+O(exp(−u(log u− log2 3u− 2)))+
O(exp(−√

log x/2))} (u = log x/ log y) holds uniformly in a wider ranges of x,
y and q.

Let χ be any character to the modulus q, and L(s, χ) be the corresponding
L-function. Let χ̃ be a (‘exceptional’) real character to the modulus q for which
L(s, χ̃) have a (‘exceptional’) real zero β̃ satisfying β̃ > 1 − c0/ log q. In the
paper, we prove that in a slightly short range of q the above first error term

can be replaced by χ̃(a)ϕ(q)−1 · xβ̃ρ′(u)(β̃ log y)−1(1 + O((log y)−1/2)), where
ρ(u) is Dickman function, and ρ′(u) = dρ(u)/du.

The result is an analogue of the prime number theorem for arithmetic pro-
gressions. From the result can deduce that the above first error term can be
omitted, if suppose that 1 < q < (log q)A.

§1. Introduction

The distribution for integers without large prime factors have been

extensively investigated, and have found applications in various problems

in number theory (for instance, to finding large gaps between primes, to

analysis of algorithms for factoring and primality testing and to Waring’s

problem).

The dual problem is of studying the distribution of integers free of small

prime factors (so-called sifted integers).

To state the results on this problems, we first introduce some notations.

Let p(n) be the smallest prime factor of n > 1, and p(1) = ∞. For

real x ≥ y ≥ 2 let S(x, y) denote the set of positive integers n ≤ x for

which p(n) > y, and let Φ(x, y) denote the cardinality of S(x, y). Also, let

u = log x/ log y.
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Φ(x, y) is an important function of analytic number theory. Various

estimates for Φ(x, y) have been given by several authors (see, [1], [4], [8],

[9] [19], [24]), and has a variety of applications (see, [7], [8], [11], [14]).

Thus, it was shown in [4] that for any fixed u > 1

Φ(x, y) ∼ x

log y
ω(u) (x→ ∞),

where the function ω(u) be defined by

ω(u) = 1/u, (1 ≤ u ≤ 2)

(uω(u))′ = ω(u− 1), (u ≥ 2)

where for u = 2 the right-hand derivative has to be taken.

Recently, Hildebrand [10] derived an asymptotic estimate for ω(u),

where he proved that for u ≥ 2

ω(u) − e−γ = 2 Re

{ −1

ψ(u)
Φ(u)

}

+O

(

1

uλ(u)
|Φ(u)|

)

,(1.1)

where

Φ(u) =
1

√

2πu(1 − 1/ψ(u))
exp

{

−γ − uψ(u) −
∫ ψ(u)

0

ev − 1

v
dv

}

,(1.2)

and where ψ(u) = λ(u)+ iµ(u) is the unique solution of eψ(u)−1 = −uψ(u)

in the range λ(u) ≥ 2, 0 < µ(u) ≤ 4π/3. Moreover, we have

|ψ(u)| � λ(u) � log u.(1.3)

Tenenbaum [19, Theorem III.6.7] obtained an estimate for Φ(x, y) in a

wide range. Very recently [24], we extended the range of asymptotic estimate

for Φ(x, y). Then we deduce from the result that the estimate

Φ(x, y) = x
∏

p≤y

(

1 − 1

p

)

(1.4)

+
x

log y

(

(ω(u)−e−γ)−ω′(u−0)

log y
+· · ·+ (−1)kω(k)(u−0)

(log y)k

)

+Ok

(

x|Φ(u)|(log u)k

(log y)k+2

)

.
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holds uniformly in a wide range, where k ≥ 0 is fixed

By (2.7) of [10], we have

|Φ(u)|/ρ(u) = exp

{

−π
2

2
· u

log2 u
(1 + o(1))

}

,(1.5)

where ρ(u) (the so-called ”Dickman function”) is defined as the continuous

solution of the system

ρ(u) = 1 (0 ≤ u ≤ 1),

−uρ′(u) = ρ(u− 1) (u > 1).

An approximation to ρ(u) in terms of elementary functions [10, (1.8)]

is

ρ(u) =(1.6)

exp

{

−u
(

L+ L2 − 1 +
L2

L
− 1

L
− L2

2

2L2
+
L2

L2
− 2

L2
+O

(

L3
2

L3

))}

,

with L = log u, L2 = log2 u (= log log u).

A natural problem is to investigate the distribution of the integers free

of small prime factors in arithmetic progressions.

In analogy as the function Φ(x, y), we define

Φ(x, y; a, q) =
∑

n∈S(x,y)
n≡a(mod q)

1, Φq(x, y) =
∑

n∈S(x,y)
(n,q)=1

1.

Buchstab [4] considered the function Φ(x, y; a, q), and obtained the same

result as the case q = 1 described above.

By the fundamental lemma in the form given in [9, Ch.2, Th.2.5], it

follows that for (a, q) = 1

Φ(x, y; a, q) =(1.7)

1

ϕ(q)
Φ(x, y)

{

1 +O
(

e−u(log u−log2 3u−2)
)

+O
(

e−
1
2

√
log x

)}

holds uniformly in the ranges

1 ≤ q ≤
√
x, P (q) < y and 3/2 ≤ y ≤ x/q,(1.8)
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where P (n) denotes the largest prime factor of n > 1. The current sieve es-

timates (see, for example, Iwaniec [13]) give that for y ≥ exp
{

(log x)50/51
}

the error terms in (1.7) can be replaced by the bound

e−u(log u+log2 3u−1+O(log2 3u/ log u)) + ρ(u) log y.

In [22], Wolke showed that for any A > 0 the following holds

∑

q≤Q

max
(a,q)=1

max
z≤x

∣

∣

∣

∣

Φ(z, y; a, q) − Φq(z, y)

ϕ(q)

∣

∣

∣

∣

� x(log x)−A

with Q = x1/2(log x)−B and B = B(A) > 0.

In this paper, we will give further estimates for Φ(x, y; a, q).

Let χ be any character to the modulus q, and L(s, χ) be the corre-

sponding L-function. Let χ̃ be a real character to the modulus q for which

L(s, χ̃) have a real zero β̃ satisfying β̃ > 1− c0/ log q, where c0 is a suitable

positive constant. Also let χ0 be the principal to the character modulus q.

Let

Lε(y) = exp
{

(log y)3/5−ε
}

,(1.9)

where ε is any fixed positive number.

Theorem 1. Fix ε > 0. Let x, y satisfy

x ≥ x0(ε), exp
{

(log x)2/5+ε
}

≤ y ≤
√
x,(1.10)

and

1 < q ≤ exp {c1 log y/ log2 x} ,(1.11)

where c1 is a sufficiently small positive constant, and χ be a nonprincipal

character modulus q.

(i) If χ 6= χ̃, then we have uniformly
∑

n∈S(x,y)

χ(n) � x exp {−c2 log x/ log q} + x/Lε(x),(1.12)

where c2 is a suitable positive constant, and Lε(x) = exp
{

(log x)3/5−ε
}

is

defined as in (1.9).

(ii) If χ = χ̃, then we have uniformly

∑

n∈S(x,y)

χ̃(n) =
xβ̃ρ′(u)

β̃ log y

(

1 +O

(

1√
log y

))

+O

(

x

Lε(x)

)

,(1.13)

where ρ′(u) = dρ(u)/du.
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By [3], we have ρ′(u) ∼ −ρ(u) log u. Thus, ρ′(u) can be estimated by

(1.6). In [23], we obtained a sharp asymptotic formula for ρ′(u).

Theorem 2. Let (a, q) = 1. For x, y satisfying 3/2 ≤ y ≤ x/q, and

1 < q ≤ exp
{

min(c3
√

log x, c3 log y/ log2 x)
}

, P (q) < y,(1.14)

where c3 is a sufficiently small positive number, we have uniformly

Φ(x, y; a, q) =
1

ϕ(q)
Φ(x, y) +

χ̃(a)

ϕ(q)
· x

β̃ρ′(u)

β̃ log y

(

1 +O

(

1√
log y

))

(1.15)

+ O
(

e−
1
2

√
log x

)

.

We note that though the result (1.7) is stated in the range (1.8), it yields

an asymptotic estimate for Φ(x, y; a, q) only when u = log x/ log y → ∞,

as x→ ∞. In Theorem 2, the range of asymptotic estimate for Φ(x, y; a, q)

is 3/2 ≤ y ≤ x/q and (1.14), which is necessary to estimate the sum of form
∑

n∈S(x,y), n≡a mod q f(n), where f(n) is an arithmetic function.

Corollary 1. Let A > 0 be fixed, (a, q) = 1. The estimate

Φ(x, y; a, q) =
1

ϕ(q)
Φ(x, y)

(

1 +O
(

e−
1
2

√
log x

))

,(1.16)

holds uniformly in the ranges 3/2 ≤ y ≤ x/q, and

1 < q ≤ (log x)A, P (q) < y.(1.17)

We note that Corollary 1 remove the first error term of (1.7).

Theorem 2 is an analogue of the prime number theorem for arithmetic

progressions, which can be stated as follows (see, for example, [5, p.123,]

and [16, p.315,]).

If we suppose that

q ≤ exp
{

C(log x)1/2
}

,(1.18)

where C is any positive constant. Then

π(x; a, q) =
li x

ϕ(q)
− χ̃(a)

ϕ(q)

∫ x

2

vβ̃−1

log v
dv +O

(

xe−C
′
√

log x
)

,(1.19)
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for a positive constant C ′ depending only on C, and this holds uniformly

with respect to q in the above range. Evidently, when y = x1/2, (1.15)

gives an asymptotic estimate for the number of primes in an arithmetic

progression.

From Theorem 2 and a result of [5, p. 124,], we also get

Corollary 2. On the hypotheses of Theorem 2, then, except possibly

if q is a multiple of a particular integer q1 depending on x, we have uniformly

Φ(x, y; a, q) =
1

ϕ(q)
Φ(x, y)

{

1 +O
(

e−
1
2

√
log x

)}

.(1.20)

We note that Corollary 2 remove the first error term of (1.7), if suppose

that q is not an ‘exceptional’ modulus.

By [5, p. 124], the lower bound for the exceptional modulus q1 is

q1 � log x/(log2 x)4.(1.21)

§2. Preliminary lemmas

Let q > 1 be integer, s = σ + it, put

M(q, t) = max
{

log q, log2/3+ε(|t| + 3)
}

.

Lemma 1. There exists a constant c0 > 0, such that

(i) in the region σ ≥ 1 − c0/M(q, t), there is no zero of any L(s, χ)

with character χ(mod q) except, possibly, one simple real zero of a function

L(s, χ̃) belonging to an exceptional real character χ̃(mod q).

(ii) in the region σ ≥ 1 − c0/M(q, t), for all nonprincipal character

χ(mod q),

L(s, χ) = O(log (q(|t| + 2))).

(iii) in the region σ ≥ 1 − c0/2M(q, t), |t| ≥ 1, for all nonprincipal

character χ(mod q),

log L(s, χ) = O(log (q(|t| + 2))).

Proof. (i) See [16, Th.17. 4. 2]

(ii) It can be deduced from the estimate (24.2.8) of [16].

(iii) To prove the result, it suffices to show that

L′(σ + it, χ)

L(σ + it, χ)
=

Ẽ

s− β̃
+O(log (q(|t| + 2))),
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where β̃ is an exceptional real zero of L(s, χ̃), and Ẽ = 1, if there exists an

exceptional character χ̃(mod q) and χ = χ̃, and Ẽ = 0, otherwise,

The proof of the last estimate is almost the same as that of [17, Ch.IV,

Th.7.1].

Let

L(s, χ; y) =
∏

p≤y

(

1 − χ(p)p−s
)−1

.

To prove Theorem 1, we need an estimate for L(s, χ; y). Fouvry and Tenen-

baum [6, Lemma 6.3] have given a such estimate, but it would not be

sufficient for our purposes (cf. §4, proof of Theorem 1(ii)). The following

lemma gives a slightly different estimate for L(s, χ; y).

Lemma 2. Let s = σ + it, σ, t satisfying

σ ≥ 1 − c0/4M(q, T ), |t| ≤ exp
{

(log y)3/2−ε
}

,(2.1)

where T = 2|t|, if |t| > y4, and T = 2y4, if |t| ≤ y4, and let q satisfying

1 ≤ q ≤ exp {c6 log y/ log2 y} ,(2.2)

where c6 is a sufficiently small positive constant. Then we have uniformly

for χ 6= χ0(mod q)

L(s, χ; y) = e−Ẽγ̃(y,s)  L(s, χ)(1 +O(R(y, t, q))),(2.3)

where Ẽ is defined as in the proof of Lemma 1, and where

R(y, t, q) =
(

e−c5 log y/M(q,t) + e−c5 log y/M(q,y)
)

log2(q(|t| + y)),(2.4)

here c5 is a suitable positive constant, and

γ̃(y, s) =

∫ β̃−σ

−∞

yu−it

u− it
du (if t 6= 0).(2.5)

Proof. Our method of proof for the lemma has its roots in Vinogradov’s

approach to the fundamental lemma of [21]. (Also see [24].)

To prove the lemma, we use two different ways to compute the following

integral:

J =
1

2πi

∫ 1+iT

1−iT

yw

w
logL(s+ w,χ) dw,(2.6)
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where s = σ + it, t 6= 0, σ ≥ 1 − c0/4M(q, T ).

One side, applying Perron’s formula we have

J = −
∑

p

1

2πi

∫ 1+iT

1−iT

yw

w
log

(

1 − χ(p)

ps+w

)

dw(2.7)

= log L(s, χ; y) +O
(

y−1/3
)

,

where the sum is taken over all primes.

The other side, by residue theorem we have for χ 6= χ0, χ̃(mod q)

J = log L(s, χ)(2.8)

+
1

2πi

(
∫ −∆−iT

1−iT
+

∫ −∆+iT

−∆−iT
+

∫ 1+iT

−∆+iT

)

yw

w
log L(s+w,χ) dw,

where ∆ = c0/4M(q, T ).

By Lemma 1 and the definition of T, the integral along Rew = −∆ is

� e−c5 log y/M(q,T ) log2(qT ) � R(y, t, q),(2.9)

and the integrals along the horizontal sides are O(y−2).

Hence, for χ 6= χ0, χ̃(mod q), we get

J = log L(s, χ) +O(R(y, t, q)).(2.10)

If there exists χ̃(mod q) and t 6= 0, we have

J = log L(s, χ̃)(2.11)

+
1

2πi

(
∫ −∆−iT

1−iT
+

∫ −∆+iT

−∆−iT
+

∫ 1+iT

−∆+iT

)

yw

w
log L((s+ w, χ̃) dw

+
1

2πi

∫

Γ

yw

w
log L(s+ w, χ̃) dw,

where Γ is a loop starting and finishing at w = −∆− it, and encircling the

point w = β̃ − s in the positive direction.

To estimate J in the case, by the above argument, it only remains to

estimate the fourth integral on the right-hand side of (2.12), namely, that

along Γ. We note that the function L(s+w, χ̃) has a zero w = β̃− s, hence

log L(s+w,χ̃)

w+s−β̃
is regular at the point w = β̃ − s. From this we have

1

2πi

∫

Γ

yw

w
log L(s+ w, χ̃) dw =

−1

2πi

∫

Γ

yw

w
log

1

w + s− β̃
dw.(2.12)
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Using the argument of [20, pp. 64–65], the integral on right-hand side

of (2.12) is equal to

−
∫ β̃−σ

−∞

yu−it

u− it
du+O(R(y, t, q)).

So, for χ = χ̃, we get

J = log L(s, χ̃) − γ̃(y, s) +O(R(y, t, q)).(2.13)

The desired estimate (2.3) follows from (2.7), (2.10), (2.13), (2.1) and (2.2),

if c6 in (2.2) has been chosen sufficiently small. ( We note that from this we

can deduce R(y, t, q) � 1, hence exp {O(R(y, t, q))} = 1 +O(R(y, t, q)). )

Remark. To show Theorem 1, the estimates for  L(s, χ; y) are needed.

We will apply (2.3), to obtain the estimate for L(s, χ)/L(s, χ; y) in the case

σ = 1 − δ = 1 − c0/(4M(q, T )), and |t| ≤ Lε(x) = exp
{

(log x)3/5+ε
}

, (see

§3, (3.2)) and σ = β̃ − δ and |t| ≤ Lε(x). (See §4, (4.12) and (4.14).) In

the range, the estimate of Fouvry and Tenenbaum [6, Lemma 6.3] would

not be sufficient. Moreover, Saias [18] gives an estimate for a related quan-

tity ζ(s, y) =
∏

p≤y (1 − p−s)−1, but the range only to |t| � Lε(y); also

Hildebrand and Tenenbaum [12] gives an estimate for the same quantity,

but only when σ = ‘α’ — a saddle point for ζ(s, y)xs, those corresponding

estimate would not be sufficient for our purposes.

Thus it can be seen that the lemma of Vinogradov [21] provided a useful

tool in this topic, though the paper [21] was criticized. For instance, Norton

[15] pointed out that the results stated as case 1) and 2) of Theorem 1 in

[21] are incorrect. (In the proof of the lemma in [21] there was some defect,

so we [23] have given a summary of the proof once more.)

Let

γ(y, s) =

∫ 1−σ

−∞

yu−it

u− it
du (t 6= 0).

From (2.5) we have

γ̃(y, s) = γ(y, 1 + σ − β̃ + it).(2.14)

Lemma 3. On the hypotheses of Lemma 2 we have

L(s, χ̃; y) = exp

{

−γ −
∫ (β̃−s) log y

0

ev − 1

v
dv

}

(2.15)

× L(s, χ̃)

(s− β̃) log y
(1 +O(R(y, t, q))) .
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Proof. By Lemma 2, to prove the lemma, it suffices to show that

γ(y, s) = πi+ γ + I((1 − s) log y) + log((1 − s) log y),(2.16)

where

I(s) =

∫ s

0
(ev − 1)v−1 dv.

We can write

γ(y, s) =

∫ 1−s

−∞−it
yww−1 dw (t 6= 0).

By Cauchy’s theorem , we have

γ(y, s) +

∫

Γ1+Γ2+Γ3

yww−1 dw = 2πi,(2.17)

where Γi(1 ≤ i ≤ 3) are defined as follows:

(i) Γ1 is a line segment from 1 − s to 1 − σ;

(ii) Γ2 is a semi circle starting at w = 1−σ and finishing at w = −(1−σ),

and encircling the origin w = 0 in the positive direction;

(iii) Γ3 is a line segment from −(1 − σ) to −∞.

Clearly,
∫

Γ2

w−1 dw = πi.(2.18)

From (2.17) and (2.18) we get

γ(y, s) = πi+

∫ 1−s

1−σ

yw

w
dw +

∫ 1−σ

−(1−σ)

yv − 1

v
dv −

∫ −∞

−(1−σ)

yv

v
dv.(2.19)

It is well known that Γ′(1) = −γ, where Γ(s) denotes the gamma-

function. It follows that

− γ =

∫ 1

0
(e−v − 1)v−1 dv +

∫ +∞

1
e−vv−1 dv.(2.20)

Thus, the desired estimate (2.16) follows from (2.19) and (2.20).

This completes the proof of Lemma 3.
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By Lemma 3 and the definition of γ̃(y, s), we have

γ̃(y, s) = γ + I((β̃ − s) log y) + log((s− β̃) log y).(2.21)

Let ξ(u) denote the positive solution of the equation eξ = uξ+1 (u > 1).

Then we have ξ(u) = log u+ log2 u+O(log2 u/ log u).

To further estimate γ̃(y, s), for s = B+ it = β̃ − ξ(u)/ log y+ it, it can

be written as

γ̃(y,B + it) = γ + I(ξ(u)) + w(u,−it log y) + log(−ξ(u)),(2.22)

where

w(u, z) =

∫ z

0
eξ(u)+w(ξ(u) + w)−1 dw.

Let a(u, t) = Re w(u,−it). The following lemmas give the estimates for

a(u, t), which are proved in [23].

Lemma 4. For u ≥ 2, t ≥ 1 we have uniformly

ea(u,t) � e−u/(9 log2 u).

Lemma 5. For u ≥ 2, 0 ≤ t ≤ 1 we have uniformly

ea(u,t) � e−c7ut
2
,

where c7 is a sufficiently small positive constant.

§3. Proof of Theorem 1 (i)

Perron’s formula gives

∑

n∈S(x,y)

χ(n) =
1

2πi

∫ σ1+iT

σ1−iT

L(s, χ)

L(s, χ; y)

xs

s
ds+O

(

x log x

T

)

,(3.1)

where σ1 = 1 + (1/ log x) and T = L2
ε(x) = exp

{

2(log x)3/5−ε
}

. Suppose

χ 6= χ̃(mod q). By Cauchy’s theorem we have

1

2πi

∫ σ1+iT

σ1−iT

L(s, χ)

L(s, χ; y)

xs

s
ds =

1

2πi

{
∫ 1−δ+iT

1−δ−iT
+

∫ σ1+iT

1−δ+iT
+

∫ 1−δ−iT

σ1−iT

}

,

where δ = c0/(4M(q, T )). By Lemma 2 we have, for χ 6= χ̃ and x, y, q

satisfying (1.10) and (1.11), respectively,

L(s, χ)/L(s, χ; y) � 1.
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Hence, the integral along Re s = 1 − δ is

�
∫ 1−δ+iT

1−δ−iT

∣

∣

∣

∣

xs

s

∣

∣

∣

∣

|ds| � x exp

{

− c0 log x

4M(q, T )

}

log (qT ).(3.2)

By the definitions of M(q, T ) and T, we have

M(q, T ) = max
{

log q, (log x)2/5+ε
}

.(3.3)

So, the right-hand side of (3.2) is bounded by

� x exp{−c2 log x/ log q} + x/Lε(x).

Moreover, the integrals along the horizontal sides are

�
∫ σ1

1−δ
T−1xσ dσ � x/Lε(x).(3.4)

Combining these estimates we obtain (1.12). This completes the proof of

part (i) of Theorem 1.

§4. Proof of Theorem 1 (ii): the case u > log2
2 y

To prove the theorem, we need the following lemma.

Lemma 6. For u ≥ 2, we have uniformly

ρ′(u) = eγ−uξ(u)+I(ξ(u))(−ξ(u) log y)J(u) +O(Ea),

where

J(u) =
1

2π

∫ 1

−1
ew(u,−it̄)+it̄u dt,

(t̄ = t log y) and

Ea = e−uξ(u)+I(ξ(u))−c8u/ log2 u,

where c8 is a suitable positive constant.

Proof. By (1.9) of [2] we have

ρ(u) =
1

2πi

∫ i∞

−i∞
eγ−us+I(s) ds (u ≥ 1).(4.1)
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From this, (3.3) and (3.4) of [2] we obtain for T ≥ 1, u ≥ 1

ρ(u) =
1

2πi

∫ iT

−iT
eγ−us+I(s) ds+O

(

T−1
)

.(4.2)

Form (4.2) and the definition of ρ(u) we get

ρ′(u) =
−1

2πiu

∫ iT

−iT
eγ−(u−1)s+I(s) ds+O

(

T−1
)

.(4.3)

Since

Re I(iT ) =

∫ T

0

cos t− 1

t
dt = − log T +O(1),(4.4)

and

I(σ + iT ) − I(iT ) � T−1

∫ ξ(u)

0
eσ dσ � 1,(4.5)

if T ≥ eξ(u) and 0 ≤ σ ≤ ξ(u), so we have

ρ′(u) = −u−1eγ−(u−1)ξ(u)+I(ξ(u))J1(u) +O(1/T ),(4.6)

where

J1(u) =
1

2π

∫ T

−T
e−it(u−1)+I(ξ(u)+it)−I(ξ(u)) dt.(4.7)

Obviously

I(ξ(u) + it) − I(ξ(u)) =

∫ it

0

eξ(u)+w

ξ(u) + w
dw + log

(

ξ(u)

ξ(u) + it

)

.

So, by the definition of w(u, z), we have

J1(u) =
1

2π

∫ T

−T

e−it (u−1)+w(u,it)

1 + (it/ξ(u))
dt.(4.8)

Choose T = e2uξ(u) log y. We split the range into the two parts: |t| ≤ log y

and log y < |t| ≤ T, the corresponding integral being denoted by J2 and

J3. By Lemma 4 we have

J3 �
∫ T

log y

|ew(u,it)|
|1 + (it/ξ(u))| dt� e−u/(10 log2 u) log y � e−c8u/ log2 u,(4.9)

since u > log2
2 y.
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To estimate J2, we note that the integrand can be written as

(−iξ(u))e−ξ(u)−itudew(u,it)/dt.

Partial integration and Lemma 4 give

J2 = uξ(u)e−ξ(u)
{

1

2π

∫ log y

− log y
e−itu+w(u,it) dt+O

(

e−c8u/ log2 u
)

}

.(4.10)

Lemma 6 follows from (4.6) and (4.8)–(4.10).

Proof of Theorem 1 (ii): the case u > log2
2 y

For χ = χ̃(mod q), by (3.1), we have

∑

n∈S(x,y)

χ̃(n) =
1

2πi

∫ σ1+iT

σ1−iT

L(s, χ̃)

L(s, χ̃; y)

xs

s
ds+O

(

x

Lε(x)

)

.(4.11)

By Cauchy’s theorem, the integral on the right-hand side in (4.11) may

be replaced by integrals I1, · · · , I9 over paths Γ1, · · · ,Γ9 which are defined

as follows:

Γ1 is a line segment from β̃ − δ + iT to σ1 + iT, with T = Lε(x), δ =

c0/(4M(q, T ));

Γ2 is a line segment from β̃ − δ + iTa to β̃ − δ + iT ; with

Ta =
c8

log x
exp

{

c0 log y

4M(q, T )

}

;

Γ3 is a curve described by β̃ − log(c−1
8 t log x)
log y + it, as t increases from 1

to Ta;

Γ4 is a line segment from B + i to β̃ − log(c−1
8 log x)/ log y + i, with

B = β̃ − ξ(u)/ log y;

Γ5 is a line segment from B − i, to B + i;

Γ6 is a line segment from β̃ − log(c−1
8 log x)/ log y − i to B − i;

Γ7 is a curve described by β̃ − log(−c−1
8 t log x)

log y + it, as t increases from

−Ta to −1,

Γ8 is a line segment from β̃ − δ − iT to β̃ − δ − iTa;

Γ9 is a line segment from σ1 − iT to β̃ − δ − iT.

By Lemma 2 we have, on Γ2

|L(s, χ̃)/L(s, χ̃; y)| � e|γ̃(y,s)| � exp
{

yβ̃−σ(|t| log y)−1
}

(4.12)

� exp
{

yδ(|t| log y)−1
}

� eu/c8 .
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From this and (3.3) we have

I2 �
∫ T

Ta

xβ̃e−δ log x+u/c8t−1dt

� xβ̃ exp
{

−c9(log x)3/5−ε
}

log T + xβ̃ exp{−c9 log x/ log q} log T.

(1.10) and (1.11) give

c9 log x/ log q > c9c1u log2 x > 2u log u,

and

2u log u ≤ (log x)3/5−ε/2.

By the definitions of ξ(u) and I(s) we have ξ(u) = log u + O(log2 u) and

I(ξ(u)) = O(u). From the above estimates and u > log2
2 y we deduce that

I2 � xβ̃e−uξ(u)+I(ξ(u))(log y)−1 · e−c10u/ log2 u(log y)−1 := E1.(4.13)

Also, it is easy to estimate I1 � E1.

On Γ3 we have, by Lemma 2

|L(s, χ̃)/L(s, χ̃; y)| � e|γ̃(y,s)| � exp
{

yβ̃−σ(|t| log y)−1
}

� eu/c8 .(4.14)

From this we further have

I3 � xβ̃
∫ Ta

1
e−u log(c−1

8 t log x)eu/c8 dt� xβ̃e−(3u/4) log2 x � E1,(4.15)

here we have used (1.10).

For I4, we readily get

I4 �
∫ B

1/2
xσ eu/c8 dσ � xβ̃e−uξ(u)+u/c8(log y)−1 � E1,(4.16)

since u > log2
2 y.

For Ij(j = 6, 7, 8, 9), by the same argument as before we get that they

can be bounded by the right-hand side of (4.13). So, we obtain

∑

n∈S(x,y)

χ̃(n) = I5 +O(E1) +O(x/Lε(x)),(4.17)
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where

I5 =
1

2πi

∫ B+i

B−i

L(s, χ̃)

L(s, χ̃; y)

xs

s
ds.(4.18)

To estimate I5, we note that by B = β̃ − ξ(u)/ log y we have, for

s = B + it, (β̃ − s) log y = ξ(u) − it log y. So, by Lemma 2 and (2.22), the

integral I5 can be written as

I5 = xβ̃Q(u) · 1

2π

∫ 1

−1

ew(u,−it̄)+it̄u

B + it
(1 +O(R(y, t, q))) dt,(4.19)

where t̄ = t log y,Q(u) = eγ−uξ(u)+I(ξ(u))(−ξ(u)) and w(u,−it̄) is defined

as in §2.

By Lemmas 4 and 5 we have
(

ew(u,−it̄)+it̄u
)

/(B + it) � 1. From the

definition of R(y, t, q) and (1.11), it follows that

R(y, t, q) � e−c2 log y/ log q + e−(log y)ε � (log y)−N .

Hence, the contribution of the error term O(R(y, t, q)) to the integral

in (4.19) is

� xβ̃Q(u)(log y)−N .

From this, (4.17) and (4.19) we obtain

∑

n∈S(x,y)

χ̃(n) = xβ̃Q(u) · 1

2π

∫ 1

−1
ew(u,−it̄)+it̄u(B + it)−1 dt+O(E1),(4.20)

By Lemma 6 we have, for u > log2
2 y,

ρ′(u) = Q(u) log y · 1

2π

∫ 1

−1
ew(u,−it̄)+it̄u dt+O(Eb),(4.21)

where

Eb = e−uξ(u)+I(ξ(u))−c11u/ log2 u(log y)−1.(4.22)

Moreover, it is well known (see [2], (1.6)) that

ρ′(u) ∼ (− log u)ρ(u) � u−1/2 log u · e−uξ(u)+I(ξ(u))(4.23)

Hence, in order to prove the theorem, it suffices to show that

1

2π

∫ 1

−1
ew(u,−it̄)+it̄u

(

1

B + it
− 1

β̃

)

dt� 1√
u log y

log u

log y
.(4.24)
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We have 1/(B + it)− 1/β̃ � ξ(u)/ log y+ t. From this, Lemmas 4 and

5 we deduce that the integral in (4.24) is

�
∫ 1/ log y

0
e−c6u(t log y)2 (ξ(u)/ log y + t) dt+

∫ 1

1/ log y
e−u/(9 log2 u) dt

� 1√
u log y

· log u

log y
+ e−u/9 log2 u � 1√

u log y
· log u

log y
,

since u > log2
2 y. The desired estimate (4.24) follows.

This completes the proof of Theorem 1(ii) in the range considered.

§5. Proof of Theorem 1 (ii): the case 2 ≤ u ≤ log2
2 y

We need the following lemmas.

Lemma 7. For s = σ + it, σ > 0, |t| ≥ 1, we have uniformly

eI(σ+it) � (|σ + it|)−1 exp
{

eσ(|t|)−1
}

.

Proof. We may suppose without loss of generality that t ≥ 1. We have

I(σ + it) =

∫ 1

0

ev − 1

v
dv +

∫ i

1

ev

v
dv +

∫ it

i

ev

v
dv +K1 − log(σ + it),

where

K1 =

∫ σ+it

it
evv−1 dv =

∫ σ

0
ev+it(v + it)−1 dv.

Hence

|K1| ≤
∫ σ

0
ev(|t|)−1 dv ≤ |t|−1eσ.

The Lemma follows from the above estimates.

Lemma 8. For 2 ≤ u ≤ (log2 y)2 we have uniformly

ρ′(u) =
−1

2πi

∫

L
eγ−us+I(s)+log s ds+O(Eb),(5.1)

where Eb is defined as in (4.22) and contour L will be given in (5.6) below.
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Proof. By Cauchy’s theorem the integral on the right-hand side in

(4.3) may be replaced by integrals J1, · · · , J9 over paths L1, · · · , L9 which

are defined as follows:

L1 is a line segment from 2 log2 y + iT to iT, with T = e2uξ(u) log2 y;

L2 is a line segment from 2 log2 y+iT1 to 2 log2 y+iT, with T1 = log2 y;

L3 is a curve described by log |t| + it as t increases from T2 to T1,

where T2 = log y;

L4 is the same curve, as t increases from T3 to T2, where T3 = eξ(u);

L5 is a line segment from ξ(u) − iT3, to ξ(u) + iT3;

L6 is a curve described by log |t| + it as t increases from −T2 to −T3;

L7 is the same curve as t increases from −T1 to −T2;

L8 is a line segment from 2 log2 y − iT to 2 log2 y − iT1;

L9 is a line segment from −iT to 2 log2 y − iT.

By Lemma 7 and (4.3) we get

J2 =
−1

2πu

∫ T

T1

eγ−(u−1)(2 log2 y+it)+I(2 log2 y+it) dt+O
(

T−1
)

(5.2)

� u−1

∫ T

T1

e−2(u−1) log2 yt−1dt� u−1e−2(u−1) log2 yu2

� u−1(log y)1−u.

If 10 < u ≤ (log2 y)2, then the above bound becomes

� u−1e−uξ(u)(log y)(1−u)/2 � Eb.(5.3)

If 2 ≤ u ≤ 10, we easily see that the same estimate holds.

Similarly, we can show that the same is true for the integral J1.

We now show that the integral J3 is bounded by Eb. By Lemma 7 we

have

J3 � u−1

∫ T1

T2

e−(u−1) log tt−1dt� u−1(log y)1−u,(5.4)

and the desired bound follows.

Similarly, we can show that the integrals Jj (j = 7, 8, 9) is bounded by

Eb.

Thus, we obtain

ρ′(u) =
−1

2πiu

∫

L
eγ−(u−1)s+I(s) ds+O(Eb),(5.5)
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where

L = L4 + L5 + L6.(5.6)

To estimate the integral in (5.5), we note that

I(s) = I(1) +E(s) − log s,(5.7)

where

E(s) =

∫ s

1
evv−1 dv.

Hence, the integral in (5.5) equals

−1

2πu

∫ T2

−T2

Q1(u)e−it(u−1)+E(σ2+it) (σ2 + it)−1 dt

=
−1

2πu

∫ T2

−T2

Q1(u)
(

−ie−σ2
)

e−itu
d

dt

(

eE(σ2+it)
)

dt,

where σ2 = log2 y, and

Q1(u) = eγ−(u−1)σ2+I(1).

By using integration by parts this is

−1

2π

∫ T2

−T2

Q1(u)e−itu−σ2+E(σ2+it) dt+O(Eb),

here we have used the estimate:

eE(σ2+iT2) � eI(σ2+iT2)|σ2 + iT2| � 1,

by Lemma 7. The desired estimate follows from this and (5.5)–(5.7).

Proof of Theorem 1 (ii): the case 2 ≤ u ≤ log 2
2y.

We note that in the range considered, (4.11) is still valid. The integral

on the right-hand side of (4.11) may be replaced by integrals I ′1, · · · , I ′9 over

paths Γ′
1, · · · ,Γ′

9 which are defined as follows:

Γ′
1 is a line segment from β̃ − δ + iT to σ1 + iT, with T = Lε(x) and

δ = c0/(4M(q, T ));

Γ′
2 is a line segment from β̃ − δ + iT ′

a to β̃ − δ + iT, with T ′
a =

1
log y exp

{

c0 log y
4M(q,T )

}

;
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Γ′
3 is a curve described by β̃ − log(|t| log y)

log y + it, as t increases from 1 to

T ′
a;

Γ′
4 is the same curve, as t increases Tb to 1, with Tb = eξ(u)(log y)−1;

Γ′
5 is a line segment from B− iTb to B+ iTb, with B = β̃− ξ(u)/ log y;

Γ′
6 is a curve described by β̃ − log(|t| log y)

log y + it, as t increases from −1

to −Tb;
Γ′

7 is the same curve, as t increases −T ′
a to −1,

Γ′
8 is a line segment from β̃ − δ − iT to β̃ − δ − iT ′

a;

Γ′
9 is a line segment from σ1 − iT to β̃ − δ − iT.

We note that in the range considered, (4.13),(4.16) is still valid, namely

I ′1 + I ′2 + I ′3 � E1, and similarly I ′7 + I ′8 + I ′9 � E1. Hence, we have

∑

n∈S(x,y)

χ̃(n) = I ′4 + I ′5 + I ′6 +O(E1),(5.8)

where

I ′j =
1

2πi

∫

Γ′

j

L(s, χ̃)

L(s, χ̃; y)

xs

s
ds, (j = 4, 5, 6).(5.9)

Moreover, by Lemma 8, we have

ρ′(u) =
1

2πi

∫

L
eγ−us̄+I(s̄)(−s̄) ds +O(Eb) = J ′

4 + J ′
5 + J ′

6 +O(Eb),(5.10)

where s = σ + it, s̄ = σ − it and

J ′
j =

−1

2πi

∫

Lj

eγ−us̄+I(s̄)s̄ ds, (j = 4, 5, 6).(5.11)

Hence, in order to prove Theorem 1 (ii) in the range considered, it suffices

to show that

I ′j − xβ̃(β̃ log y)−1 · J ′
j � E2, (j = 4, 5, 6),(5.12)

where

E2 = xβ̃Q(u)(
√
u log y)−1 · (log y)−1/2,(5.13)

and here Q(u) is defined as in (4.19).

We first consider the case when j = 4. By Lemma 3, the integral I ′4 can

be written as

I ′4 = xβ̃ · 1

2π

∫ 1

Tb

F (u, t̄)s−1 (1 +O(R(y, t, q))) dt,(5.14)
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where s = β̃ − (log |t̄|)/ log y + it, and

F (u, t̄) = eγ+I(log |t̄|−it̄)−u log |t̄|+it̄u(− log |t̄| + it̄).(5.15)

By Lemma 7 we have, for Tb ≤ |t| ≤ 1,

|F (u, t̄)| � e−u log |t̄| exp
{

|t̄|−1elog |t̄|
}

� (t log y)−u.(5.16)

Moreover, the integral J ′
4 can be written as

J ′
4 = log y · 1

2π

∫ 1

Tb

F (u, t̄) dt.(5.17)

From §4 we know that R(y, t, q) � (log x)−N , and

(1/s) − (1/β̃) � (| log t̄|/ log y) + t.

Thus, from this, (5.14), (5.16) and (5.17) we obtain

I ′4 − xβ̃(β̃ log y)−1 J ′
4(5.18)

= xβ̃ · 1

2π

∫ 1

Tb

F (u, t̄)
{

s−1(1 +O(R(y, t, q))) − β̃−1
}

dt

� xβ̃

(log y)u

∫ 1

Tb

( | log t̄|
log y

+ t

)

dt

tu
� xβ̃

(log y)u

∫ 1

Tb

dt

tu−1
.

When u ≥ 5/2, the last integral is

� T−u+2
b � (log y)u−2e−(u−2)ξ(u).

(We recall that Tb = eξ(u)(log y)−1.) Hence, we find that the right-hand

side of (5.18) is

� xβ̃e−uξ(u)+I(ξ(u))−u/2(log y)−3/2 � E2.(5.19)

If 2 ≤ u ≤ 5/2, the last estimate remains true, since, for Tb ≤ t ≤ 1, we have

t−u+1 ≤ t−3/2 and
∫ 1
Tb
t−3/2 dt �

√
log y. Thus, (5.12) follows for j = 4.

Similarly, (5.12) holds for j = 6.

It remains to prove estimates (5.12) for j = 5.

It follows from Lemma 2 and (2.22) that

I ′5 = xβ̃Q(u) · 1

2π

∫ Tb

−Tb

ew(u,−it̄)+it̄u

B + it
(1 +O(R(y, t, q))) dt.
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By the relation

I(ξ(u) − it̄) = I(ξ(u)) + w(u,−it̄) + log

(

ξ(u)

ξ(u) − it̄

)

,

we have

J ′
5 = (log y)Q(u) · 1

2π

∫ Tb

−Tb

ew(u,−it̄)+it̄u dt.

Hence,

I ′5 −
xβ̃

β̃ log y
J ′

5 =(5.20)

xβ̃Q(u) · 1

2π

∫ Tb

−Tb

ew(u,−it̄)+it̄u

(

1

B + it
− 1

β̃
+O(R(y, t, q))

)

dt.

By Lemmas 4 and 5, it is

� xβ̃Q(u)

∫ 1/ log y

0
e−c6ut̄

2
(ξ(u)/ log y + t) dt(5.21)

+xβ̃Q(u)

∫ Tb

1/ log y
e−c9u/ log2 u

(

ξ(u)

log y
+ t

)

dt� xβ̃Q(u)√
u log y

· ξ(u)

log y
.

Combining these estimates, we obtain (5.12) for j = 5 and hence the

estimate (1.13) of Theorem 1 (ii), in the range considered.

The proof of Theorem 1 is completed.

§6. Proofs of Theorem 2 and Corollary 1

Proof of Theorem 2

We first consider the case:

exp
{

(log x)2/5+ε
}

< y ≤ x1/2.(6.1)

We have

Φ(x, y; a, q) =
1

ϕ(q)







Φq(x, y) +
∑

χ6=χ0

χ̄(a)
∑

n∈S(x,y)

χ(n)







.(6.2)

From this, Theorem 1 (i) and (ii), (1.15) follows. (We note that for P (q) ≤ y

we have Φq(x, y) = Φ(x, y).)
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We now consider the case: x1/2 < y ≤ x/q. By the prime number

theorem of arithmetic progressions, we have for q satisfying (1.18)

Φ(x, y; a, q) =
∑

y<p≤x p≡a (mod q)

1(6.3)

=
li x− li y

ϕ(q)
− χ̃(a)

ϕ(q)

∫ x

y

vβ̃−1

log v
dv +O

(

xe−C
′
√

log x
)

.

We remark that for 1 < u ≤ 2 we have ρ′(u) = −1/u. Also, yβ̃ � x/
√

log x,

since y ≤ x/q ≤ x/q1 � x/
√

log x, by (1.21). From this, (1.14) (where c3
has been chosen sufficiently small) and the prime number theorem, (1.15)

follows.

If

3/2 ≤ y ≤ exp
{

(log x)2/5+ε
}

,(6.4)

we have

ρ(u) = e−u log u(1+o(1)) � e−
√

log x, and ρ′(u) ∼ − log u · ρ(u),

hence (1.15) follows from this and (1.7).

This completes the proof of Theorem 2.

Proof of Corollary 1

To deduce Corollary 1 from Theorem 2 for x, y satisfying (6.1), it suffices

to show

xβ̃ � xe−
√

log x(6.5)

holds uniformly in the range (1.17).

By Siegel’s theorem, for any ε > 0 there exists a positive number c(ε)

such that β̃ ≤ 1 − c(ε)q−ε. Put ε = 1/(2A + 1), (6.5) follows, hence the

proof of Corollary 1 is completed in the range considered.

If x1/2 < y ≤ x/q, the estimate (1.16) follows from the prime number

theorem of arithmetic progressions (the second term in (1.19) have been

deleted) and the prime number theorem.

If x, y satisfying (6.4), the estimate (1.16) follows immediate from (1.7).

This completes the proof of Corollary 1.

Acknowledgements. The author expresses his thanks to the referee

for his comments and suggestions.



126 T. Z. XUAN

References

[1] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes,

Nederl. Akad. Wetensch. Proc. Ser. A, 53 (1950), 803–812.

[2] , The asymptotic behavior of a function occurring in the theory of primes, J.

Indian Math. Soc. (N. S.), 15 (1951), 25–32.

[3] , On the number of positive integers ≤ x and free of prime factors > y, Nederl.

Akad. Wetensch. Proc. Ser. A, 54 (1951), 50–60.

[4] A. A. Buchstab, Asymptotic estimates of a general number-theoretic function (Rus-

sian), Mat. Sb., 2(44) (1937), 1239–1246.

[5] H. Davenport, Multiplicative Number Theory (2nd Edn.), 74, GTM, Springer-

Verlag, New York, 1980.

[6] E. Fouvry and G. Tenenbaum, Entiers sans grand facteur premier en progressions

arithmétiques, Proc. London Math. Soc., (3)63 (1991), 449–494.

[7] J. Friedlander and A. Granville, Limitations to the equi-distribution of prime I, Ann.

Math., 129 (1989), 363–382.

[8] J. Friedlander, A. Granville, A. Hildebrand and H. Maier, Oscillation theorems for

primes in arithmetic progressions and for sifting functions, J. Amer. Math. Soc., 4

(1991), 25–86.

[9] H. Halberstam and H. -E. Richert, Sieve Methods, Academic Press, London, New

York, 1974.

[10] A. Hildebrand, The asymptotic behavior of the solutions of a class of differen-

tial-difference equation, J. London Math. Soc., 42 (1990), 11–31.

[11] A. Hildebrand and H. Maier, Irregularities in the distribution of primes in short

intervals, J. Reine Angew. Math., 397 (1989), 162–193.

[12] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans.

Amer. Math. Soc., 296 (1986), 265–290.

[13] H. Iwaniec, Rosser’s sieve, Acta Arith., 36 (1980), 171–202.

[14] H. Maier, Primes in short intervals, Michigan Math. J., 32 (1985), 221–225.

[15] K. K. Norton, ‘Numbers with small prime factors and the least kth power non residue,

106 (1971), Mem. Amer. Math. Soc.

[16] C. D. Pan and C. B. Pan, Elements of Analytic Number Theory (Chinese ), Scientia

Press, Beijing, 1991.

[17] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957.

[18] E. Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory,

32 (1989), 78–99.

[19] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge

studies in advanced mathematics, No. 46, Cambridge University Press, 1995.

[20] E. C. Titchmarsh, The theory of the Riemann-Zeta function (2nd edition, revised by

D. R. Heath-Brown, Oxford, 1986.

[21] A. I. Vinogradov, On numbers with small prime divisors, (Russian), Dokl. Akad,

Nauk SSSR (N. S.), 109 (1956), 683–686.
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