COMPLETE SYSTEM OF FINITE ORDER FOR THE EMBEDDINGS OF PSEUDO-HERMITIAN MANIFOLDS INTO \mathbb{C}^{N+1}

SUNG-YEON KIM ${ }^{1}$

Abstract

Let (M, \mathcal{V}, θ) be a real analytic $(2 n+1)$-dimensional pseudo-hermitian manifold with nondegenerate Levi form and F be a pseudo-hermitian embedding into \mathbb{C}^{n+1}. We show under certain generic conditions that F satisfies a complete system of finite order. We use a method of prolongation of the tangential Cauchy-Riemann equations and pseudo-hermitian embedding equation. Thus if $F \in C^{k}(M)$ for sufficiently large k, F is real analytic. As a corollary, if M is a real hypersurface in \mathbb{C}^{n+1}, then F extends holomorphically to a neighborhood of M provided that F is sufficiently smooth.

§0. Introduction

Let M be a smooth manifold of dimension $2 n+1$. A CR structure \mathcal{V} on M is a subbundle of the complexified tangent bundle $\mathbb{C} T(M)$ with the complex dimension n which satisfies
i) $\mathcal{V} \cap \overline{\mathcal{V}}=\{0\}$,
ii) $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$ (integrability),
where $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$ means that if X and Y are smooth sections of \mathcal{V} then [X, Y] is again a section of $\mathcal{V} . \mathcal{V}$ is said to be nondegenerate if the Levi form \mathcal{L}, defined by $\mathcal{L}(X, Y):=\sqrt{-1}[X, Y]$ modulo $\mathcal{V}+\overline{\mathcal{V}}$, is nondegenerate.

Let $\left\{Z_{i}\right\}_{i=1, \ldots, n}$ be a basis of \mathcal{V}. Then (M, \mathcal{V}) is embeddable into \mathbb{C}^{n+1} as a real hypersurface with induced CR structure \mathcal{V} if and only if there exists $F=\left(f^{1}, \ldots, f^{n+1}\right): M \rightarrow \mathbb{C}^{n+1}$ such that

$$
\begin{equation*}
\bar{Z}_{i} f^{j}=0 \quad \text { for all } i=1, \ldots, n, j=1, \ldots, n+1 \tag{0.1}
\end{equation*}
$$

and

$$
d f^{1} \wedge \cdots \wedge d f^{n+1} \neq 0
$$

[^0](0.1) is called the tangential Cauchy-Riemann equations.

It is well known that any abstract real analytic $\left(C^{\omega}\right) \mathrm{CR}$ manifold of dimension $2 n+1$ is locally embeddable into \mathbb{C}^{n+1} as a real hypersurface via a real analytic CR diffeomorphism ([B]). But, in general, a smooth CR embedding $F: M \rightarrow \mathbb{C}^{n+1}$ need not be C^{ω} even if M is C^{ω} as the following example shows:

Let $M=\mathbb{C} \times \mathbb{R}=\{(x+\sqrt{-1} y, t)\}$ and let $\gamma(t)=u(t)+\sqrt{-1} v(t)$ be a C^{∞}, but not C^{ω}, complex valued function. Then the mapping F : $(x+\sqrt{-1} y, t) \mapsto(x+\sqrt{-1} y, \gamma(t)) \in \mathbb{C}^{2}$ is a $C^{\infty} \mathrm{CR}$ embedding which is not C^{ω}.

On the other hand, if $F: M \rightarrow \mathbb{C}^{n+1}$ is a CR embedding and $\Phi:$ $\mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$ is a biholomorphic map, then $\Phi \circ F$ is also a CR embedding. Hence a CR embedding F can not be determined by a finite jet at a point.

If $F: M \rightarrow N$ is a CR embedding into another C^{ω} real hypersurface N in $\mathbb{C}^{m+1}, m \geq n$, then the unknown functions $F=\left(f^{1}, \ldots, f^{m+1}\right)$ are analytically related by $r \circ F=0$, where r is a C^{ω} defining function of N. In this case, Han ([H]) and Hayashimoto ([Ha1]) showed that a CR embedding $F: M \rightarrow N$ is C^{ω} and determined by a finite jet at a point under generic assumptions.

Their method is to construct a complete system (see Section 2 for definition) for $\left(f^{1}, \ldots, f^{n+1}\right)$ by prolongation, which is a process of repeated differentiation of $r \circ F=0$ and reduction of order of derivatives by using the tangential Cauchy-Riemann equations. In [H] and [Ha1], proofs mainly depend on the analytic relation among the unknown functions $F=$ $\left(f^{1}, \ldots, f^{m+1}\right)$ given by $r \circ F=0$. However, we do not assume the analyticity of the target manifold. We show that a CR embedding $F: M \rightarrow \mathbb{C}^{n+1}$ satisfies a complete system of finite order under the assumption that F preserves the pseudo-hermitian structure.

For $(m+1)$-tuples of non-negative integers $A=\left(a_{1}, \ldots, a_{m+1}\right)$ and $B=\left(b_{1}, \ldots, b_{m+1}\right)$, let $\zeta^{A} \bar{\zeta}^{B}:=\zeta_{1}^{a_{1}} \cdots \zeta_{m+1}^{a_{m+1}} \bar{\zeta}_{1}^{b_{1}} \cdots \bar{\zeta}_{m+1}^{b_{m+1}}$. The weight of $\zeta^{A} \bar{\zeta}^{B}:=\sum_{j=1}^{m}\left(a_{j}+b_{j}\right)+2\left(a_{m+1}+b_{m+1}\right)$. If N is defined by

$$
r(\zeta, \bar{\zeta})=\zeta_{m+1}+\bar{\zeta}_{m+1}+\sum_{j=1}^{m} \lambda_{j} \zeta_{j} \bar{\zeta}_{j}+\sum_{A, B} c_{A B} \bar{B}^{A} \bar{\zeta}^{B}=0
$$

where λ_{j} is either 1 or -1 and weight of $\zeta^{A} \bar{\zeta}^{B}$ is greater than or equal to 3 , then N is said to be in pre-normal form ([CM]).

Now let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an n-tuple of non-negative integers. Define $Z^{\alpha}:=\left(Z_{1}\right)^{\alpha_{1}} \cdots\left(Z_{n}\right)^{\alpha_{n}}$ and $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$. Then

Theorem 0.1. ([H]) Let $M^{2 n+1}$ be a $C^{\omega} C R$ manifold of nondegenerate Levi form. Let $\left\{Z_{1}, \ldots, Z_{n}\right\}$ be C^{ω} independent sections of the $C R$ structure bundle \mathcal{V}. Let N be a C^{ω} real hypersurface in \mathbb{C}^{m+1}, $m \geq n$, which is in pre-normal form. Let $F: M \rightarrow N$ be a $C R$ mapping. Suppose that for some positive integer k, the vectors $\left\{Z^{\alpha} F:|\alpha| \leq k\right\}$ evaluated at the reference point together with $(0, \ldots, 0,1)$ span \mathbb{C}^{m+1} over \mathbb{C}. Then F satisfies a complete system of order $2 k+1$. Thus F is determined by $2 k$-jet at a point and F is C^{ω} provided that $F \in C^{2 k+1}$.

A CR function f on a C^{ω} real hypersurface M extends to a holomorphic function of a neighborhood of M if and only if f is $C^{\omega}([\mathrm{T}])$. Then by Theorem $0.1, F$ extends holomorphically to a neighborhood of M.

We say that a CR mapping $F: M \rightarrow \widetilde{M}$ satisfies the Hopf lemma property at $p \in M$ if the component of F normal to \widetilde{M} has a nonzero derivative at p in the normal direction to $M([\mathrm{BHR}])$. Let \mathcal{I} be an ideal generated by $z_{1}, \ldots, z_{n}, \bar{z}_{1}, \cdots, \bar{z}_{n}, \operatorname{Im} z_{n+1}$. For CR functions f^{1}, \ldots, f^{n} of class C^{m}, the symbol $s p\left\langle f^{1}, \ldots, f^{n}\right\rangle \not \ngtr 0\left(\bmod \mathcal{I}^{m+1}\right)$ means that there does not exist $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n} \backslash(0, \ldots, 0)$ such that $a_{1} f^{1}+\cdots+a_{n} f^{n} \equiv 0$ $\left(\bmod \mathcal{I}^{m+1}\right)$.

Theorem 0.2. ([Ha1]) Let M and \widetilde{M} be C^{ω} real hypersurfaces in \mathbb{C}^{n+1} and let $F: M \rightarrow \widetilde{M}$ be a CR mapping. Suppose that \widetilde{M} has a nondegenerate Levi form at the origin and that the origin in M is a point of finite type $l<\infty$ in the sense of Bloom-Graham. Consider the following three cases:
i) M has a nondegenerate Levi form $(l=2)$.
ii) M has a degenerate Levi form and $n=1$.
iii) M has a degenerate Levi form and $n \geq 2$.

In case i) or ii), if $F \in C^{l+1}$ satisfies the Hopf lemma property at the origin, then it satisfies a complete system of order $l+1$.

In case iii), if $F=\left(f^{1}, \ldots, f^{n+1}\right) \in C^{m}$ satisfies $s p\left\langle f^{1}, \ldots, f^{n}\right\rangle \nexists 0$ $\left(\bmod \mathcal{I}^{m+1}\right)$, then it satisfies a complete system of finite order.

In this paper, we impose a relation among the partial derivatives of $\left\{f^{1}, \ldots, f^{n+1}\right\}$ instead of a relation among the unknown functions
$\left\{f^{1}, \ldots, f^{n+1}\right\}$. We show that a CR embedding F of a $C^{\omega} \mathrm{CR}$ manifold M into \mathbb{C}^{n+1} is C^{ω} and determined by a finite jet at a point under the additional condition that F preserves the pseudo-hermitian structure on M.

A contact form θ is a real valued nonvanishing 1-form which annihilates $\mathcal{V} \oplus \overline{\mathcal{V}}$. It is determined only up to a conformal factor. A CR manifold with a specified choice of contact form θ is called a pseudo-hermitian manifold. A CR diffeomorphism F which preserves the pseudo-hermitian structure (M, \mathcal{V}, θ) is called a pseudo-hermitian embedding. In this case, F satisfies an additional first order differential equation

$$
F^{*}(\widetilde{\theta})=\theta
$$

where $\widetilde{\theta}$ is a contact form of $F(M)$ in \mathbb{C}^{n+1} such that $\|\widetilde{\theta}\| \equiv 1$, where $\|\cdot\|$ is the Euclidean norm for 1-forms.

More generally, we consider

$$
\begin{equation*}
F^{*}(\widetilde{\theta})=\lambda \theta \tag{0.2}
\end{equation*}
$$

where λ is a given nonvanishing C^{ω} function defined on M.
We differentiate (0.2) repeatedly and reduce the order of derivatives using the tangential Cauchy-Riemann equations to construct a complete system for F.

If M is C^{ω} near $p \in M$, then there exist Moser's normal coordinates $(z, v)=\left(z_{1}, \ldots, z_{n}, v\right)$ at p and a basis $\left\{Z_{1}, \ldots, Z_{n}\right\}$ of \mathcal{V} such that for each j,

$$
Z_{j}=\frac{\partial}{\partial z_{j}}+\sum_{k=1}^{n} \bar{z}_{k} X_{j}^{k}+v X_{j}^{n+1}
$$

where $X_{j}^{k}, k=1, \ldots, n+1$, are C^{ω} vector fields on M.
Assume that $F(p)=(0, \ldots, 0)$ and $F(M) \subset \mathbb{C}^{n+1}$ is in pre-normal form. Let $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of non-negative integers. Define $I_{k}(\alpha)=a_{k}, k=1, \ldots, n$. Then our results are

Theorem 0.3. Let (M, \mathcal{V}, θ) be a germ of C^{ω} pseudo-hermitian manifold with nondegenerate Levi form at the reference point p and let $F:=$ $\left(f^{1}, \ldots, f^{n+1}\right): M \rightarrow \mathbb{C}^{n+1}$ be a CR diffeomorphism which satisfies the condition (0.2). Let $\left\{Z_{i}\right\}_{i=1, \ldots, n}$ be C^{ω} sections of \mathcal{V} as above such that $Z_{j} f^{k}(p)=\delta_{j}^{k}, j, k=1, \ldots, n$. Suppose that for all $j=1, \ldots, n$, there exist multi-indices α_{j} with $\left|\alpha_{j}\right| \leq \sigma$ for some positive integer σ which have the following property:

The matrix $A=\left(\mathrm{A}_{j}^{i}\right)_{i, j=1, \ldots, n}$ of size $n(n+1) \times n(n+1)$ is non-singular, where each block A_{j}^{i} is an $(n+1) \times(n+1)$ matrix

$$
\mathrm{A}_{j}^{i}=\left(\begin{array}{cccc}
Z^{\alpha_{j}} k_{i}, & I_{1}\left(\alpha_{j}\right) Z^{\tilde{\alpha}_{j, 1}} k_{i}, & \cdots & I_{n}\left(\alpha_{j}\right) Z^{\tilde{\alpha}_{j, n}} k_{i} \\
Z_{1} Z^{\alpha_{j}} k_{i}, & I_{1}\left(\alpha_{j}+e_{1}\right) Z_{1} Z^{\tilde{\alpha}_{j, 1}} k_{i}, & \cdots & I_{n}\left(\alpha_{j}+e_{1}\right) Z_{1} Z^{\tilde{\alpha}_{j, n}} k_{i} \\
\vdots & \vdots & & \vdots \\
Z_{n} Z^{\alpha_{j}} k_{i}, & I_{1}\left(\alpha_{j}+e_{n}\right) Z_{n} Z^{\tilde{\alpha}_{j, 1}} k_{i}, & \cdots & I_{n}\left(\alpha_{j}+e_{n}\right) Z_{n} Z^{\tilde{\alpha}_{j, n}} k_{i}
\end{array}\right)
$$

where

$$
k_{i}=\sum_{j=1}^{n} a_{i}^{j} Z_{j} f^{n+1}, \quad\left(a_{i}^{j}\right)=\left(Z_{i} f^{j}\right)^{-1}
$$

and

$$
Z^{\tilde{\alpha}_{j, l}} k_{i}=\left\{\begin{array}{cl}
Z^{\alpha_{j}-e_{l}} k_{i} & \text { if } I_{l}\left(\alpha_{j}\right) \neq 0 \\
0 & \text { if } I_{l}\left(\alpha_{j}\right)=0
\end{array}\right.
$$

Then F satisfies a complete system of order $2 \sigma+4$. Thus F is determined by $(2 \sigma+3)$-jet at a point and F is C^{ω} provided that $F \in C^{2 \sigma+4}$.

Corollary 0.4. Let M be a C^{ω} real hypersurface in \mathbb{C}^{n+1} with nondegenerate Levi form. Then every $C R$ diffeomorphism satisfying the conditions of Theorem 0.3 is real analytic and hence extends holomorphically to an open neighborhood of M.

The author thanks Professor C. K. Han for suggesting the idea of complete system and for many discussions during the preparation of this paper.

§1. Pseudo-hermitian structure and pseudo-hermitian embedding

Let (M, \mathcal{V}, θ) be a pseudo-hermitian manifold with nondegenerate Levi form. In this section we denote \mathcal{V} by $H^{1,0}$ and $\overline{\mathcal{V}}$ by $H^{0,1}$. As in [W], we can choose a coframe $\left\{\theta^{i}, \theta^{\bar{i}}\right\}$ of $H^{1,0} \oplus H^{0,1}$ by requiring $d \theta=\sqrt{-1} \sum_{i, j=1}^{n} g_{i \bar{j}}$ $\theta^{i} \wedge \theta^{\bar{j}}$ and define the connection form $\left(w_{j}^{i}\right)$ as well as the torsion form $\left(\tau^{i}\right)$ via the structure equations

$$
\begin{aligned}
& d \theta^{i}=\sum_{k=1}^{n} \theta^{k} \wedge w_{k}^{i}+\theta \wedge \tau^{i} \\
& \tau^{i} \equiv 0 \quad \bmod \theta^{\bar{k}}, \\
& d g_{i \bar{j}}-\sum_{k=1}^{n} w_{i}^{k} g_{k \bar{j}}-\sum_{k=1}^{n} g_{i \bar{k}} w \frac{\bar{k}}{\bar{j}}=0 .
\end{aligned}
$$

The collection of one forms $\left\{\theta, \theta^{i}, \theta^{\bar{i}}, w_{j}^{i}, w \frac{\bar{i}}{j}\right\}$ forms an intrinsic basis of a given pseudo-hermitian structure.

Let $\left\{Z_{i}\right\}_{i=1, \ldots, n}$ be the dual frame of $\left\{\theta^{i}\right\}_{i=1, \ldots, n}$ for $H^{1,0}$ and T be the unique real vector field such that $\theta(\mathrm{T})=1, \mathrm{~T}\rfloor d \theta=0$. Then (1.1) implies

$$
\begin{align*}
{\left[\bar{Z}_{j}, Z_{i}\right] } & =\sqrt{-1} g_{i \bar{j}} \mathrm{~T}+\sum_{k=1}^{n} w_{i}^{k}\left(\bar{Z}_{j}\right) Z_{k}-\sum_{k=1}^{n} w_{\bar{j}}^{\bar{k}}\left(Z_{i}\right) \bar{Z}_{k} \\
{\left[Z_{j}, Z_{i}\right] } & =\sum_{k=1}^{n} w_{i}^{k}\left(Z_{j}\right) Z_{k}-\sum_{k=1}^{n} w_{j}^{k}\left(Z_{i}\right) Z_{k} \tag{1.2}\\
{\left[Z_{i}, \mathrm{~T}\right] } & =\sum_{k=1}^{n} \tau^{\bar{k}}\left(Z_{i}\right) \bar{Z}_{k}-\sum_{k=1}^{n} w_{i}^{k}(\mathrm{~T}) Z_{k}
\end{align*}
$$

If M is a germ of $C^{\omega} \mathrm{CR}$ manifold, then we may regard M as a C^{ω} real hypersurface in \mathbb{C}^{n+1}. Now we introduce a special coordinate system on M which is called Moser's normal coordinates. Let $z=\left(z^{\prime}, w\right) \in \mathbb{C}^{n+1}$, $w=u+i v$.

Definition 1.1. M is said to be in Moser's normal form if M is defined by $\rho(z, \bar{z})=2 u-\left\langle z^{\prime}, z^{\prime}\right\rangle-F_{A}\left(z^{\prime}, \bar{z}^{\prime}, v\right)$, where

$$
F_{A}\left(z^{\prime}, \bar{z}^{\prime}, v\right)=\sum_{\substack{|\alpha|,|\beta| \geq 2 \\ l \geq 0}} A_{\alpha \beta}^{l} z^{\prime \alpha} \bar{z}^{\prime \beta} v^{l}
$$

with the trace condition

$$
\operatorname{tr} A_{2 \overline{2}}^{l}=\operatorname{tr}^{2} A_{2 \overline{3}}^{l}=\operatorname{tr}^{3} A_{3 \overline{3}}^{l}=0
$$

for all $l \geq 0$.
We have.
Theorem 1.2. ([CM], $[\mathrm{M}])$ For any $C^{\omega} C R$ hypersurface M with nondegenerate Levi form, there exists a holomorphic change of coordinates $\zeta=\Phi(z, w)$ such that $\Phi(M)$ is in Moser's normal form.

Thus we may regard $M=\{\rho=0\}$ is in Moser's normal form and $\theta=\mu \sqrt{-1} \partial \rho$ for some nonvanishing C^{ω} function μ. Let

$$
Z_{j}=\frac{\partial}{\partial z_{j}}-\frac{\rho_{j}}{\rho_{w}} \frac{\partial}{\partial w}, \quad j=1, \ldots, n
$$

and

$$
\begin{aligned}
\mathrm{T}=- & \sqrt{-1} \sum_{j=1}^{n} \eta^{j} \frac{\partial}{\partial z^{j}}+\sqrt{-1} \sum_{j=1}^{n} \bar{\eta}^{j} \frac{\partial}{\partial \bar{z}^{j}} \\
& -\sqrt{-1} \frac{1}{\rho_{w}}\left(1-\sum_{j=1}^{n} \rho_{j} \eta^{j}\right) \frac{\partial}{\partial w}+\sqrt{-1} \frac{1}{\rho_{\bar{w}}}\left(1-\sum_{j=1}^{n} \rho_{\bar{j}} \bar{\eta}^{j}\right) \frac{\partial}{\partial \bar{w}}
\end{aligned}
$$

where

$$
\begin{aligned}
\rho_{j} & =\rho_{z_{j}} \\
g_{j \bar{k}} & =-\rho_{j \bar{k}}+\frac{\rho_{j \bar{w}}}{\rho_{\bar{w}}} \rho_{\bar{k}}+\frac{\rho_{w \bar{k}}}{\rho_{w}} \rho_{j}-\frac{\rho_{w \bar{w}}}{\rho_{w} \rho_{\bar{w}}} \rho_{j} \rho_{\bar{k}} \\
\eta_{j} & =\frac{\rho_{j \bar{w}}}{\rho_{\bar{w}}}-\frac{\rho_{w \bar{w}}}{\rho_{w} \rho_{\bar{w}}} \rho_{j}
\end{aligned}
$$

and

$$
\eta^{k}=\sum_{j=1}^{n} g^{k \bar{j}^{\prime}} \bar{\eta}_{j}, \quad\left(g^{k \bar{j}}\right)=\left(g_{i \bar{j}}\right)^{-1}
$$

Then T is the unique real vector field such that $\sqrt{-1} \partial \rho(\mathrm{~T})=1$ and $\mathrm{T}\rfloor \sqrt{-1} \bar{\partial} \partial \rho=0$. By (1.2), we have $\bar{Z}^{\alpha}\left(g_{i \bar{j}}\right)(0)=0$ for all $1 \leq|\alpha|$ and $\bar{Z}^{\beta}\left(\omega_{j}^{i}\left(\bar{Z}_{k}\right)\right)(0)=\bar{Z}^{\beta}\left(\tau^{i}\left(\bar{Z}_{j}\right)\right)(0)=0$ for all $0 \leq|\beta|$.

Now let N be a real hypersurface in \mathbb{C}^{n+1}. Suppose $N=\{r=0\}$ for some smooth real valued function r such that $d r \neq 0$ on $N, \sqrt{-1} \partial \bar{\partial} r$ is nondegenerate. Then N inherits a nondegenerate CR structure from \mathbb{C}^{n+1} by choosing $H^{1,0}=\mathbb{C} T(N) \cap T^{1,0}\left(\mathbb{C}^{n+1}\right)$.

Definition 1.3. Let (M, \mathcal{V}, θ) be a CR manifold with a specified contact form θ with nondegenerate Levi form. Then a CR embedding F : $M \rightarrow \mathbb{C}^{n+1}$ is called a pseudo-hermitian embedding if $F^{*}(\sqrt{-1} \partial r)=\theta$, where $N=F(M)=\{r=0\}$ and $\|\nabla r\| \equiv 1$.

§2. E. Cartan's equivalence problem and the complete systems

In this section, we explain E. Cartan's equivalence problem and the concept of complete system. We refer to $[\mathrm{HY}]$ and $[\mathrm{H}]$ as references.

Let M be a C^{∞} manifold of dimension n and G be a linear subgroup of $G L(n, \mathbb{R})$. A G-structure on M is the reduction of coframe bundle of M to a subbundle with the structure group G.

Now let M and \widetilde{M} be manifolds of dimension n with G-structures and fix $\theta=\left(\theta^{1}, \ldots, \theta^{n}\right)^{t}, \widetilde{\theta}=\left(\widetilde{\theta}^{1}, \ldots, \widetilde{\theta}^{n}\right)^{t}$, sections of the G-structure bundles of M and \widetilde{M} respectively. Then E. Cartan's equivalence problem is to find necessary and sufficient conditions that there exists a diffeomorphism f : $M \rightarrow \widetilde{M}$ such that $f^{*}(\widetilde{\theta})=g_{0} \theta$ where g_{0} is a G-valued function defined on M.

Locally, the G-structure bundles are equivalent to the product space $U \times G$ and $V \times G$, where U and V are open subsets of M and $\stackrel{\rightharpoonup}{M}$ respectively. Define the left G action on $U \times G$ by $h(x, g)=(x, h g)$ for all $x \in U$ and $g, h \in G$ and consider a tautological 1-form $\Theta=g \theta$ on $U \times G$. Then the equivalence problem is lifted to G-structure bundles as follows.

Proposition 2.1. There exists a diffeomorphism $f: U \rightarrow V$ satisfying $f^{*}(\widetilde{\theta})=g_{0} \theta$ with $g_{0}: U \rightarrow G$ if and only if there exists a diffeomorphism $F: U \times G \rightarrow V \times G$ satisfying
i) $F^{*}(\widetilde{\Theta})=\Theta$
ii) the following diagram commutes:

iii) $F(x, g h)=g F(x, h)$ for all $x \in U$ and $g, h \in G$.

Proof. Suppose f satisfies $f^{*}(\widetilde{\theta})=g_{0} \theta$, where g_{0} is a G-valued function defined on U. Define $F: U \times G \rightarrow V \times G$ by $F(x, g)=\left(f(x), g g_{0}^{-1}(x)\right)$. Then F satisfies ii) and iii). Moreover,

$$
F^{*}(\widetilde{\Theta})=F^{*}(\widetilde{g} \widetilde{\theta})=g g_{0}^{-1} f^{*}(\widetilde{\theta})=g g_{0}^{-1} g_{0} \theta=g \theta=\Theta
$$

Conversely, suppose that $F: U \times G \rightarrow V \times G$ satisfies i)-iii). Define $f: U \rightarrow V$ and $g_{0}: U \rightarrow G$ by $F(x, e)=\left(f(x), g_{0}^{-1}\right)$ where e is the identity of G. Then $F(x, g)=g F(x, e)=\left(f(x), g g_{0}^{-1}\right)$ and i) implies that

$$
g \theta=F^{*}(\widetilde{\theta})=\left(g g_{0}^{-1}\right) f^{*}(\widetilde{\theta})
$$

therefore $f^{*}(\widetilde{\theta})=g_{0} \theta$.

Now apply d to $\Theta=g \theta$. Then we get

$$
d \Theta=d g \wedge \theta+g d \theta .
$$

Substituting $\theta=g^{-1} \Theta$ to the above equation, we obtain

$$
d \Theta=d g g^{-1} \wedge+g d \theta
$$

We only consider the case that there exists unique 1 -forms $\omega_{j}^{i}, i, j=1, \ldots, n$, such that

$$
d \theta^{i}=-\sum_{j=1}^{n} \omega_{j}^{i} \wedge \theta^{j}
$$

and

$$
\left[\omega_{j}^{i}(x)\right] \in \mathcal{G}
$$

for all $x \in U$, where \mathcal{G} is the Lie algebra of G. This Lie algebra valued 1 -form $\omega=\left[\omega_{j}^{i}\right]$ is called a torsion-free connection. Then we get

$$
d \Theta=d g g^{-1} \wedge \Theta-g \omega \wedge g^{-1} \Theta=\left(d g g^{-1}-g \omega g^{-1}\right) \wedge \Theta
$$

Let

$$
\Omega=-\left(d g g^{-1}-g \omega g^{-1}\right),
$$

then Ω is a \mathcal{G}-valued 1-form on $U \times G$ and we have

$$
d \Theta=-\Omega \wedge \Theta
$$

Then it is easy to show
Proposition 2.2. Let Θ and Ω be the 1 -forms as before. Then $\Theta^{i}, \Omega_{j}^{i}$, $i, j=1, \ldots, n$, span the cotangent space at each point $U \times G$. Furthermore, if $\widetilde{\Theta}^{i}, \widetilde{\Omega}_{j}^{i}$ are the corresponding 1 -forms on $V \times G$ and

$$
F: U \times G \longrightarrow V \times G
$$

is the mapping in Proposition 2.1, then

$$
F^{*}\left(\widetilde{\Omega}_{j}^{i}\right)=\Omega_{j}^{i} .
$$

The set $\left\{\Theta^{i}, \Omega_{j}^{i}\right\}$ is called a complete set of invariants for the equivalence problem. Let f be the solution of equivalence problem. Then the lift of f satisfies the equation

$$
\begin{align*}
F^{*}\left(\widetilde{\Theta}^{i}\right) & =\Theta^{i} \\
F^{*}\left(\widetilde{\Omega}_{j}^{i}\right) & =\Omega_{j}^{i}, \quad i, j=1, \ldots, n \tag{2.1}
\end{align*}
$$

Since $\left\{\Theta^{i}, \Omega_{j}^{i}\right\}$ span the cotangent space of $U \times G$, (2.1) determine all the first derivatives of F, hence all the second derivatives of f. In fact, f satisfies

$$
\begin{equation*}
\frac{\partial^{2} f^{a}}{\partial x^{i} \partial x^{j}}=h_{i j}^{a}\left(x, f, \frac{\partial f^{b}}{\partial x^{k}}: b, k=1, \ldots, n\right), \tag{2.2}
\end{equation*}
$$

where $h_{i j}^{a}$ is a C^{∞} function in its arguments.
The concept of complete system is the generalization of the equation (2.2). We explain it in jet theoretical manner. We use the notation in [O].

Let $J^{q}\left(M, \mathbb{R}^{N}\right)$ be the q-th order jet space of $M \times \mathbb{R}^{N}$. Consider a system of differential equations of order q for unknown functions $f=\left(f^{1}, \ldots, f^{N}\right)$ of independent variables $x=\left(x^{1}, \ldots, x^{n}\right)$

$$
\begin{equation*}
\Delta_{\lambda}\left(x, f^{(q)}\right)=0, \quad \lambda=1, \ldots, l . \tag{2.3}
\end{equation*}
$$

Then complete system of order k is defined as follows.
DEFINITION 2.3. A $C^{k}(k \geq q)$ solution of (2.3) satisfies a complete system of order k if there exist C^{∞} functions $H_{J}^{a}\left(x, f^{(p)}: p<k\right)$ in their arguments such that

$$
f_{J}^{a}=H_{J}^{a}\left(x, f^{(p)}: p<k\right)
$$

for all $a=1, \ldots, N$ and for all multi-indices J with $|J|=k$.
Let $\phi_{I}^{a}=d f_{I}^{a}-\sum_{j=1}^{n} f_{I, j}^{a} d x^{j}, a=1, \ldots, N,|I| \leq k-2$ be the contact 1forms defined on $J^{k-1}\left(M, \mathbb{R}^{N}\right)$ and $\mathcal{S}_{\Delta} \subseteq J^{k-1}\left(M, \mathbb{R}^{N}\right)$ be the prolongation of the set $\left\{\Delta_{\lambda}=0\right\} \subseteq J^{q}\left(M, \mathbb{R}^{N}\right)$. Assume $d x^{1} \wedge \cdots \wedge d x^{n} \neq 0$ on \mathcal{S}_{Δ}. Then, if a solution f of (2.3) satisfies a complete system of order k, f is an integral manifold of the distribution

$$
\phi_{I}^{a}=0, \quad a=1, \ldots, N,|I| \leq k-2
$$

and

$$
d f_{I}^{a}-\sum_{j=1}^{n} H_{I, j}^{a} d x^{j}=0, \quad|I|=k-1,
$$

where $H_{I, j}^{a}=D_{j} H_{I}^{a}$.
In particular, we have
Proposition 2.4. Let $f \in C^{k}$ be a solution of (2.3). Suppose f satisfies a complete system of order k, then f is determined by $(k-1)$-jet at a point and f is C^{∞}. Furthermore, if (2.3) is real analytic and each H_{J}^{a} is real analytic then f is real analytic.

§3. Proof of Theorem 0.3

Let (M, \mathcal{V}, θ) and $\left\{Z_{1}, \ldots, Z_{n}, \mathrm{~T}\right\}$ be as in Section 1 and let $F: M \rightarrow$ \mathbb{C}^{n+1} be a CR diffeomorphism which satisfies the condition of Theorem 0.3. Then by the hypotheses on the normalization we have for all $i, j=1, \ldots, n$,

$$
\begin{aligned}
& Z_{i} f^{j}(0)=\delta_{i}^{j} \\
& \mathrm{~T} f^{j}(0)=0 \\
& Z_{i} f^{n+1}(0)=0
\end{aligned}
$$

and

$$
\mathrm{T} f^{n+1}(0)=\sqrt{-1}
$$

Now let $N=F(M)=\{r=0\}$, where $\|\nabla r\| \equiv 1$ and $F(0)=0$. Then $F^{*}(\sqrt{-1} \partial r)=\lambda \theta=\lambda \mu \sqrt{-1} \partial \rho$ implies

$$
\begin{equation*}
\sqrt{-1}\left(\sum_{l=1}^{n+1} r_{l} \mathrm{~T} f^{l}\right)=\lambda \mu=\widetilde{\lambda} \tag{3.1}
\end{equation*}
$$

where $r_{l}=\partial r / \partial \zeta_{l}, l=1, \ldots, n+1$ and $\tilde{\lambda}(0)=1$. To differentiate (3.1), we have to express the derivatives of r in terms of the derivatives of F. By applying Z_{j}, \bar{Z}_{j} and T to $r \circ F=0$, we have

$$
\begin{align*}
& \sum_{l=1}^{n+1} r_{l} Z_{j} f^{l}=0 \\
& \sum_{l=1}^{n+1} r_{\bar{l}} \bar{Z}_{j} \bar{f}^{l}=0 \tag{3.2}\\
& \sum_{l=1}^{n+1} r_{l} \mathrm{~T} f^{l}+\sum_{l=1}^{n+1} r_{\bar{l}} \mathrm{~T} \bar{f}^{l}=0 .
\end{align*}
$$

Furthermore, on N

$$
\begin{equation*}
\|\nabla r\|^{2}=\sum_{l=1}^{n+1} r_{l} r_{\bar{l}} \equiv 1 \tag{3.3}
\end{equation*}
$$

We solve (3.2) and (3.3) for $r_{l}, l=1, \ldots, n+1$, and their conjugates in terms of the derivatives of F and \bar{F}. Substituting for $r_{l}, l=1, \ldots, n+1$, in (3.1) we get

$$
\begin{align*}
h:=(& \left.\sum_{j=1}^{n} k_{j} \mathrm{~T} f^{j}+\mathrm{T} f^{n+1}\right)\left(\sum_{j=1}^{n} k_{\bar{j}} \mathrm{~T} \bar{f}^{j}+\mathrm{T} \bar{f}^{n+1}\right) \tag{3.4}\\
& -\widetilde{\lambda}^{2}\left(\sum_{j=1}^{n} k_{j} k_{\bar{j}}+1\right)=0,
\end{align*}
$$

where $k_{j}=-\sum_{i=1}^{n} a_{j}^{i} Z_{i} f^{n+1},\left(a_{j}^{i}\right)=\left(Z_{j} f^{k}\right)_{j, k=1, \ldots, n}^{-1}$ and $k_{\bar{j}}=\bar{k}_{j}$.
Now we apply $\bar{Z}^{\alpha},|\alpha| \leq \sigma+1$, to (3.4) and reduce the order of derivatives of F by using

$$
\begin{align*}
\bar{Z}_{k} Z_{j} F & =\left[\bar{Z}_{k}, Z_{j}\right] F+Z_{j} \bar{Z}_{k} F \\
& =\sqrt{-1} g_{j} \overline{\mathrm{k}} \mathrm{~T} F+\sum_{i=1}^{n} \omega_{j}^{i}\left(\bar{Z}_{k}\right) Z_{i} F \tag{3.5}\\
\bar{Z}_{k} \mathrm{~T} F & =\left[\bar{Z}_{k}, \mathrm{~T}\right] F+\mathrm{T} \bar{Z}_{k} F \\
& =\sum_{i=1}^{n} \tau^{i}\left(\bar{Z}_{k}\right) Z_{i} F
\end{align*}
$$

We regard $\bar{Z}^{\alpha} h$ as a function on the jet space $\left\{\left(x, F, \bar{F}, Z F, \mathrm{~T} F, \bar{Z}^{\gamma}\right.\right.$ $(\overline{Z F}, \mathrm{~T} \bar{F}): x \in M,|\gamma| \leq \sigma+1\}$ of order $\sigma+2$.

Lemma 3.1. There exist smooth functions $P_{i l}, Q_{l}, i=1, \ldots, n$ and $l=1, \ldots, n+1$ such that

$$
\begin{align*}
Z_{i} f^{l} & =P_{i l}\left(\bar{Z}^{\alpha}(\overline{Z F}, \mathrm{~T} \bar{F}),|\alpha| \leq \sigma+1\right) \tag{3.6}\\
\mathrm{T} f^{l} & =Q_{l}\left(\bar{Z}^{\alpha}(\overline{Z F}, \mathrm{~T} \bar{F}),|\alpha| \leq \sigma+1\right)
\end{align*}
$$

Proof. Let $\mathrm{A}=\sum_{j=1}^{n} k_{j} \mathrm{~T} f^{j}+\mathrm{T} f^{n+1}$ and $\mathrm{B}=\sum_{j=1}^{n} k_{j} k_{\bar{j}}+1$. Then

$$
\frac{\partial(h)}{\partial\left(Z_{i} f^{l}\right)}(0)=0, \quad i=1, \ldots, n, l=1, \ldots, n+1
$$

and

$$
\frac{\partial(h)}{\partial\left(\mathrm{T} f^{l}\right)}(0)=\frac{\partial(A)}{\partial\left(\mathrm{T} f^{l}\right)} \bar{A}(0) \neq 0 \quad \text { if and only if } l=n+1
$$

Let $\left\langle z^{\prime}, z^{\prime}\right\rangle=\sum_{j=1}^{n} \lambda_{j} z_{j} \bar{z}_{j}$, where $\lambda_{j}= \pm 1$. By the condition that $F(M)$ is in pre-normal form, we can show that $\left(\partial\left(\bar{Z}_{j} \mathrm{~B}\right) / \partial\left(Z_{i} f^{l}\right)\right)(0)=0$ for all $i, j=1, \ldots, n$, and $l=1, \ldots, n+1$. Hence

$$
\frac{\partial\left(\bar{Z}_{j} h\right)}{\partial\left(Z_{i} f^{l}\right)}(0)=-\frac{\partial\left(\bar{Z}_{j} \mathrm{~B}\right)}{\partial\left(Z_{i} f^{l}\right)}(0)=0
$$

and

$$
\begin{aligned}
\frac{\partial\left(\bar{Z}_{j} h\right)}{\partial\left(\mathrm{T} f^{i}\right)}(0) & =\frac{\partial\left(\bar{Z}_{j} \mathrm{~A}\right)}{\partial\left(\mathrm{T} f^{i}\right)}(0) \overline{\mathrm{A}}(0) \\
& =\bar{Z}_{j} k_{i}(0) \bar{A}(0) \\
& =i \lambda_{j} \delta_{i}^{j} \mathrm{~T} f^{n+1}(0) \mathrm{T} \bar{f}^{n+1}(0)
\end{aligned}
$$

for all $i, j=1, \ldots, n$ and $l=1, \ldots, n+1$.
Let \mathcal{O} be the set of analytic functions $\mathcal{G}\left(x, F, \bar{F}, Z F, \mathrm{~T} F, \bar{Z}^{\gamma}(\overline{Z F}, \mathrm{~T} \bar{F})\right.$: $|\gamma| \leq N<\infty)$ in their arguments such that for any multi-index $0 \leq|\beta|$, $\left(\partial\left(\bar{Z}^{\beta} \mathcal{G}\right) / \partial\left(Z_{i} f^{l}\right)\right)(0)=0$ for all $i=1, \ldots, n$ and $l=1, \ldots, n+1$. Then by assumption on $\left\{Z_{1}, \ldots, Z_{n}, \mathrm{~T}\right\}$, we can show that $\mathrm{A}, \bar{Z}^{\alpha} k_{j} \in \mathcal{O}$ for all $2 \leq|\alpha|$ and $j=1, \ldots, n$.

Now choose $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ which satisfy the condition of Theorem 0.3. Let $\widetilde{h}:=\widetilde{\lambda}^{-2} h=\widetilde{\lambda}^{-2} \mathrm{~A} \overline{\mathrm{~A}}-\mathrm{B}$. Then

$$
\begin{aligned}
\bar{Z}^{\alpha_{j}} \widetilde{h} & =-\bar{Z}^{\alpha_{j}} \mathrm{~B}+\mathcal{O} \\
& =-\sum_{s=1}^{n} k_{s} \bar{Z}^{\alpha_{j}} k_{\bar{s}}-\sum_{s=1}^{n} \sum_{\substack{\beta+\gamma=\alpha_{j} \\
|\beta|=1}} \bar{Z}^{\beta} k_{s} \bar{Z}^{\gamma} k_{\bar{s}}+\mathcal{O} \\
& =-\sum_{s=1}^{n} k_{s} \bar{Z}^{\alpha_{j}} k_{\bar{s}}-\sum_{s=1}^{n} \sum_{t=1}^{n} \sqrt{-1} \lambda_{t} I_{t}\left(\alpha_{j}\right) a_{s}^{t} \mathrm{~T} f^{n+1} \bar{Z}^{\tilde{\alpha}_{j, t}} k_{\bar{s}}+\mathcal{O}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{Z}_{i} \bar{Z}^{\alpha_{j}} \widetilde{h}=- & \sum_{s=1}^{n} k_{s} \bar{Z}_{i} \bar{Z}^{\alpha_{j}} k_{\bar{s}}-\sum_{s=1}^{n} \bar{Z}_{i} k_{s} \bar{Z}^{\alpha_{j}} k_{\bar{s}} \\
& -\sum_{s=1}^{n} \sum_{\substack{\beta+\gamma=\alpha_{j} \\
|\beta|=1}} \bar{Z}^{\beta} k_{s} \bar{Z}_{i} \bar{Z}^{\gamma} k_{\bar{s}}+\mathcal{O}
\end{aligned}
$$

$$
\begin{aligned}
=- & \sum_{s=1}^{n} k_{s} \bar{Z}_{i} \bar{Z}^{\alpha_{j}} k_{\bar{s}} \\
& -\sum_{s=1}^{n} \sum_{t=1}^{n} \sqrt{-1} \lambda_{t}\left(I_{t}\left(\alpha_{j}\right)+\delta_{i}^{t}\right) a_{s}^{t} \mathrm{~T} f^{n+1} \bar{Z}_{i} \bar{Z}^{\tilde{\alpha}_{j, t}} k_{\bar{s}}+\mathcal{O}
\end{aligned}
$$

where

$$
\bar{Z}^{\tilde{\alpha}_{j, t}} k_{\bar{s}}=\left\{\begin{array}{cl}
\bar{Z}^{\alpha_{j}-e_{t}} k_{\bar{s}} & \text { if } I_{t}\left(\alpha_{j}\right) \neq 0 \\
0 & \text { if } I_{t}\left(\alpha_{j}\right)=0
\end{array}\right.
$$

This implies that for each $i, j=1, \ldots, n$,

$$
\begin{aligned}
& \frac{\partial\left(\bar{Z}^{\alpha_{j}} \widetilde{h}\right)}{\partial\left(Z_{s} f^{n+1}\right)}=-\bar{Z}^{\alpha_{j}} k_{\bar{s}}+\{\text { the terms which vanish at } 0\} \\
& \frac{\partial\left(\bar{Z}^{\alpha_{j}} \widetilde{h}\right)}{\partial\left(a_{s}^{t}\right)}=-\sqrt{-1} \lambda_{t} I_{t}\left(\alpha_{j}\right) \mathrm{T} f^{n+1} \bar{Z}^{\tilde{\alpha}_{j, t}} k_{\bar{s}} \\
&+\{\text { the terms which vanish at } 0\} \\
& \frac{\partial\left(\bar{Z}_{i} \bar{Z}^{\alpha_{j}} \widetilde{h}\right)}{\partial\left(Z_{s} f^{n+1}\right)}=- \bar{Z}_{i} \bar{Z}^{\alpha_{j}} k_{\bar{s}}+\{\text { the terms which vanish at } 0\}
\end{aligned}
$$

and

$$
\frac{\partial\left(\bar{Z}_{i} \bar{Z}^{\alpha_{j}} \widetilde{h}\right)}{\partial\left(a_{s}^{t}\right)}=-\sqrt{-1} \lambda_{t} I_{t}\left(\alpha_{j}+e_{i}\right) \mathrm{T} f^{n+1} \bar{Z}_{i} \bar{Z}^{\tilde{\alpha}_{j, t}} k_{\bar{s}}
$$

$$
+\{\text { the terms which vanish at } 0\}
$$

for all $s, t=1, \ldots, n$. Thus, after changing of rows and columns and multiplying nonzero constants, we get

$$
\begin{aligned}
(3.7)- & d_{\left(a_{s}^{t}, Z_{s} f^{n+1}, \mathrm{~T} f^{t}, \mathrm{~T} f^{n+1}\right)_{(s, t=1, \ldots, n)}}\left(h, \bar{Z}_{j} h, \bar{Z}^{\alpha_{j}} \widetilde{h}, \bar{Z}_{i} \bar{Z}^{\alpha_{j}} \widetilde{h}: i, j=1, \ldots, n\right) \\
& =\left(\begin{array}{cc}
0 \cdots 0 & A_{0} \\
A_{j}^{i} & *
\end{array}\right)_{i, j=1, \ldots, n},
\end{aligned}
$$

where

$$
A_{0}:=\left(\begin{array}{cc}
0 \cdots 0 & 1 \\
\operatorname{Id}_{n} & *
\end{array}\right)
$$

and

$$
A_{j}^{i}:=\left(\begin{array}{cccc}
\bar{Z}^{\alpha_{j}} k_{\bar{i}}, & I_{1}\left(\alpha_{j}\right) \bar{Z}^{\tilde{\alpha}_{j, 1}} k_{\bar{i}}, & \cdots & I_{n}\left(\alpha_{j}\right) \bar{Z}^{\tilde{\alpha}_{j, n}} k_{\bar{i}} \\
\bar{Z}_{1} \bar{Z}^{\alpha_{j}} k_{\bar{i}}, & I_{1}\left(\alpha_{j}+e_{1}\right) \bar{Z}_{1} \bar{Z}^{\tilde{\alpha}_{j, 1}} k_{\bar{i}}, & \cdots & I_{n}\left(\alpha_{j}+e_{1}\right) \bar{Z}_{1} \bar{Z}^{\tilde{\alpha}_{j, n}} k_{\bar{i}} \\
\vdots & \vdots & & \\
\bar{Z}_{n} \bar{Z}^{\alpha_{j}} k_{\bar{i}}, & I_{1}\left(\alpha_{j}+e_{n}\right) \bar{Z}_{n} \bar{Z}^{\tilde{\alpha}_{j, 1}} k_{\bar{i}}, & \cdots & I_{n}\left(\alpha_{j}+e_{n}\right) \bar{Z}_{n} \bar{Z}^{\tilde{\alpha}_{j, n}} k_{\bar{i}}
\end{array}\right)
$$

Let $H:=\left(h, \bar{Z}_{j} h, \bar{Z}^{\alpha_{j}} \widetilde{h}, \bar{Z}_{i} \bar{Z}^{\alpha_{j}} \widetilde{h} ; i, j=1, \ldots, n\right)$. Then $H: J^{\sigma+2}\left(M, \mathbb{C}^{n+1}\right)$ $\rightarrow \mathbb{C}^{m}$ for sufficiently m satisfies

$$
\begin{equation*}
H\left(x, F, \bar{F}, Z F, \mathrm{~T} F, \bar{Z}^{\alpha}(\overline{Z F}, \mathrm{~T} \bar{F}):|\alpha| \leq \sigma+1\right)=0 \tag{3.8}
\end{equation*}
$$

Then by the implicit function theorem and (3.7), we can solve (3.8) for $Z_{i} f^{l}$ and $\mathrm{T} f^{l}$ in terms of $\bar{Z}^{\alpha}(\overline{Z F}, \mathrm{~T} \bar{F}),|\alpha| \leq \sigma+1$, for all $i=1, \ldots, n$ and $l=1, \ldots, n+1$.

Next we show that equations (3.6) admit a prolongation to a complete system of order $2 \sigma+4$ using the same method as in $[\mathrm{H}]$ and [Ha1].

Let $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ be any multi-index. Apply Z^{β} to (3.6). Then we have

$$
\begin{align*}
Z^{\beta} Z_{i} f^{l} & =Z^{\beta} P_{i l}\left(\bar{Z}^{\alpha}(\overline{Z F}, \mathrm{~T} \bar{F}):|\alpha| \leq \sigma+1\right) \tag{3.9}\\
Z^{\beta} \mathrm{T} f^{l} & =Z^{\beta} Q_{l}\left(\bar{Z}^{\alpha}(\overline{Z F}, \mathrm{~T} \bar{F}):|\alpha| \leq \sigma+1\right)
\end{align*}
$$

By (3.5), the order of derivatives of \bar{F} reduces to $\sigma+2$.
Now let C_{p} be the set of C^{ω} functions in arguments

$$
\mathrm{T}^{t} Z^{\alpha} f^{l}: t+|\alpha| \leq p
$$

and $C_{p, q}$ be the subset of C_{p} of C^{ω} functions in arguments

$$
\mathrm{T}^{t} Z^{\alpha} f^{j}: t+|\alpha| \leq p, t \leq q
$$

and $\bar{C}_{p}, \bar{C}_{p, q}$ be the complex conjugates of C_{p} and $C_{p, q}$, respectively. Then by (3.9) we have

$$
\begin{equation*}
Z^{\beta} Z_{i} f^{l}, Z^{\beta} \mathrm{T} f^{l} \in \bar{C}_{\sigma+2} \tag{3.10}
\end{equation*}
$$

Apply \bar{Z}_{k} to (3.10) to have

$$
\bar{Z}_{k} Z^{\beta} \mathrm{T} f^{l} \in \bar{C}_{\sigma+3, \sigma+2}
$$

This gives

$$
Z^{\beta^{\prime}} \mathrm{T}^{2} f^{l} \in \bar{C}_{\sigma+3, \sigma+2}, \quad\left|\beta^{\prime}\right|=|\beta|-1
$$

By applying \bar{Z} repeatedly, we have

$$
Z^{\beta} \mathrm{T}^{q} f^{l} \in \bar{C}_{\sigma+q+1, \sigma+2}
$$

for all multi-indices β and $q \geq 1$, which shows that

$$
\begin{equation*}
C_{p, q} \subset \bar{C}_{\sigma+q+1, \sigma+2} \tag{3.11}
\end{equation*}
$$

for all pair (p, q) with $p \geq q$.
Taking the complex conjugate of (3.11), we have

$$
\bar{C}_{p, q} \subset C_{\sigma+q+1, \sigma+2}
$$

In particular, if $q=\sigma+2$,

$$
\begin{equation*}
\bar{C}_{p, \sigma+2} \subset C_{2 \sigma+3, \sigma+2} \tag{3.12}
\end{equation*}
$$

Substitute (3.12) in (3.11), to get

$$
C_{p, q} \subset C_{2 \sigma+3, \sigma+2}
$$

for any pair (p, q) with $p \geq q$. This gives

$$
C_{2 \sigma+4} \subset C_{2 \sigma+3}
$$

which completes the proof of Theorem 0.3.

References

[BHR] M. S. Baouendi, X. Huang and L. P. Rothschild, Nonvanishing of the differential of holomorphic mappings at boundary points, Math. Res. Letter., 2 (1995), 737-750.
[B] A. Boggess, CR manifolds and tangential Cauchy Riemann complex, CRC Press, 1991.
[CM] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math., 133 (1974), 219-271.
[H] C. K. Han, Complete differential system for the mappings of $C R$ manifolds of nondegenerate Levi forms, Math. Ann., 309 (1997), 401-409.
[Ha1] A. Hayashimoto, On the complete system of finite order for CR mappings and its application, Osaka J. Math., 35 (1998), 617-628.
[Ha2] ——O On the relation between the holomorphic extendibility theorems and the finiteness property, to appear in Contemp. Math. Amer. Math. Soc.
[HY] C. K. Han and J. N. Yoo, A note on E. Cartan's method of equivalence and local invariants for isometric embeddings of Riemannian manifolds, J. Korean Math. Soc., 34 (1997), no. 4, 771-790.
[M] J. K. Moser, Holomorphic equivalence and normal forms of hypersurfaces, Proc. of Sympos. in Pure Math., 27 (1975), 109-112.
[O] P. J. Olver, Applications of Lie groups to differential equations, Second edition, Springer-Verlag, 1996.
[T] G. Tomassini, Trace delle funzioni olomorfe sulle sottovarieta analitische reali d'una varieta complessa, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 31-43.
[W] S. Webster, Pseudohermitian structure on a real hypersurface, J. Diff. Geom., 13 (1978), 25-41.

Department of Mathematics
Seoul National University
Seoul 151-742
Korea
sykim@math.snu.ac.kr

[^0]: Received May 15, 1998.
 ${ }^{1}$ The author was partially supported by GARC-KOSEF

