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ON THE TRANSFORMATION GROUP OF THE

SECOND PAINLEVÉ EQUATION

HIROSHI UMEMURA

Abstract. We show that for the second Painlevé equation y′′ = 2y3 + ty + α,
the Bäcklund transformation group G, which is isomorphic to the extended
affine Weyl group of type Â1, operates regularly on the natural projectification
X (c)/

�
(c, t) of the space of initial conditions, where c = α − 1/2. X (c)/

�
(c, t)

has a natural model X [c]/
�
(t)[c]. The group G does not operate, however,

regularly on X [c]/
�
(t)[c]. To have a family of projective surfaces over

�
(t)[c]

on which G operates regularly, we have to blow up the model X [c] along the
projective lines corresponding to the Riccati type solutions.

§1. Introduction

As is well known, the (extended) affine Weyl group of type Ã1 appears

as a transformation group of solutions of the second Painlevé equation

PII(α) : y′′ = 2y3 + ty + α,

where t is the independent variable, y′′ = d2y/dt2 and α ∈ C is a parameter.

If y is a solution of the second Painlevé equation PII(α), then

T+(y) = −y −
α+ 1

2

y′ + y2 + t
2

is a solution of PII(α+ 1),

T−(y) = −y +
α− 1

2

y′ − y2 − t
2

is a solution of PII(α − 1) and I(y) = −y is a solution of PII(−α). Let

G be the subgroup of the affine transformation group of the affine line A1

generated by the translations

t+(α) = α+ 1, t−(α) = α− 1
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16 H. UMEMURA

and the reflection

i(α) = −α

at 0 for α ∈ C. So G is the affine Weyl group of type Ã1. We consider the

affine space A4 with coordinate system (y, y′, t, α) as well as the affine plane

with coordinate system (t, α). We have a vector field

δ(α) =
∂

∂t
+ y′

∂

∂y
+ (2y3 + ty + α)

∂

∂y′

on A4 and a natural fibration π : A4 → A2 by projection (y, y′, t, α) 7→ (t, α).

The affine Weyl group G operates on the affine plane A2 through the second

coordinate. The transformations T+, T−, I define a birational operation of

the affine Weyl group G on A4 compatible with the derivation δ(c) such

that the fibration π : A4 → A2 is G-equivariant. We construct in this

note a projective model of the fibration π : A4 → A2 on which the Weyl

group G operates regularly. In fact we construct a projective model X of

the generic fiber of the fibration π : A4 → A2 such that the affine Weyl

group G operates regularly on X (Theorem 2.11). The model X is the

projective surface studied by Okamoto [O1]. More precisely his space of

initial conditions is our projective surface X minus 8 non-singular rational

curves with self-intersection number −2 whose dual graph is the extended

Dynkin diagram of type Ẽ7. We recall the construction of X in §2. We first

projectify the affine plane A2
C(α,t) to a ruled surface isomorphic to P1 × P1

and then blow up it 8 times to get X . The construction of such a model Y
over A2 is more subtle. We construct a model Y that is a complex manifold

but is not an algebraic variety (Theorem 4.10). In this paper the ground

field is an arbitrary field K of characteristic 0. So K = Q is the most natural

but the readers who are interested in analysis may assume K = C.

§2. Construction of the model

We know that the Painlevé equation

PII(α) : y′′ = 2y3 + ty + α

is equivalent to both

SII(α) :





dq

dt
= p− q2 −

t

2
,

dp

dt
= 2pq + α+

1

2
,
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and

S2(c) :





dq

dt
= q2 + p+

t

2
,

dp

dt
= −2qp+ c,

where c = α− 1/2 that is denoted by ε by Okamoto (cf. [O1, p. 50]).

Remark. We consider that the parameter α or c belongs to an extension

field or more generally to an over ring of the base field K consisting of

constants.

We used SII(α) in [UW]. In this paper we adopt S2(α). Let us denote

by Sol2(c) the set of solutions of the system S2(c). We have transformations

T+(c, c+ 1) : Sol2(c) −→ Sol2(c+ 1),

T−(c, c− 1) : Sol2(c) −→ Sol2(c− 1),

I(c,−c) : Sol2(c) −→ Sol2(−c).

The definition of these transformations is as follows. Let (q, p) ∈ Sol2(c).

(i) If 2q2 + q + 1 6= 0, then

T+(c, c+ 1)(q, p) =

(
−q −

c+ 1

2q2 + p+ t
,−2q2 − p− t

)
.(2.1)

If 2q2 + p+ t = 0, then c = −1 and

T+(−1, 0)(q, p) = (−q,−2q2 − p− t).

(ii) If p 6= 0, then

T−(c, c − 1)(q, p) =

(
−q +

c

p
,−p − 2

(
q −

c

p

)2
− t

)
.(2.2)

If p = 0, then c = 0 and

T−(0,−1)(q, p) = (−q,−2q2 − p− t).

(iii) If p 6= 0,

I(c,−c)(q, p) =

(
q −

c

p
, p

)
.
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If p = 0, then c = 0 and I(c,−c)(q, p) = (q, p). It is easy to check that

I(−c, c) ◦ I(c,−c) = IdSol2(c),(2.3)

{
T−(c+ 1, c) ◦ T+(c, c + 1) = IdSol2(c),

T+(c− 1, c) ◦ T−(c, c − 1) = IdSol2(c),
(2.4)

and

I(−c+ 1, c− 1) ◦ T+(−c,−c+ 1) ◦ I(c,−c) = T−(c, c− 1)

for every c. From now on, we assume that we assume that the parameter c

is a variable over K(t) and it is convenient to set L = K(c, t). Let now qc, pc
be variables over L and we consider the polynomial ring R(c) := L[qc, pc].

If we consider the derivation

D(c) =
∂

∂t
+

(
q2c + pc +

t

2

) ∂

∂qc
+ (−2qcpc + c)

∂

∂pc
: R(c) −→ R(c),

R(c) is a differential algebra and we have





D(c)(qc) = q2c + qc +
t

2
,

D(c)(pc) = −2qcpc + c,

(2.5)

i.e., (qc, pc) is a solution of the system S2(c) and for every solution (q, p) of

S2(c) we have a differential L-morphism

L[qc, pc] −→ L[q, p](2.6)

of differential algebras sending qa, pa respectively to q, p. In fact let Q, P

be differential variables over L so that L{Q,P} = L[Q,P,Q′, P ′, . . .] is a

differential polynomial ring and we have a differential L-morphism

Φ : L{Q,P} −→ L[q, p]

of differential L-algebras sending Q, P respectively to q, p. Since the dif-

ferential ideal I(c) of the differential algebra L{q, p} that is differentially

generated by

δQ−Q2 − P −
t

2
, and δP + 2QP − c
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of the differential polynomial ring L{Q,P} is in Ker Φ, the morphism Φ

factors through the residue class map

L{Q,P} −→ L{Q,P}/I(c) = R(c)

and induces a differential L-morphism (2.6). We denote the quotient field of

R(c) by Q(c), which is a differential field. We consider X(c) := SpecL[qc, pc]

that is nothing but the affine plane A2
L over L with the coordinate system

(qc, pc) endowed with the derivation δ(c). Since (qc, pc) is a solution of S2(c),

it follows from (2.1)

T+(c, c + 1)(qc, pc) =

(
−qc −

c+ 1

2q2c + pc + t
,−2q2c − pc − t

)

is a solution of S2(c+ 1). So by (2.6) we have an L-differential morphism

R(c+ 1) −→ Q(c)(2.7)

sending

qc+1 to − qc −
c+ 1

2q2c + pc + t
and pc+1 to − 2q2c − pc − t.

Now by (2.4) the morphism (2.7) is birational or it induces an isomorphism

Q(c+ 1) −→ Q(c)

of the differential quotient fields. In other words we have an L-birational

map

X(c) = A2
L = SpecR(c) · · ·→ X(c+ 1) = A2

L = SpecR(c+ 1)(2.8)

compatible with the derivations δ(c + 1) and δ(c). On the other hand the

K(t)-isomorphism

L = K(c, t) −→ L = K(c, t), c 7−→ c+ 1(2.9)

induces a differential K(t)-isomorphism

R(c) = L[qc, pc] −→ R(c+ 1) = L[qc+1, pc+1]

sending

qc 7−→ qc+1, pc 7−→ pc+1 and c 7−→ c+ 1.(2.10)



20 H. UMEMURA

Composing the isomorphism (2.9) and the L-birational map (2.8), we get a

K(t)-birational map

T+ : X(c) = SpecL[qc, pc] −→ X(c + 1) = SpecL[qc+1, pc+1]

· · ·→ X(c) = SpecL[qc, pc]

compatible with the derivations such that the diagram

X(c)
T+

−−−→ X(c)

p

y p

y

SpecL
t+

−−−→ SpecL

is commutative, where the vertical arrow p is the projection and the lower

horizontal arrow is the morphism of schemes induced by the isomorphism

(2.9). Similarly we have a differential birational map

T− : X(c) · · ·→ X(c)

such that the diagram

X(c)
T−

−−−→ X(c)

p

y p

y

SpecL
t−

−−−→ SpecL

is commutative, where the lower horizontal arrow is the morphism of schemes

induced by the K(c)-morphism L→ L of differential fields sending c to c+1.

We also have a differential birational map

I : X(c) · · ·→ X(c)

such that the diagram

X(c)
I

−−−→ X(c)

p

y p

y

SpecL
i

−−−→ SpecL
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is commutative, where the lower horizontal map is induced by the K(t)-

isomorphism L→ L of differential fields sending c to −c. Let

t∗+, t∗−, i∗

be respectively K-automorphisms of K(c) such that

t∗+(c) = c+ 1, t∗−(c) = c− 1, i∗(c) = −c.

They define K-automorphisms t+, t−, i of the scheme SpecK(c). Let G be

the subgroup of the automorphism of the scheme SpecK(t) generated by

the automorphisms t+, t−, i so that G is the affine Weyl group of type Ã1.

We have

t2+ = t2− = t+ ◦ t− = t− ◦ t+ = i2 = Id, i ◦ t+ ◦ i = t−

and G = 〈t+, t−〉 o 〈i〉 ' Z2 o S2, where S2 is the symmetric group of

degree 2. Let G̃ be the subgroup of the birational automorphisms of X(c)

generated by T+, T−, I. So we have a natural morphism ϕ : G̃ → G of

groups by the commutative diagrams above. We can check

T+ ◦ T− = T− ◦ T+ = S2 = Id, and S ◦ T+ ◦ S = T−

so that ϕ is an isomorphism. Namely the (extended) affine Weyl group G

of type Ã1 birationally operates on the scheme X(c) = A2
L in such a way

that the diagram

X(c)
φg

−−−→ X(c)

p

y p

y

SpecL
ψg

−−−→ SpecL

is commutative for every g ∈ G, where φg is the birational automorphism of

X(c) induced the element g ∈ G and ψg is the K(t)-automorphism of SpecL

defined by the operation of the element g ∈ G. We projectify the affine plane

X(c) = A2
L with derivation. We prepare four copies Wi (1 ≤ i ≤ 4) of the

affine plane A2
L and glue them by the following rule to get the projective

model Z(c) that is denoted by Σ
(2)
(ε) in [O1] with ε = c. Let (yi, zi) be the

coordinate system of Wi (1 ≤ i ≤ 4) so that Wi = SpecL[yi, zi].
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(i) A point (y1, z1) ∈W1 and a point (y2, z2) ∈W2 are identified if

y1 = y2 and z1z2 = 1.

(ii) A point (y1, z1) ∈W1 and a point (y3, z3) ∈W3 are identified if

y1y3 = 1 and z1 = cy3 − y2
3z3.

We notice here that the latter condition is equivalent to z3 = cy1 − y2
1z1.

(iii) A point (y3, z3) ∈W3 and a point (y4, z4) ∈W4 are identified if

y3 = y4 and z3z4 = 1.

The projections

Wi −→ A1
L, (yi, zi) 7−→ yi

for 1 ≤ i ≤ 4 glue together and give a morphism

Z(c) −→ P1
L.

Namely Z(c) is a P1
L-bundle over P1

L or Z(c) is a rational ruled surface

known to be isomorphic to P1 × P1. The curves z2 = 0 in W2 and z4 = 0 in

W4 also glue together and give a section D1 of the ruled surface Z(c) → P1
L

such that D2
1 = 2. We embed the affine plane X(c) over L in Z(c) by

identifying it with W1 by an L-isomorphism

L[y1, z1] −→ L[qc, pc], y1 7−→ qc, z1 7−→ pc.

The derivation δ(c) of L[qc, pc] defines a rational derivation on the scheme

Z(c). We notice here that since δ(t) = 1, the rational derivation on Z(c)

is not a vector field on an variety over L even on an open set of Z(c), for

Z(c) is defined over the field L = K(t, c). Okamoto constructed the space of

initial conditions of the second Painlevé equation PII(α) by blowing up the

projective surface Z(c) over L at 8 points. They are infinitely near points of

(y4, z4) = (0, 0) on W4 ⊂ Z(c). Namely they are the point (y4, z4) = (0, 0)

in W4 and 7 other points lying on the exceptional divisor that is contracted

to the point (y4, z4) = (0, 0) ∈W4. Let us denote the thus obtained surface

by X (c). On X (c) there are 8 curves Di isomorphic to P1
L with D2

i = −2

(1 ≤ i ≤ 8). The space of initial conditions of the second Painlevé equation

is defined as X (c) −
⋃8
i=1Di (cf. [O1, Chap. III, §1]).
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Theorem 2.11. The rational operation of the group G on X(c) gives

a regular operation of G on the projective model X (c) of X(c).

We prove the Theorem in §3. To explain the construction of X (c), we

need the notation. Let W be the affine plane A2
M with a coordinate system

(y, z), i.e., W = SpecM [y, z], where M is a field. The blow-up p : W̃ →W

of W at (y, z) = (0, 0) is by definition

W̃ = {(y, z; (x0, x1)) ∈W × P1
M | yx0 = zx1}

and the morphism p : W̃ →W is induced by the projection W ×P1
M →W .

Let us denote by W (y) the open subset

{(y, z; (x0, x1)) ∈ W̃ | x0 6= 0}

of W̃ . Then writing x1/x0 = Y , we have an isomorphism

W (y) −→ A2
M , (y, z; (x0, x1)) 7−→

(x1

x0
, z

)
= (Y, z).

In fact the inverse map A2
M → W (y) is given by (Y, z) 7→ (Y z, z; (1, Y )).

Namely the open subset W (y) ∈ W̃ is isomorphic to the affine plane A2
M

with the coordinate system (Y, z). Similarly we write x0/x1 = Z. Then the

open subset

W (z) := {(y, z; (x0, x1)) ∈ W̃ | x1 6= 0}

of W̃ is isomorphic to A2
M by sending (y, z; (x0, x1)) to (y, x0/x1) = (y, Z).

In other words the open subset W (z) ⊂ W̃ is isomorphic to the affine plane

A2
M with the coordinate system (y, Z). So W̃ is covered by the two open

subsets W (y), W (z) isomorphic to the affine plane A2
M . On the open subset

W (y) ' A2
L of W̃ the projection

p : W̃ −→ W, (y, z; (x0, x1)) 7−→ (y, z)

is written in terms of the coordinate system (Y, z) as

(Y, z) 7−→ (Y z, z)

and similarly on the other open subset W (z) of W̃ the projection p : W̃ →
W is written in terms of the coordinate system (y, Z) on A2

M as

(y, Z) 7−→ (y, yZ).



24 H. UMEMURA

Here is the construction of X (c). The center a1 of the first blow-up of

Z(c) is the point (y4, z4) = (0, 0) on W4 = A2. Let Z1(c) be the blow-up of

Z(c) at (y4, z4) = (0, 0). Ignoring the index 4, we use the above convention

for W4 and M = L. We have the blow-up

p4 : W̃4 −→W4

and W̃4 is covered by two open subsets W4(y), W4(z) both isomorphic to A2
L

with the coordinate systems (Y, z) and (y, Z). So Z1(c) is covered by 5 open

subsets isomorphic to A2: W1, W2, W3, W4(y), W4(z). Then the center a2

of the second blow-up of Z1(c) is the point (y, Z) = (0, 0) on W4(z) = A2.

We denote by Z2(c) the thus obtained surface. To simplify the notation,

we set W5 = W4(z) that is the affine plane, and we denote the coordinate

system (y, Z) of the affine plane W5 by (y, z) which we should not confuse

with the coordinate system on W4. So we get the blow-up

p5 : W̃5 −→W5

of W5 at (y, z) = (0, 0). W̃5 is covered by two open subsets W5(y) and W5(z)

with the coordinate systems (Y, z) and (y, Z) respectively both isomorphic

to the affine plane A2. Therefore Z2(c) is covered by 6 affine planes:

W1, W2, W3, W4(y), W5(y), W5(z).

This procedure is repeated to get the third and fourth centers a3, a4. Namely

W5(z) is the affine plane with the coordinate system (y, Z) and we set

W6 = W5(z) and denote Z by z so that the coordinate system on the

affine plane W6 is (y, z). The center a3 of the third blow-up is the point

(y, z) = (0, 0) of the affine plane W6 = W5(z) ⊂ Z2(c). So we blow up Z2(c)

at the point (y, z) = (0, 0) in W6 to obtain Z3(c). Locally on W6, we get

the blow-up

p6 : W̃6 −→ W6,

which is covered by two open subsets W6(y) and W6(z) that are affines

planes with coordinate systems (Y, z) and (y, Z). So Z3(c) is covered by 7

affine planes

W1, W2, W3, W4(y), W5(y), W6(y), W6(z).

The center a4 of the fourth blow-up to get Z4(c) is the point (y, Z) = (0, 0)

on W6(z) ⊂ Z3(c). So it is convenient to denote Z by z and we set W7 =
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W6(z) so that W7 is the affine plane with the coordinate system (y, z).

Locally we have the blow-up

p7 : W̃7 −→ W7.

Then W̃7 is covered by two open subsets W7(y) and W7(z) isomorphic to

the affine plane with the coordinate systems (Y, z) and (y, Z). So Z4(c) is

covered by 8 affine planes:

W1, W2, W3, W4(y), W5(y), W6(y), W7(y), W7(z).

The center of the fifth blow-up is the point (y, Z) = (0, 1/2) of W7(z). So

we denote W7(z) by W8. Now we introduce a new coordinate system (y, z)

on the affine plane W7(z) by setting y = y, Z = (z+ 1)/2. We use this new

coordinate system on W8 so that the center a5 of the fifth blow-up is the

point (y, z) = (0, 0) on W8 in terms of the new coordinate system. Therefore

we get the blow-up

Z5(c) −→ Z4(c).

Locally on W8 we have the blow-up

p8 : W̃8 −→W8

and W̃8 is covered by two open subsets W8(y) and W8(z) that have the

coordinate systems (Y, z) and (y, Z) respectively. So Z5(c) is covered by 9

affine planes:

W1, W2, W3, W4(y), W5(y), W6(y), W7(y), W8(y), W8(z).

The center a6 of the sixth blow-up to get Z6(c) is the point (y, Z) = (0, 0)

of W8(z). Therefore to simplify the notation, we set W9 = W8(z) and we

denote Z by z so that W9 is the affine plane with the coordinate system

(y, z). We get the blow-up

Z6(c) −→ Z5(c)

and locally we have a blow-up morphism

p9 : W̃9 −→ W9.
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So the surface W̃9 is covered by two open subsets W9(y) and W9(z) isomor-

phic to the affine plane with coordinate systems (Y, z) and (z, Y ) respec-

tively. The surface Z(6) is covered by 10 affine planes:

W1, W2, W3, W4(y), W5(y), W6(y), W7(y), W8(y), W9(y), W9(z).

The center of the seventh blowing up is (y, Z) = (0,−t/2) onW9(z) ⊂ Z6(c).

So we set W10 = W9(z) and introduce z by Z = (z− t)/2 and we use a new

coordinate system (y, z) on the affine plane W10. So the center a7 of the

seventh blow-up is (y, z) = (0, 0) on W10. In this way we get the blow-up

Z7(c) −→ Z6(c).

Locally we have the blow-up

p10 : W̃10 −→W10

and the surface W̃10 is covered by open subsets W10(y) and W10(z) both

isomorphic to the affine plane A2 with the coordinate systems (Y, z) and

(y, Z). So Z7(c) is covered by 11 affine planes:

W1, W2, W3, W4(y), W5(y), W6(y), W7(y), W8(y), W9(y), W10(y), W10(z).

The center of the eighth and hence the last blow-up is the point (y, Z) =

(0,−2c − 1) on W10(z). So we get

Z8(c) −→ Z7(c).

This the definition of Z8(c) = X (c).

§3. Proof of the Theorem

The group G is a Coxeter group generated by two reflections i and j:

i : K(c) −→ K(c), i(c) = −c, and j : K(c) −→ K(c), j(c) = −1 − c.

So we have to show that the birational automorphisms of X (c) correspond-

ing to i, j are in fact biregular automorphisms of X (c). Let us first study the

reflection j. The operation of the reflection j comes from the transformation

J(c,−1 − c) = I(c+ 1,−1 − c) ◦ T+(c, c+ 1) : Sol2(c) −→ Sol2(−1 − c),

(q, p) 7−→ (−q,−2q2 − p− t).
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Keeping the notation of §2, we consider a differential L-morphism

L{Q,P} −→ L(qc, pc)(3.1)

sending

Q 7−→ −qc, P 7−→ −2q2c − pc − t.

Since J(c,−1 − c)(qc, pc) = (−qc,−2q2c − pc − t) ∈ Sol2(−1 − c), the mor-

phism (3.1) factors through the residue class morphism

L{Q,P} −→ L{Q,P}/I(−1 − c) = R(−1 − c)

so that we have a differential L-morphism

R(−1 − c) −→ K(c).(3.2)

Since J(−1− c, c) ◦ J(c,−1− c)(q, p) = (q, p) for a generic solution (q, p) of

S2(c) over L, the L-morphism (3.2) is birational. Geometrically we have a

differential L-birational map

JX(c,−1 − c) : X(c) = SpecR(c) · · ·→ X(−1 − c) = SpecR(−1 − c)

and therefore differential L-birational maps

JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c), and

JX (c,−1 − c) : X (c) · · ·→ X (−1 − c),
(3.3)

as Z(c) and X (c) are models of X(c) = SpecR(c). Since we have a natural

differential K(t)-isomorphism

R(c) = L[qc, pc] −→ R(−c− 1) = L[q−1−c, p−1−c],

qc 7−→ q−1−c, pc 7−→ p−1−c, c 7−→ −1 − c,

and thus a K(t)-isomorphism X(−1 − c) = SpecR(−1 − c) → X(c) =

SpecR(c). This isomorphism gives further differential K(t)-isomorphisms

J ′
Z : Z(−1 − c) −→ Z(c) and J ′

X : X (−c− 1) −→ X (c)(3.4)

Composing the morphisms (3.3), (3.4), we get birational maps

JZ : Z(c) · · ·→ Z(c) and JX : X (c) · · ·→ X (c)
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that is by definition the birational operation of j on X (c). We must show

that J = JX is an isomorphism. Since the morphisms (3.4) are isomor-

phisms, we have to show that the birational map JX (c,−1− c) : X (c) · · ·→

X (−1 − c) is biregular. To this end we look for the minimum resolution of

the rational map

JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c).

Indeed we see below that the blow-up X (c) → Z(c) is the minimum resolu-

tion of the birational map JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c).

Lemma 3.5. The blow-up X (c) → Z(c) is the minimum resolution of

the birational map JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c).

Let us admit for a moment Lemma 3.5. We have a regular map

JXZ(c,−1 − c) : X (c) −→ Z(−1 − c)

such that

JZ(c,−1 − c) ◦ p = JXZ(c,−1 − c),

p : X (c) → Z(c) being the blow-up morphism. Since

J(−1 − c, c) ◦ J(c,−1 − c) = IdX (c),

the blow-up X (−1 − c) → Z(−1 − c) is the minimum resolution of the

birational map

JZ(c,−1 − c)−1 = JZ(−1 − c, c) : Z(−1 − c) · · ·→ Z(c).

Therefore the birational map JX (c,−1−c) : X (c) → X (−1−c) is biregular.

So it remains to prove Lemma 3.5.

Proof of Lemma 3.5. To study the rational map JZ(c,−1 − c) : Z(c)

· · ·→ Z(−1 − c), we simplify the notation. The ruled surfaces Z(c) and

Z(−1 − c) are defined by coverings Wi (1 ≤ i ≤ 4). To distinguish the

covering of Z(c) from that of Z(−1− c), we denote the covering of Z(c) by

Wi, 1 ≤ i ≤ 4, and the covering of Z(−1− c) by W i, 1 ≤ i ≤ 4. So it follows

from the definition that the L-morphism JZ(c,−1−c) : Z(c) · · ·→ Z(−1−c)
is defined by

J11 : W1 −→W 1, (y1, z1) 7−→ (y1, z1) = (−y1,−2y2
1 − z1 − t).



THE SECOND PAINLEVÉ EQUATION 29

So JZ(c,−1 − c) is regular on the open subset W1 of Z(c). As y2 = y1,

z2 = z−1
1 , on W2 we have

J21 : W2 · · ·→W 1, (y2, z2) 7−→ (y1, z1) =

(
−y2,−2y2

2 −
1

z2
− t

)
.

So J21 is not defined on W2 ∩ {z2 = 0}. On the other hand since y2 = y1,

z2 = z−1
1 , we have

J22 : W2 −→W 2, (y2, z2) 7−→

(
−y2,

z2
−2y2z2 − 1 − tz2

)
.

So on W2 ∩ {−2y2
2z2 − 1 − tz2 = 0} the map JZ(c,−1 − c) is not defined

and the set of base points of JZ(c,−1 − c) on W2 is

{2y2
2 + 1 + tz2 = 0} ∩ {z2 = 0} = ∅.

Namely JZ(c,−1− c) is regular on W2. Similarly it follows from the defini-

tion of the ruled surface Z(c) that we have on W3

J31 : W3 · · ·→W 1, (y3, z3) 7−→

(
−

1

y3
,
−2 − (cy3 − y2

3z3)y
3
3 − ty2

3

y2
3

)
,

J32 : W3 · · ·→W 2, (y3, z3) 7−→

(
−

1

y3
,

y2
3

−2 − (c− y3z3)y3
3 − ty2

3

)
,

J33 : W3 · · ·→W 3, (y3, z3) 7−→

(
−y3,

2 − z3y
4
3 + ty2

3 + (2c+ 1)y2
3

y4
3

)

and

J34 : W3 · · ·→W 4, (y3, z3) 7−→

(
−y3,

y4
3

2 − z3y
4
3 + ty2

3 + (2c+ 1)y2
3

)
.

So the rational map JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c) is regular on the

open subset W3 of Z(c). Similarly an easy calculation shows

J41 : W4 · · ·→W 1, (y4, z4) 7−→

(
−

1

y4
,
−2z4 − (cz4 − y4)y

3
4 − ty2

4z4
y2
4z4

)

J42 : W4 · · ·→W 2, (y4, z4) 7−→

(
−

1

y4
,

y2
4z4

−2z4 − (cz4 − y4)y3
4 − ty2

4z4

)

J43 : W4 · · ·→W 3, (y4, z4) 7−→

(
−y4,

2z4 − y4
4 + ty2

4z4 + (2c+ 1)y3
4z4

y4
4z4

)



30 H. UMEMURA

and

J44 : W4 · · ·→W 4, (y4, z4) 7−→

(
−y4,

y4
4z4

2z4 − y4
4 + ty2

4z4 + (2c+ 1)y3
4z4

)
.

We conclude now that on W4 the rational map

JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c)

has a base point at (y4, z4) ∈W4 for which

y4
4z4 = 0 and 2z4 − y4

4 + ty2
4z4 + (2c+ 1)y3

4z4 = 0.

Namely (y4, z4) = (0, 0) ∈W4 is the unique base point of the rational map

JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c). This point is the center a1 of the

first blow-up in the construction of X (c) as well as in the resolution of the

rational map JZ(c,−1 − c). We have proved

Sublemma 3.6. The resolution of the rational map

JZ(c,−1 − c) : Z(c) · · ·→ Z(−1 − c)

is equivalent to the resolution of the rational function

F : W4 · · ·→ P1, (y4, z4) 7−→ (y4
4z4, 2z4 − y4

4 + ty2
4z4 + (2c+ 1)y3

4z4)

on W4.

We use the notation of the construction of the model X (c). We blow

up W4 at a1 = (y4, z4) = (0, 0) to get

p4 : W̃4 −→ W4.

W̃4 is covered by the two affine planes W4(y) and W4(z) with the coordinate

systems respectively (Y, z) and (z, Y ). In terms of these coordinate systems

the morphism p4 is written as

W4(y) = A2 −→W4 = A2, (Y, z) 7−→ (y4, z4) = (Y z, z)(3.7)

on W4(y) and

W4(z) = A2 −→ W4 = A2, (y, Z) 7−→ (y4, z4) = (y, yZ)(3.8)
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on W4(z). So we substituting (3.7) and (3.8), the rational function F on

W̃4 is given on W4(y) by

W4(y) = A2 · · ·→ P1,

(Y, z) 7−→ (Y 4z4, 2 − Y 4z3 + tY 2z2 + (2c+ 1)Y 3z3)
(3.9)

and on W4(z) by

W4(z) = A2 · · ·→ P1,

(y, Z) 7−→ (y4Z, 2Z − y3 + ty2Z + (2c+ 1)y3Z).
(3.10)

It follows from (3.10) that the unique base point of the rational function F

on W4(z) is (y, Z) = (0, 0) and by (3.9) the point (Y, z) = (0, 0) ∈W4(y) is

not a base point. Thus (y, Z) = (0, 0) on W4(z) is the unique base point of

the rational function F on W̃4. This point coincides with the center a2 of

the second blow-up in the construction of X (c). Now we set W5 = W4(z)

and denote Y again by y. We blow up W5 = A2 with coordinate system

(y, z) at a2 = (y, z) = (0, 0) ∈ W5 to solve the singularity of the rational

map (3.10), which is given by

W4(z) = A2 · · ·→ P1,

(y, z) 7−→ (y4z, 2z − y3 + ty2z + (2c+ 1)y3z)
(3.11)

because we denote Y by y. Let p5 : W̃5 → W5 be the blow-up so that W̃5

is covered by the two affine planes W5(y) and W5(z) with the coordinate

systems (Y, z) and (y, Z). The morphism

p5 : W̃5 −→W5

is given on the open subsets of W̃5 by

W5(y) = A2 −→W5 = A2, (Y, z) 7−→ (Y z, z)

on W5(y) and

W5(z) = A2 −→ W5 = A2, (y, Z) 7−→ (y, yZ)

on W5(z). So if we substitute (y, z) = (Y z, z) and (y, z) = (y, yZ) into

(3.11), we get the expressions of the rational function F :

W5(y) = A2 · · ·→ P1, (Y, z) 7−→ (Y 4z4, 2 − Y 2z − tY 2z2 + (2c+ 1)Y 3z3)
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on W5(y) and

W5(z) = A2 · · ·→ P1, (y, Z) 7−→ (y4Z, 2Z − y2 + ty2Z + (2c+ 1)y3Z)

on W5(z). So (y, Z) = (0, 0) ∈W5(z) is the unique base point of the rational

function F on W̃5. This point coincides with the center a3 of the third blow-

up in the construction of X (c). Now we use the notation of the construction

of X (c). We denote Z by z so that W6 = W5(z) is the affine plane with

coordinate system (y, z). We blow up W6 at a3 = (y, z) = (0, 0). Then the

rational function F on W6 is written on the open subsets W6(y) and W6(z)

as

W6(y) = A2 · · ·→ P1, (Y, z) 7−→ (Y 4z4, 2 +O(1)),

where O(1) is an element of the ideal (y, z) of L[Y, z], and

W6(z) = A2 · · ·→ P1,
(
y4Z, 2Z − y + ty2Z + (2c+ 1)y3Z

)
.

So (y, Z) = (0, 0) is the unique base point of the rational function F on

W̃6. This point is the center a4 of the fourth blow-up in the construction

of X (c). Hence we denote Z by z so that W7 = W6(z) is the affine plane

with coordinate system (y, z). We blow up W7 at a4 = (y, z) = (0, 0) to get

W̃7 → W7. Then on W̃7 the representations of the rational function F are

as follows.

W7(y) · · ·→ P1, (Y, z) 7−→ (Y 4z4, 2 +O(1))

and

W7(z) · · ·→ P1, (y, Z) 7−→ (y4Z, 2Z − y + ty2Z + (2c+ 1)y3Z),

where O(1) is an element of the ideal (Y, z) of L[Y, z]. Hence the unique base

point of the rational function F on W̃7 is (y, Z) = (0, 0) on W7(z) that is

the center a5 of the fifth blow-up in the construction of X (c). We denote Z

by z so that W7(z) = W8 is the affine plane with coordinate system (y, z).

We blow up W8 at (y, z) = (0, 0). We then have local expressions of the

rational function F on the open subsets W7(y) and W7(z) of W̃7. Namely

W7(y) · · ·→ P1, (Y, z) 7−→ (Y 4z4, 2 +O(1)),

where O(1) is an element of the ideal (Y, z) of L[Y, z], and

W7(z) · · ·→ P1, (y, Z) 7−→
(
y4Z, 2Z − 1 + ty2Z + (2c+ 1)y3Z

)
.
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Therefore the unique base point of the rational function F on W̃8 is the

point (y, Z) = (0, 1/2) on W7(z). So we blow up W7(z) at a5 = (y, Z) =

(0, 1/2). We introduced the coordinate system (y, z) on W7(z) such that

Z = (z + 1)/2 and denote the affine plane W7(z) with this coordinate

system (y, z) by W8. So on W8 = A2 the rational function F is expressed as

W8 · · ·→ P1,

(y, z) 7−→
(
y4z + y4, 2z + ty2 + (2c+ 1)y3 + ty2z + (2c+ 1)y3z

)
.

On the open subsetsW9(y) andW9(z) of the blow-up W̃8 → W8, the rational

function F is written as

W8(y) · · ·→ P1, (Y 4z4 + Y 4z3, 2 +O(1)),

where O(1) is an element of the ideal (Y, z) of L[Y, z], and

W8(z) · · ·→ P1,

(y, Z) 7−→
(
y4Z + y3, 2Z + ty + (2c+ 1)y2 + ty2z + (2c+ 1)y3z

)
.

So the unique base point of the rational function F on W̃8 is the point

(y, Z) = (0, 0) in W8(z). This is the center a6 of the sixth blow-up in the

construction of X (c). So we denote Z by z and blow up the affine plane

W8(z) = W9 with coordinate system (y, z) at a6 = (y, z) = (0, 0). Then the

local expression of the rational function F on the open subsets W9(y) and

W9(z) are as follows.

W9(y) · · ·→ P1, (Y, z) 7−→ (Y 4z4 + Y 4z3, 2 +O(1)),

where O(1) is an element of the ideal (Y, z) of L[Y, z], and

W9(z) · · ·→ P1,

(y, Z) −→
(
y4Z + y2, 2Z + t+ (2c+ 1)y + ty2z + (2c+ 1)y3z

)
.

So the unique base point of the rational function F on W̃9 is the point

(y, Z) = (0,−t/2) on W9(z). This point is the center of the seventh blow-up

in the construction of X (c). We introduced z by Z = (z − t)/2 and the

affine plane W9(z) with the coordinate system (y, z) was denoted by W10.

So the rational function F on W10 is given by

W10 · · ·→ P1,

(y, z) 7−→
(
y4(z − t) + 2y2, 2z + 2(2c+ 1)y + (t+ (2c+ 1)y)y2(z − t)

)
.
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We blow up W10 at a7 = (y, z) = (0, 0) to get W̃10 → W10. The local

representation of the rational function F on W̃10 are

W10 · · ·→ P1, (Y, z) 7−→ (O(1), 2 +O(1)′),

where O(1), O(1)′ are elements of the ideal (Y, z) of L[Y, z], and

W10(z) · · ·→ P1,

(y, Z) 7−→
(
y3(yZ − t) + 2y, 2Z + 2(2c+ 1) + (t+ (2c+ 1)y)y(yZ − t)

)
.

So the unique base point of the rational function F on W̃10 is the point

(y, Z) = (0,−2c− 1) of W̃10(z). This is the center of the eighth blow-up in

the construction of X (c). We introduced z by Z = z−2c−1 and denoted the

affine plane W10(z) with this new coordinate system (y, z) by W11. Then

we blew up W11 at (y, z) = (0, 0) to get W̃11 →W11. The rational function

F on W11 is written as

W11 · · ·→ P1,

(y, z) 7−→
(
y3(y(z − 2c− 1) − t) + 2y,

2z + (t+ (2c+ 1)y)y(y(z − 2c− 1) − t)
)
.

Now the local expressions of the rational function F on W̃11 are

W11(y) · · ·→ P1, (y, z) 7−→ (O(1), 2 +O(1)′),

and

W11(z) · · ·→ P1,

(y, Z) 7−→
(
y2(y(yZ − 2c− 1) − t) + 2,

2Z + (t+ (2c+ 1)y)(y(yZ − 2c− 1) − t)
)
,

(3.12)

where O(1), O(1)′ are elements of the ideal (Y, z) of L[Y, z]. So the point

(Y, z) = (0, 0) of W11(y) is not a base point of the rational function F . We

show that there is no base point of F on W11(z) either, i.e., F has no base

point on X (c). In fact let (y, Z) ∈ W11(z) be a base point of the rational

function F . Then y 6= 0. Equating the coordinates of P1 in (3.12) equals to

0, we have

y2(y(yZ − 2c− 1) − t) + 2 = 0(3.13)



THE SECOND PAINLEVÉ EQUATION 35

and

2Z + (t+ (2c+ 1)y)(y(yZ − 2c− 1) − t) = 0.(3.14)

It follows from (3.13)

y(yZ − 2c− 1) − t = −
2

y2
.(3.15)

We substitute (3.15) into (3.14) to get

2Z + (t+ (2c+ 1)y)

(
−

2

y2

)
= 0

and hence

− Zy2 + (2c+ 1)y + t = 0,(3.16)

which contradicts (3.15). So Lemma 3.5 is proved.

Now we have to study the operation of the reflection i. The operation of

the reflection i comes from the transformation I(c,−c) in §2. In fact keeping

the notation in §2, we consider a differential L-morphism

L{Q,P} −→ L(qc, pc)(3.17)

sending

Q 7−→ qc −
c

pc
, P 7−→ pc.

Since (
qc −

c

pc
, pc

)

is a solution of the system S2(c), the morphism (3.1) factors through the

residue class morphism

L(c, t){Q,P} −→ L{Q,P}/I(−c) = R(−c)

so that we have a differential L-morphism

R(−c) · · ·→ K(c).(3.18)

Since I ◦ I(q, p) = (q, p) for a generic solution (q, p) of S2(c) over L, the

L-morphism (3.18) is birational. Namely we have a differential L-birational

morphism

X(c) = SpecR(c) · · ·→ SpecR(−c) = X(−c)(3.19)
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as we have a natural L-isomorphism

R(c) = L(qc, pc) −→ R(−c) = L(q−c, p−c)

sending

qc 7−→ q−c, pc 7−→ p−c, c 7−→ −c

and thus a natural L-morphism

X(−c) = SpecR(−c) −→ X(c) = SpecR(c).(3.20)

Composing the morphisms (3.19) and (3.20), we get the birational map

I : X(c) · · ·→ X(c). It follows from the construction that the isomorphism

(3.20) induces an isomorphism Z(−c) → Z(c). So we have to show that

the birational morphism IX (c,−c) : X (c) → X (−c) arising from (3.19) is

biregular. The L-birational map (3.19) defines an L-birational map

IZ(c,−c) : Z(c) · · ·→ Z(−c)(3.21)

of the projective surfaces. We denote the charts Wi ' A2
L of Z(c) by Wi(c)

and the coordinate system of the affine plane Wi(c) = A2 by (yi, zi) and the

coordinate system of the affine plane Wi(−c) = A2 by (yi, zi) for 1 ≤ i ≤ 4.

So the rational map IZ(c,−c) is given by a rational map

W1(c) = A2 · · ·→W1(−c) = A2, (y1, z1) 7−→ (y1, z1) =

(
y1 −

c

z1
, z1

)

in terms of the charts W1(c) and W1(−c). Since

y3 =
1

y1

, z3 = −cy1 − y2
1z1,(3.22)

it follows from (3.22) that the rational map (3.21) gives

W1(c) = A2 · · ·→W3(−c) = A2,

(y1, z1) 7−→ (y3, z3) =

(
z1

y1z1 − c
,−y1(y1z1 − c)

)
.

So the rational map (3.21) has no base point onW1(c). Substituting y1 = y2,

z1 = 1/z2, we conclude that the rational map (3.21) gives rational maps

W2(c) · · ·→W1(−c), (y2, z2) 7−→

(
y2 − cz2,

1

z2

)
.
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and

W2(c) · · ·→W2(−c), (y2, z2) 7−→ (y2 − cz2, z2).

So there is no base point of rational map (3.21) on W2(c) either. A similar

calculation shows that the rational map (3.21) is written as a rational map

W3(c) · · ·→W1(−c), (y3, z3) 7−→

(
z3

y3z3 − 1
, (c− y3z3)y3

)

and

W3(c) · · ·→ W3(−c), (y3, z3) 7−→

(
−
c− y3z3
z3

, z3

)
.

Therefore there is no base point of the rational map (3.21) on W3(c). Sim-

ilarly in terms of W4(c) and W4(−c), the rational map (3.21) gives an iso-

morphism

W4(c) −→W4(−c), (y4, z4) 7−→ (y4 − cz4, z4)(3.23)

so that there is no base point of the rational map (3.21) on W4(c) either.

Namely the rational map (3.21) is indeed regular. Now since IZ(−c, c) ◦
IZ(c,−c) = Id, the rational map (3.21) is biregular. We have to show that

the rational map (3.21) induces the biregular morphism X (c) → X (−c).
Let C0(c) be the Zariski closure of the curve

{
(y4, z4) ∈W4 | 2z4 − y4

4 + ty4
4z4 + (2c+ 1)y3

4z4 = 0
}

in Z0(c), Ei(c) ⊂ Zi(c) the exceptional curve of the i-th blow-up Zi(c) →
Zi−1(c), and Ci(c) the proper transform of C0(c) by the blow-up

Zi(c) −→ Zi−1(c) −→ · · · −→ Z0(c) = Z(c)

for 1 ≤ i ≤ 8. In the course of the proof of Lemma 3.5, we have proved

Lemma 3.24. The center a1 of the first blow-up is the point (y4, z4) =

(0, 0) ∈ W4 and the center ai of the i-th blow-up Zi(c) → Zi−1(c) is the

intersection of the curve Ci−1(c) and the exceptional divisor Ei−1 for 2 ≤
i ≤ 8. Namely we have ai = Ei−1 ∩ Ci−1(c) for 2 ≤ i ≤ 8.

We denote the center ai on Zi−1(c) by ai(c) and the center ai on

Zi−1(−c) by ai(−c) to distinguish them. Therefore we must show that at

each step of blow-up the center ai+1(c) on Zi(c) is mapped to the center
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ai+1(−c) on Zi(−c). In fact (3.23) shows that the first center a1 on Z(c)

is mapped to the first center on Z(−c). To see the image of the successive

centers, in view of Lemma 3.24 let us consider the image of the curve

C0(c) ∩W4 = {2z4 − y4
4 + ty2

4z4 + (2c+ 1)y3
4z4 = 0} ⊂W4 ⊂ Z(c).

Since IZ(c,−c)(y4, z4) = (y4 − cz4, z4) = (y4, z4), we substitute

y4 = y4 + cqz4, z4 = z4

to get

2z4 − y4
4 − ty2

4z4 + (−2c+ 1)y3
4z4 + (2t+ 3cy4)y4z

2
4(3.25)

+3(ct+ (2c+ 1)cy4)z
3
4 + (−2c+ 1)c3z4

4 = 0.

The Zariski closure of this curve is the image C of the curve C0(c). We

show that the birational map Ii : Zi(c) · · ·→ Zi(−c) induced by (3.21) is a

biregular isomorphism for 0 ≤ i ≤ 8 by induction. More precisely we prove

by induction on j that Ij : Zj(c) → Zj(−c) is a biregular isomorphism and

Ij(aj+1(c)) = aj(−c) for 0 ≤ j ≤ 7, which implies I8 = IX (c,−c) : X (c) =

Z8(c) → X (−c) = Z8(−c) is a biregular isomorphism. In fact we have seen

that the assertion holds for i = 0. Hence we assume that for a number i

with 0 ≤ i ≤ 7, the birational map Ij : Zj(c) · · ·→ Zj(−c) is a biregular

isomorphism and Ij(aj+1(c)) = aj+1(−c) for 0 ≤ j ≤ i. Then the birational

map Ii+1 : Zi+1(c) · · ·→ Zi+1(−c) is a biregular isomorphism. We have

to show that Ii+1(ai+2(c)) = ai+2(−c). Since ai+2(c) = Zi+1(c) ∩ Ci+1(c)

and since Ij(Ej(c)) = Ej(−c) for j ≤ i + 1, we have to show that the

proper transform C l(c) of C0(c) and the curve Cl(−c), which is the proper

transform of C0(−c), under the blow-up

Zl(−c) −→ Zi−1(−c) −→ · · · −→ Z0(−c) = Z(−c)

both intersect with El(−c) at the same point for 1 ≤ l ≤ 7. This follows

from the defining equation (3.25) of the curve C0(c) and from the defining

equation

2z4 − y2
4 − ty2

4z4 + (−2c+ 1)y3
4z4 = 0

of the curve C(−c) on W4(−c).
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§4. Equivariant fibration over the affine line

We proved that the affine Weyl group of type Ã1 operates regularly

on the projective surface X (c) in such a way that the fibration X (c) →

SpecL = SpecK(t)(c) is equivariant. It is, however, more natural to look

for an equivariant model

Y[c] −→ SpecK(t)[c]

of

X (c) −→ SpecL = SpecK(t)(c)

such that the affine Weyl group operates biregularly on Y[c]. We constructed

the projective surface X (c) over the field K(t)(c). The construction works

over the ring K(t)[c] so that we get a model

X [c] −→ SpecK(t)[c]

that is a scheme with derivation. So the affine Weyl group operates on the

scheme X [c] with derivation birationally such that the fibration

X [c] −→ SpecK(t)[c]

is equivariant. Namely first we construct Z[c] over SpecK(t)[c] = A1
K(t) by

gluing 4 copies of A2
K(t) ×K(t) SpecK(t)[c] = A3

K(t), which we denote by

Wi×A1
K(t) or by Wi[c], 1 ≤ i ≤ 4, by the same rule as in the construction of

the ruled surface Z(c). Then we blow up Z[c] 8 times along the sections of

Z[c] → A1
K(t). So Wi[c] is the affine space A3

K(t) with the coordinate system

(yi, zi, c), 1 ≤ i ≤ 4. Similarly we have rational maps over SpecK(t)[c]

JX [c,−1 − c] : X [c] · · ·→ X [−1 − c]

and

IX [c,−c] : X [c] · · ·→ X [−c].

In other words, locally on W1[c], W1[−c] and W1[−1 − c], JX [c,−1 − c],

IX [c,−c] are given respectively by

JX [c,−1 − c] : W1[c] · · ·→W1[−1 − c],

(y1, z1, c) 7−→ (−y1,−2y2
1 − z1 − t,−1 − c)
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and

IX [c,−c] : W1[c] · · ·→ W1[−c], (y1, z1, c) 7−→

(
y1 −

c

z1
, z1,−c

)
.

The argument of §3 allows us to prove the following

Lemma 4.1. JX [c,−1 − c] : X [c] · · ·→ X [−1 − c] is a biregular iso-

morphism.

The curves

{(y1, z1, c) ∈W1[c] | z1 = c = 0}

on W1[c] and

{(y3, z3, c) ∈W3[c] | z3 = c = 0}

glue together to define a curve F on X [c] isomorphic to P1
K(t), for z3 =

cy1 − y2
1z1 on W1[c] ∩ W3[c]. Unfortunately the rational map IX [c,−c] :

X [c] · · ·→ X [−c] is not biregular.

Lemma 4.2. The base locus of the rational map IX [c,−c] : X [c] · · ·→
X [−c] is the curve F .

Proof. Locally onW1[c] andW1[−c], the rational map IX [c,−c] is given

by

W1[c] · · ·→ W1[−c], (y1, z1, c) 7−→

(
y1 −

c

z1
, z1,−c

)
(4.3)

and on W3[c] and W3[−c]

W3[c] · · ·→W3[−c], (y3, z3, c) 7−→

(
y3 −

c

z3
, z3,−c

)
.

The argument of §3 shows that there is no base point outside W1[c]∪W3[c].

So the rational map IX [c,−c] is not regular only on the curve F .

Since IX [c,−c] is not regular, we have to modify the model X [c] →
A1
K(t). To this end we blow up X [c] along the curve F to get X 1[c] → X [c].

Lemma 4.4. The rational map

IX [c,−c] : X [c] · · ·→ X [−c]

induces a biregular isomorphism

I1
X [c,−c] : X 1[c] −→ X 1[−c].
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Proof. Locally on W1[c], we blew up W1[c] along z1 = c = 0. The

blow-up of W1[c] along the curve z1 = c = 0 is by definition

W̃1[c] = {(y1, z1, c; (x0, x1)) ∈W1[c] × P1
K(t) | z1x0 = cx1}

and the projection p : W̃1[c] → W1[c] is the restriction to W̃1[c] of the

projection p1 : W1[c] × P1
K(t) → W1[c] on to the first factor. Let us denote

by W̃1[c](z1) the open subset

{(y1, z1, c; (x0, x1)) ∈ W̃1[c] | x0 6= 0}

of W̃1[c]. Then setting Z1 = x1/x0, we have an isomorphism

W1[c][z1] −→ A3
K(t), (y1, z1, c; (x0, x1)) 7−→ (y, x1/x0, c) = (y1, Z1, c).

Namely W1[c](z1) is the affine space with the coordinate system (y1, Z1, c).

Similarly if we denote x0/x1 by C, then the open subset

W [c](c) := {(y1, z1, c; (x0, x1)) ∈ W̃1[c] | x1 6= 0}

is isomorphic to A3
K(t) by sending (y1, z1, c; (x0, x1)) to (y1, z1, x0/x1). So

W1[c](c) is isomorphic to the affine space A3
K(t) with the coordinate system

(y1, z1, C). So the blow-up W̃1[c] is covered by two open subsets W1[c](z1)

and W1[c](c) isomorphic to A3
K(t). On each open subsets the projection p is

given by

W1[c](z) −→W1[c], (y, Z, c) 7−→ (y, cZ, c)

on W1[c](z) and

W1[c](c) −→W1[c], (y, z, C) 7−→ (y, z, zC)

onW1[c](c). Let us check that the rational map X 1[c] · · ·→ X 1[−c] is regular

on W1[c](z). Locally we have an expression

W1[c](z) −→W1[c] · · ·→ W1[−c],

(y, Z, c) 7−→ (y, Zc, c) 7−→

(
y −

1

Z
,Zc,−c

)

so that the rational map W1[c](z) · · ·→W1[−c](z) is given by

(y, Z, c) 7−→

(
y −

1

Z
,−Z,−c

)
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and W1[c](z) · · ·→W3[−c] by

(y, Z, c) 7−→

(
1

yZ − 1
,−c

(
y −

1

Z

)
−

(
y −

1

Z

)2
Zc,−c

)

=

(
1

yZ − 1
, cy(1 − yZ),−c

)
.

This shows that the rational map

I1
X [c,−c] : X 1[c] · · ·→ X 1[−c]

is regular on W1[c](z). On the other hand the composite rational map

W1[c](c) −→W1[c] · · ·→W1[−c]

is given by

(y, z, C) 7−→ (y, z, zC) 7−→ (y − C, z,−zC)

and hence W1[c](c) · · ·→W1[−c](−c) is given by

(y, z, C) −→ (y − C, z,−zC).

So the rational map

I1
X [c,−c] : X 1[c] · · ·→ X 1[−c]

is regular on W1[c](C) and consequently on W̃1[c]. We have a local expres-

sion of

I1
X : X 1[c] · · ·→ X 1[c]

in terms of W3[c] and W3[−c]:

W3[c] · · ·→W3[−c], (y3, z3, c) 7−→

(
−
c− y3z3
z3

, z3, c

)
=

(
y3 −

c

z3
, z3, c

)

as we have seen in §3. So the above argument shows that the rational map

I1
X [c,−c] : X 1[c] · · ·→ X 1[−c] is regular locally on the blow-up of W3[c]

too. If we notice here that in the construction of X 1[c] the centers ai[c] are

on W4[c] and hence outside of the W1[c] ∪W3[c] and that IX [c,−c] induces

an isomorphism W4[c] → W4[−c] mapping the centers ai[c] to the centers

ai[−c], the rational map

I1
X [c,−c] : X 1[c] · · ·→ X 1[−c]

is regular. Since

I1
X [−c, c] ◦ I1

X [c,−c] = Id,

I1
X [c,−c] is biregular.
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Now

I1
X [c,−c] : X 1[c] −→ X 1[−c]

is biregular but the birational map

J1
X [c,−1 − c] : X 1[c] · · ·→ X 1[−1 − c]

corresponding to JX is not regular. To remedy this, we have to blow up

X 1[c] at infinitely many curves that are mutually disjoint. So the resulting

object is not a scheme any more but a pro-scheme, i.e., the projective limit of

schemes. In our case what we are going to get is a complex manifold if K =

C. Similarly as we obtained X [c], we can construct the ruled surface Z(c)

and its blow-ups Zi(c), 1 ≤ i ≤ 8 over A1
K(t). We denote the corresponding

varieties by Z[c] and Zi[c], the exceptional divisors on Zi[c] by Ei[c] for

1 ≤ i ≤ 8 so that X [c] = Z8[c]. The proper transform of Ei[c] on X [c] = Z8[c]

is denoted by Di+1[c] for 1 ≤ i ≤ 8. The proper transform by the blow-up

morphism p : X [c] → Z[c] of the divisor

{z2 = 0 on W2[c]} = {z4 = 0 on W4[c]}

on Z[c] is denoted by D1[c]. For c ∈ K, we denote by X [c] the reduction of

X [c]/K(t)[c] at c = c, i.e., X [c] is the fiber X [c]c over the rational point c = c

of A1
K(t) = SpecK(t)[c]. X [c] is a projective surface overK(t)[c] = K(t) with

the derivation D(c) that is written as

D(c) =
∂

∂t
+

(
y2
1 + z1 +

t

2

)
∂

∂y1
+ (−2y1z1 + c)

∂

∂z1

on the open subset W1(c). The following result is due to Okamoto ([O1,

Chap. III, §1]).

Proposition 4.5. For every c ∈ K regarded as a K-rational point of

A1
K(t) so that we can speak of the reduction X [c], the Zariski open subset

X [c] −
⋃8
i=1Di[c] is the set of points P of X [c] where the rational vector

field D[c] is regular at P . Namely we have

X [c] −
8⋃

i=1

Di[c] = {P ∈ X [c] | D(c)OP ⊂ OP }.
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Corollary 4.6. Let c1, c2 ∈ K and f : X [c1] → X [c2] be an isomor-

phism of schemes with derivation. Then

f

( 8⋃

i=1

Di[c1]

)
=

8⋃

i=1

Di[c2]

and f induces an isomorphism

(
X [c1] −

8⋃

i=1

Di[c1]

)
−→

(
X [c2] −

8⋃

i=1

Di[c2]

)
.

Proof. This is a direct consequence of the Proposition.

Lemma 4.7. For c ∈ K, the reduction

JX (c,−1 − c) : X [c] −→ X [−1 − c]

of the birational map JX [c,−1−c] is an isomorphism of schemes with deriva-

tion.

Proof. This is a consequence of Lemma 4.1.

Lemma 4.8. For c ∈ K, the reduction

IX (c,−c) : X [c] −→ [−c]

of the birational map IX [c,−c] is an isomorphism of schemes with deriva-

tion.

Proof. The birational map I[c,−c] has the base locus F lying over the

point c = 0 but the reduction IX [0, 0] is equivalent to the identity. Now the

lemma follows from Lemma 4.2.

Lemma 4.9. For every integer n, the open subset

X 0[n] := X [n] −
8⋃

i=1

Di[n]

contains a curve F [n] that is isomorphic to P1
K(t), tangent to the vector

field D(n). Moreover the curve F [n] is the unique complete curve on X 0[n]

tangent to the vector field D[n].
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Proof. We know that the assertion of the corollary holds for n = 0

(see [UW]). Now the assertion follows from Corollary 4.6, Lemmas 4.7 and

4.8.

Now we blow up X [c] at the infinitely many curves F [n], n ∈ Z to get

Y[c] → X [c].

Theorem 4.10. The affine Weyl group of type Ã1 regularly operates

on Y[c] such that the fibration Y[c] → SpecK(t)[c] is equivariant.

Proof. It follows from Lemmas 4.1 and 4.4 that IX (c,−c) and

JX(c,−1 − c) induce biregular morphisms

IY [c,−c] : Y[c] −→ Y[−c] and JY [c,−1 − c] : Y[c] −→ Y[−1 − c].

For two variables c, c′ over K(t), we have a natural isomorphism Y[c] →

Y[c′] covering the isomorphism

f∗ : SpecK(t)[c] −→ SpecK(t)[c′],

where f : K(t)[c′] → K(t)[c] is the K(t)-isomorphism sending c′ to c. So

combining morphisms of this type with IY [c,−c] and YY [c,−1 − c], we get

the morphisms

IY : Y[c] −→ Y[−c] and JY : Y[c] −→ Y[−1 − c]

covering respectively i∗ and j∗, where i, j are automorphisms of K(t)[c]

such that i(c) = −c, j(c) = −1− c. IY and JY are operations of i and j. So

the theorem is proved.

What is the fiber Y[0] over c = 0 of the fibration Y[c] → A1
K(t)? Y[0] has

two irreducible components X [0] and the exceptional divisor contracted to

the curve F . We describe the differential equation on the exceptional divisor.

Let us work over W1[c](c) that is the affine space with the coordinate system

(y1, z1, C), where c = z1C. So on W1[c](c) we have,





dy1

dt
= y2

1 + z1 +
t

2
,

dz1
dt

= −2y1z1 + Cz1,

dC

dt
= −2y1C + C.

(4.11)
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The fibration W1[c](c) → A1 is given by (y1, z1, C) 7→ c = z1C. So

Y[0] ∩W1[c](c)

= {(y1, z1, C) ∈W1[c](c) | C = 0} ∪ {(y1, z1, C) ∈W1[c](c) | z1 = 0}.

Here

X [0] ∩W1[c] ' {(y1, z1, C) ∈W1[c](c) | C = 0}

and

(the exceptional fibre) ∩W1[c](c) = {(y1, z1, C) ∈W1[c](c) | z1 = 0}

Therefore on

(the exceptional fibre) ∩W1[c](c)

that is the affine plane with the coordinate system (y1, C) the differential

equation (4.11) reduces to the system




dy1

dt
= y2

1 +
t

2
,

dC

dt
= −2y1C + C.

So the differential equation on the exceptional divisor is of little interest.
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Painlevé systems II, to appear, J. Math. Soc. Japan.

[Mu] Y. Murata, Rational solutions of the second and the fourth Painlevé equations,

Funkcial. Ekvac., 28 (1985), 1–32.

[O1] K. Okamoto, Sur les feuilletages associeés aux équation du second ordre à points
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[US] H. Umemura and M. Saito, Painlevé equations and deformations of rational sur-

faces with rational double points, preprint.

[UW] H. Umemura, and H. Watanabe, Solutions of the second and fourth Painlevé
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