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Abstract. We study the asymptotic behavior at low energy of scattering ampli-
tudes in two dimensional magnetic fields with compact support. The obtained
result depends on the total flux of magnetic fields. It should be noted that mag-
netic potentials do not necessarily fall off rapidly at infinity. The main body
of argument is occupied by the resolvent analysis at low energy for magnetic
Schrödinger operators with perturbations of lang-range class. We can show that
the dimension of resonance spaces at zero energy does not exceed two. As a
simple application, we also discuss the scattering by magnetic field with small
support and the convergence to the scattering amplitude by δ-like magnetic
field.

§1. Introduction

In the present work we consider the low-energy scattering for Schrö-

dinger operators with magnetic fields compactly supported in two dimen-

sions. We study the asymptotic behavior at low energy of scattering am-

plitudes. As a direct application, we also discuss the behavior of scattering

amplitudes for scattering by magnetic fields with small support. The re-

sults obtained strongly depend on the total flux of magnetic fields under

consideration.

Throughout the entire discussion, we work in the two dimensional space

R2 with generic point x = (x1, x2). Let b(x) : R2 → R be a given magnetic

field. We assume that b ∈ C∞
0 (R2) is a smooth function with compact

support, and we denote by

α = (2π)−1

∫

b(x) dx

the total flux of field b, where the integration with no domain attached

is taken over the whole space. This abbreviation is used throughout. We
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also assume that 0 < α < 1. The argument below extends with a natural

modification to the case that α 6∈ Z is not an integer. We now define

Aα(x) = (a1α(x), a2α(x)) = (−∂2ϕ(x), ∂1ϕ(x)), ∂j = ∂/∂xj ,(1.1)

where ϕ(x) = (2π)−1
∫

log |x− y| b(y) dy. Then we have ∇×Aα = ∂1a2α −
∂2a1α = ∆ϕ = b and hence Aα becomes the magnetic potential associated

with field b(x). As is easily seen, Aα(x) behaves like

Aα(x) = Bα(x) +O(|x|−2), Bα(x) = α(−x2/|x|2, x1/|x|2),(1.2)

as |x| → ∞. The magnetic potential A(x) : R2 → R2 associated with field

b(x) is not uniquely determined, but the scattering operator is invariant

under the gauge transformation A→ A+∇g. Thus we may fix one of such

magnetic potentials, which behaves like (1.2) at infinity. It should be noted

that magnetic potentials never decays faster than O(|x|−1) at infinity, even

if b(x) is assumed to be of compact support. In section 2, we will specify the

more precise form of magnetic potential A(x), which coincides with Bα(x)

for |x| � 1.

Let A(x) = (a1(x), a2(x)) be as above and let V ∈ C∞
0 (R2) : R2 → R

be a given electric potential. We consider the Hamiltonian

H = H(A,V ) = (−i∇−A)2 + V =
2
∑

j=1

(−i∂j − aj)
2 + V.

The operator H formally defined above has a unique self-adjoint realization

in L2(R2). We denote by the same notation H this realization with domain

D(H) = H2(R2) (Sobolev space). By (1.2), the differenceH−H0 betweenH

and the free Hamiltonian H0 = −∆ belongs to the long-range perturbation

class. Nevertheless we know ([8], [10]) that the ordinary wave operators

W±(H,H0) = s− lim
t→±∞

exp(itH) exp(−itH0) : L2(R2) −→ L2(R2)

exist and are asymptotically complete

Ran(W−(H,H0)) = Ran(W+(H,H0)).

Hence the scattering matrix S(λ;H,H0) : L2(S1) → L2(S1) at energy

λ > 0, S1 being the unit circle, can be defined as a unitary operator. Let
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S(ω′, ω;λ), (ω′, ω) ∈ S1 × S1, denote the integral kernel of S(λ;H,H0).

Then the scattering amplitude f(ω → ω′;λ) for scattering from incident

direction ω into final one ω′ at energy λ > 0 is defined by

f(ω → ω′;λ) = c(λ)
(

S(ω′, ω;λ) − δ(w′ − ω)
)

with c(λ) = (2π/i
√
λ)1/2. The precise representation for f(ω → ω′;λ) is

given in section 3 (see Proposition 3.1). It is represented through the resol-

vent

R(λ+ i0;H) = lim
ε→0

R(λ+ iε;H), R(z) = (H − z)−1.

The first aim of the present work is to study the behavior as λ → 0

of scattering amplitude f(ω → ω′;λ). The main theorem is formulated

as Theorem 7.1 in section 7. We here mention it somewhat loosely. The

behavior depends on the resonance space E1 at zero energy of H = H(A,V ).

Roughly speaking, E1 is defined as

E1 = {u ∈ L2
loc(R

2) : u(x) is bounded, Hu = 0}/E0

with the zero eigenspace E0 = {u ∈ L2(R2) : Hu = 0}. If the flux α of field

b is not an integer, then it is shown that dim E1 ≤ 2. If dim E1 = 0, then we

can prove that

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω;λ) + o(1)
)

, λ→ 0,

where

fα(ω′ − ω) = (cosαπ − 1) δ(ω′ − ω) − (i sinαπ/π)F0(ω
′ − ω)

with F0(θ) = v.p. eiθ/(eiθ − 1), and the coordinates over S1 are identified

with the azimuth angles from the positive x1 axis. The leading term just

coincides with the scattering amplitude calculated by [1] (see [11] also) for

the Hamiltonian

Hα = (−i∇−Bα)2(1.3)

with domain

D(Hα) =

{

u ∈ L2(R2) : Hαu ∈ L2(R2), lim
|x|→0

u = 0

}

,

where Hαu = (−i∇ − Bα)2u is understood in D′ (in the distributional

sense). If, in particular, V (x) = 0, then we can show that dim E1 = 0 and
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the above asymptotic formula is obtained. When dim E1 = 2, E1 is spanned

by a pair (ρ0, ρ1) of functions taking the form

ρl(x) = r−νeilθ + gl, ν = |l − α|,

with some gl ∈ L2(R2), where (r, θ) denotes the polar coordinates over R2,

and f(ω → ω′;λ) is shown to behave like

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ
(

1 − ei(ω
′−ω)

)

+ o(1)
)

.

On the other hand, if dim E1 = 1, then E1 is spanned by a linear combination

ρ(x) = c0r
−α + c1r

−(1−α)eiθ + g, g ∈ L2(R2),

and the asymptotic formula as λ → 0 of f(ω → ω′;λ) takes various forms

according to the value α and the ratio c = c1/c0.

In section 8, we discuss the scattering by magnetic fields with small sup-

port as a simple application of the low-energy scattering. Let b(x), V (x) ∈
C∞

0 (R2) and A(x), ∇×A = b, be as above. We set

bε(x) = ε−2b(x/ε), Vε(x) = ε−2V (x/ε), Aε(x) = ε−1A(x/ε)

for 0 < ε� 1, and we consider the Hamiltonian

Hε = H(Aε, Vε) = (−i∇−Aε)
2 + Vε.

As is easily seen, ∇×Aε = bε and the field bε preserves the flux

(2π)−1

∫

bε(x) dx = α.

We further have Aε(x) → Bα(x) and bε(x) → 2παδ(x) in D′ as ε→ 0. Thus

Hε is formally convergent to the Hamiltonian

H0α = (−i∇−Bα)2, D(H0α) = C∞
0 (R2 \ {0}),(1.4)

with δ-like magnetic field at the origin. Let fε(ω → ω′;λ) be the scattering

amplitude for the pair (Hε,H0). The second aim is to analyse the behavior

as ε → 0 of fε(ω → ω′;λ) for energy λ > 0 fixed. By making a change

x/ε → x of variables, fε(ω → ω′;λ) can be easily shown to satisfy the

relation

fε(ω → ω′;λ) =
√
εf(ω → ω′;λε2)
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and hence the problem is reduced to the study on the asymptotic behavior of

the scattering amplitude f(ω → ω′;λε2) for the pair (H,H0), H = H(A,V ),

at low energy λε2. This problem is motivated by the recent work [2], where

the self-adjoint extension of H0α is discussed in detail and the scattering

amplitude for such a self-adjoint operator is calculated (see [14] also). Ac-

cording to the result there, the operator H0α has the deficiency indices

(2, 2), and there exists a family of self-adjoint extensions parameterized by

2×2 unitary mapping U from one deficiency subspace to the other one. The

operator Hα defined by (1.3) is one of such self-adjoint extensions. The uni-

tary mapping specifies the boundary condition at the origin for the domain

of self-adjoint extensions. We are concerned with the boundary condition

realized in the limit ε → 0. The result obtained again strongly depends on

the structure of the resonance space E1 at zero energy of H = H(A,V ). The

precise result is formulated as Theorems 8.1 and 8.2 in section 8.

A lot of works ([3], [4], [7], [9], [12]) have been already done on the

behavior at low energy of scattering amplitudes and on the approximation

to point interactions in the case of short-range potential scattering. An ex-

tensive list of related literatures can be found in the book [3]. We basically

follow the idea developed in Jensen-Kato [7], althogh several technical im-

provements are required at many stages of the proof. The standard way to

analyse the behavior of resolvents at low energy is based on the relation

R(λ+ i0;H) = (Id+R(λ+ i0;H0)(H −H0))
−1R(λ+ i0;H0)(1.5)

obtained from the resolvent identity, where Id stands for the identity oper-

ator. For the case of scattering by magnetic fields, the difference H −H0 is

not necessarily of short-range class even for the field b(x) compactly sup-

ported, as previously stated. The resolvent identity does not work for the

pair (H,H0). On the other hand, H −Hα becomes a perturbation of short-

range class for the Hamiltonian Hα defined by (1.3), but the domain D(Hα)

does not coincide with that of H. It should be noted that even the form

domains of these operators are different. This makes it difficult to use the

resolvent identity for the pair (H,Hα) also. Thus we take a slightly different

approach. We introduce a certain auxiliary operator Kα = (−i∇−χ∞Bα)2,

where χ∞(r), r = |x|, is a smooth real function vanishing near the origin

and taking the value χ∞ = 1 for r � 1 large enough. By definition, Kα

has the same domain as H, and the difference W = H −Kα belongs to the
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short-range class. In addition, Kα admits the partial wave expansion in an-

gular momentum. This enables us to expand R(λ+ i0;Kα) asymptotically

in λ, 0 < λ� 1, small enough and to analyse the behavior at low energy of

resolvent R(λ+ i0;H) in question through relation (1.5) applied to the pair

(H,Kα). The main body of the present work is occupied by the low-energy

analysis for resolvents of magnetic Schrödinger operators with long-range

perturbations. Such an analysis is also important in showing the resolvent

convergence in norm of the scaled Hamiltonian Hε to some self-adjoint ex-

tension of H0α. The matter will be discussed in detail elsewhere.

§2. Magnetic Schrödinger operator

In this section we fix the magnetic Schrödinger operator H = H(A,V )

to be analysed throughout the entire discussion. We always assume that

b, V ∈ C∞
0 (R2) : R2 → R are real smooth functions with support in the

unit ball

supp b, suppV ⊂ {x ∈ R2 : |x| < 1}.(2.1)

We further assume that the total flux α, α 6∈ Z not being an integer,

of the field b(x) satisfies 0 < α < 1. The magnetic potential Aα(x) =

(a1α(x), a2α(x)) defined by (1.1) is easily shown to have the following prop-

erties.

Lemma 2.1. Let Bα(x) = α(−x2/|x|2, x1/|x|2) be again as in (1.2).

Then one has:

(1) Aα(x) is smooth and obeys ∂β
xAα(x) = O(|x|−1−|β|) as |x| → ∞.

(2) Aα(x) behaves like

∂β
xAα(x) = ∂β

xBα(x) +O(|x|−2−|β|), |x| → ∞,

and, in particular,

∂β
x (x1a1α(x) + x2a2α(x)) = O(|x|−1−|β|).

The lemma above enables us to define aα(x) as

aα(x) = −
∫ ∞

1
(x1a1α(sx) + x2a2α(sx)) ds.

Lemma 2.2. Let aα(x) be as above. Then one has:

(1) aα(x) is smooth in R2 \ {0}, and it obeys the bound

∂β
xaα(x) = O(|x|−1−|β|), |x| → ∞.
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(2) Aα(x) is represented as

Aα(x) = Bα(x) + ∇aα(x) + Eα(x), x 6= 0,

where Eα(x) = (e1(x), e2(x)) is given by

e1(x) =

∫ ∞

1
sx2b(sx) ds, e2(x) = −

∫ ∞

1
sx1b(sx) ds

and has support in the unit ball.

Proof. (1) This follows from Lemma 2.1 at once. (2) To prove this, we

set

bjk(x) = ∂jakα(x) − ∂kajα(x), 1 ≤ k, j ≤ 2,

so that b(x) = b12(x) = −b21(x). A simple calculation yields

∂jaα(x) = −
∫ ∞

1
(ajα(sx) + s(d/ds)ajα(sx) + sxkbjk(sx)) ds

for k 6= j and hence we obtain

∂jaα(x) = ajα(x) −
∫ ∞

1
sxkbjk(sx) ds− lim

R→∞
Rajα(Rx)

by partial integration. By Lemma 2.1 again, RAα(Rx) → Bα(x) as R→ ∞.

This proves (2) and the proof of the lemma is completed.

We here introduce a basic cut-off function χ ∈ C∞
0 ([0,∞)) such that

χ(s) is nonnegative and

χ(s) = 1 for 0 ≤ s ≤ 1, χ(s) = 0 for s > 2.(2.2)

We set χ0(x) = χ0(r) = χ(r), r = |x|, and χ∞(x) = 1 − χ(r). Then

χ∞Eα = 0 for Eα(x) in Lemma 2.2, and hence Aα(x) is decomposed into

Aα = (χ∞ + χ0)Aα = A(x) + ∇(χ∞aα)

by Lemma 2.2, where

A(x) = χ∞(x)Bα(x) +B(x)

with B = aα∇χ0 + χ0Aα. By definition, A(x) has still the magnetic field

b(x) and satisfies

A(x) = Bα(x)(2.3)
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for |x| > 2. We now fix

H = H(A,V ) = (−i∇−A)2 + V(2.4)

as the Hamiltonian with magnetic field b(x) and electric potential V (x), and

we denote by the same notation H the self-adjoint realization in L2(R2).

The scattering operator is invariant under the gauge transformation A →
A+∇g, provided that g(x) falls off at infinity. The above magnetic potential

A(x) is written as A = Aα +∇g with g = −χ∞aα, and g(x) → 0 at infinity

by Lemma 2.2. Hence both the pairs (H(A,V ),H0) and (H(Aα, V ),H0)

have the same scattering operator. The remaining sections are devoted to

the analysis on the behavior at low energy of the scattering amplitude for

the pair (H,H0).

§3. Scattering amplitude

The aim here is to represent the scattering amplitude for the pair

(H,H0), H0 = −∆, with H = H(A,V ) defined as above. This is done

in a rather formal way. The rigorous justification can be found in [13].

Let ϕ0(x;λ, ω) = exp(i
√
λx · ω), λ > 0, ω ∈ S1, be the generalized

eigenfunction of the free Hamiltonian H0, H0ϕ0 = λϕ0, where the notation

· denotes the scalar product in R2. As is well known, ϕ0 is expanded as

ϕ0(x;λ, ω) =
∑

l∈Z

exp(i|l|π/2) exp(ilθ(x;ω))J|l|(
√
λ|x|)(3.1)

in terms of the Bessel functions Jp(z), where θ(x;ω) is the azimuth angle

from direction ω ∈ S1. Let F0 : L2(R2) → L2((0,∞); dλ) ⊗ L2(S1) be the

unitary mapping defined by

F0u(λ, ω) = 2−1/2(2π)−1

∫

ϕ0(x;λ, ω)u(x) dx.

Then H0 is diagonalized in such a way that

F∗
0H0F0 = λ× on L2((0,∞); dλ) ⊗ L2(S1).

We work in the polar coordinates (r, θ) over R2 and write L2(R+) for

L2((0,∞); dr). If we denote by Λl, l ∈ Z, the eigenspace of operator −i ∂/∂θ
acting on L2(S1) with eigenvalue l, then we have the decomposition

L2(R+) ⊗ L2(S1) =
∑

l∈Z

⊕
(

L2(R+) ⊗ Λl

)

.
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We further define the unitary mapping

(Uu)(r, θ) = r1/2u(rθ) : L2(R2) −→ L2(R+) ⊗ L2(S1).(3.2)

Let Bα(x) = α(−x2/|x|2, x1/|x|2) be as in (1.2) and let Hα = (−i∇−Bα)2

be again defined by (1.3) with domain

D(Hα) =
{

u ∈ L2(R2) : Hαu ∈ L2(R2), lim
r→0

u = 0
}

.

This operator is rotationally invariant and the unitary mapping U yields

the partial wave expansion. We formally write its expansion as

Hα ' UHαU
∗ =

∑

l∈Z

⊕ (Hlα ⊗ Id),

where Hlα is given by

Hlα = Π∗Π + ν2r−2 = −∂2
r + (ν2 − 1/4)r−2, Π = ∂r − 1/2r,

with ν = |l − α|. The operator Hlα is self-adjoint in L2(R+) with domain

D(Hlα) =
{

u ∈ L2(R+) : Hlαu ∈ L2(R+), lim
r→0

r−1/2u(r) = 0
}

and hence Hα also becomes self-adjoint in L2(R2) with domain D(Hα) as

above. Since the magnetic potential Bα(x) has a strong singularity at the

origin, D(Hα) does not necessarily coincide with the domain of operators

H and H0. Nevertheless it is known ([11]) that the wave operators

W±(Hα,H0) = s− lim
t→±∞

exp(itHα) exp(−itH0) : L2(R2) −→ L2(R2)

exist and are asymptotically complete RanW±(Hα,H0) = L2(R2).

The generalized eigenfunction ϕ∓(x;λ, ω) of Hα is formally defined as

ϕ∓ = W±(Hα,H0)ϕ0 by making use of the intertwining property of wave

operators. However this definition does not have the rigorous meaning, be-

cause ϕ0 is not in L2(R2). To give the precise definition, we make use of the

expansion formula (3.1) for ϕ0(x;λ, ω) and of the well known asymptotic

formula of Bessel functions

Jp(r) = (2/π)1/2r−1/2 cos(r − (2p+ 1)π/4)(1 + gm(r)) +O(r−m)(3.3)
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as r → ∞ for any m� 1 large enough, where gm(r) obeys (d/dr)kgm(r) =

O(r−1−k). If we set

e∓l(r) = exp(±i|l|π/2)J|l|(r) − exp(±iνπ/2)Jν(r)

with ν = |l − α| again, then it follows from (3.3) that

e∓l(r) = exp(∓ir)
(

C∓lr
−1/2 +O(r−3/2)

)

+ exp(±ir)O(r−3/2)

for some constant C∓l. Hence e−l(r) satisfies the incoming radiation con-

dition e′−l + ie−l = O(r−3/2) at infinity, while e+l(r) satisfies the outgoing

radiation condition e′+l − ie+l = O(r−3/2). Thus, if we make use of the

simple relation

exp(ilθ(x;−ω)) = exp(i|l|π + ilθ(x;ω))

between azimuth angles θ(x;ω) and θ(x;−ω) and if we take account of the

expansion formula (3.1), then the eigenfunction ϕ∓ is defined by

ϕ∓(x;λ, ω) =
∑

l∈Z

exp(±iνπ/2) exp(ilθ(x;±ω))Jν(
√
λ|x|).(3.4)

As is easily seen, this series converges locally uniformly and ϕ∓ satisfies the

equation Hαϕ∓ = λϕ∓.

As stated previously, the ordinary wave operators W±(H,H0) exist and

are asymptotically complete, although H − H0 is a perturbation of long-

range class. Hence the scattering operator

S(H,H0) = W ∗
+(H,H0)W−(H,H0) : L2(R2) −→ L2(R2)

can be defined as a unitary operator and it has the direct integral decom-

position

S(H,H0) ' F0S(H,H0)F∗
0 =

∫ ∞

0
⊕S(λ;H,H0) dλ,

where the fibre S(λ;H,H0) : L2(S1) → L2(S1) is called the scattering

matrix at energy λ > 0 and it acts as

(F0S(H,H0)u) (λ, ω) = (S(λ;H,H0)(F0u)(λ, · )) (ω)
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for u ∈ L2(R2). By the chain rule of wave operators, we have

W±(H,H0) = W±(H,Hα)W±(Hα,H0)

and hence

S(H,H0) = W ∗
+(Hα,H0)S(H,Hα)W−(Hα,H0),(3.5)

where S(H,Hα) = W ∗
+(H,Hα)W−(H,Hα). The existence and complete-

ness of wave operators W±(H,Hα) follow from those of W±(Hα,H0) and

W±(H,H0) at once.

We shall derive the integral kernel of scattering matrix S(λ;H,H0).

Before doing this, we make a brief review on the spectral properties of H,

which are required in the argument below. The operator H is known to

have the following spectral properties ([6]): (1) H has no positive bound

state energies; (2) The resolvents R(λ ± iε;H) = (H − λ ∓ iε)−1, ε > 0,

have the boundary values to the positive axis

R(λ± i0;H) = lim
ε→0

R(λ± iε;H), λ > 0,

as an operator from the weighted L2 space L2
s(R

2) = L2(R2; 〈x〉2sdx) into

L2
−s(R

2) for s > 1/2, where 〈x〉 = (1 + |x|2)1/2.

We now denote by ( , ) or ( , )L2(R2) the L2 scalar product in L2(R2).

To represent the scattering kernel, we consider the quantity

S(ω′, ω;λ′, λ) = 2−1(2π)−2(S(H,H0)ϕ0( · ;λ, ω), ϕ0( · ;λ′, ω′)),

which is a formal representation for the integral kernel of the operator

F0S(H,H0)F∗
0 : L2((0,∞); dλ) ⊗ L2(S1) −→ L2((0,∞); dλ) ⊗ L2(S1).

If we make use of the formal relation ϕ∓ = W±(Hα,H0)ϕ0, then it follows

from (3.5) that S(ω′, ω;λ′, λ) is decomposed into the sum of two terms

S(ω′, ω;λ′, λ) = S0(ω
′, ω;λ′, λ) + S1(ω

′, ω;λ′, λ),

where S0 = 2−1(2π)−2(ϕ+( · ;λ, ω), ϕ−( · ;λ′, ω′)) and

S1 = 2−1(2π)−2((S(H,Hα) − Id)ϕ+( · ;λ, ω), ϕ−( · ;λ′, ω′)).
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We often identify the coordinates over S1 with the azimuth angles from

the positive x1 axis in the argument below.We first calculate S0(ω
′, ω;λ′, λ).

Recall the representation (3.4) for ϕ∓(x;λ, ω). If we take account of the

simple relation

exp(il(θ(x;−ω) − θ(x;ω′))) = exp(il(ω′ − ω + π)),

then we have

S0 = 2−1(2π)−1
∑

l∈Z

exp(i(l − ν)π) exp(il(ω′ − ω))

×
∫ ∞

0
rJν(

√
λ r)Jν(

√
λ′ r) dr.

The integral on the right side equals

∫ ∞

0
rJν(

√
λ r)Jν(

√
λ′ r) dr = λ−1/2δ(

√
λ′ −

√
λ) = 2δ(λ′ − λ)

(see [5, p.73]), and hence

S0 = (2π)−1

(

∑

l∈Z

exp(i(l − ν)π) exp(il(ω′ − ω))

)

δ(λ′ − λ).

We can further show ([11]) that

∑

l∈Z

exp(i(l − ν)π) exp(ilθ) = 2π (cosαπ δ(θ) − (i sinαπ/π)F0(θ))

for α, 0 < α < 1, where F0(θ) is again defined by F (θ) = v.p. eiθ/(eiθ − 1).

Thus we obtain

S0 =
(

cosαπ δ(ω′ − ω) − (i sinαπ/π)F0(ω
′ − ω)

)

δ(λ′ − λ).

Next we calculate the second term S1(ω
′, ω;λ′, λ). Let χ(s) ∈ C∞

0 ([0,∞))

be the basic cut-off function with property (2.2). We set χ∞M (x) = χ∞M (r) =

1 − χ(r/M) for M > 2, M being fixed. The function χ∞M has support in

|x| > M and take the value χ∞M = 1 for |x| > 2M , so that H = Hα on the

support of χ∞M by (2.1) and (2.2). Since

‖(1 − χ∞M ) exp(−itH)W−(H,Hα)u‖L2(R2) → 0, t→ ±∞,
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for u ∈ L2(R2), we have

S(H,Hα) − Id = exp(itHα)χ∞M exp(−itH)W−(H,Hα)
∣

∣

∣

t=∞

t=−∞

= i

∫

exp(itHα)DMW−(H,Hα) exp(−itHα) dt

by the intertwining property, where

DM = Hαχ∞M − χ∞MH = Hαχ∞M − χ∞MHα = [Hα, χ∞M ].(3.6)

If we further make use of relation exp(−itHα)ϕ∓ = exp(−itλ)ϕ∓ and of

formula
∫

exp(it(λ′ − λ)) dt = 2πδ(λ′ − λ),

then we obtain

S1(ω
′, ω;λ′, λ) = (i/4π)I(ω′, ω;λ′, λ)δ(λ′ − λ)

by a formal computation, where

I(ω′, ω;λ′, λ) = −(W−(H,Hα)ϕ+( · ;λ, ω),DMϕ−( · ;λ′, ω′))

because of relation D∗
M = −DM . The wave operator W−(H,Hα) is written

in the integral form

W−(H,Hα) = χ∞M − i

∫ 0

−∞
exp(itH)DM exp(−itHα) dt.

Hence it follows again by a formal computation that

S1 = (i/4π)I(ω′, ω;λ)δ(λ′ − λ),

where I(ω′, ω;λ) is given by

I(ω′, ω;λ) =
(

(−χ∞M +R(λ+ i0;H)DM )ϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)
)

.

We combine the two representations above to obtain that the integral

kernel S(ω′, ω;λ) of scatterimg matrix S(λ;H,H0) : L2(S1) → L2(S1) is

represented as

S(ω′, ω;λ) = S0(ω
′, ω;λ) + S1(ω

′, ω;λ),
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where S0 = cosαπ δ(ω′ − ω) − (i sinαπ/π)F0(ω
′ − ω) and

S1 = (i/4π)
(

(−χ∞M +R(λ+ i0;H)DM )ϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)
)

.

The scattering amplitude f(ω → ω′;λ) in question for the pair (H,H0) is

now defined by

f(ω → ω′;λ) = c(λ)
(

S(ω′, ω;λ) − δ(ω′ − ω)
)

with c(λ) = (2π/i
√
λ)1/2 again. By (3.4), (DMϕ−)(x;λ, ω) = o(1) as λ→ 0

and hence

(χ∞Mϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)) → 0, λ→ 0.

Thus we obtain the following proposition.

Proposition 3.1. Let the notations be as above and let, in particular,

c(λ) denote c(λ) = (2π/i
√
λ)1/2. Then the scattering amplitude f(ω→ω′;λ)

behaves like

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + gα(ω → ω′;λ) + o(1)
)

, λ→ 0,

where

fα(ω′ − ω) = (cosαπ − 1) δ(ω′ − ω) − (i sinαπ/π)F0(ω
′ − ω)

with F0(θ) = v.p. eiθ/(eiθ − 1), and

gα(ω → ω′;λ) = (i/4π)(R(λ + i0;H)DMϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)).

For later reference, we here discuss the relation between the scattering

at low energy and the scattering by magnetic fields with small support. Let

b(x), V (x) ∈ C∞
0 (R2) be the same electric and magnetic fields as above and

let A(x) be also the same magnetic potential associated with field b(x). We

consider

bε(x) = ε−2b(x/ε), Vε(x) = ε−2V (x/ε), 0 < ε� 1,

as magnetic and electric fields with small support, respectively. If we further

set Aε(x) = ε−1A(x/ε), then ∇ × Aε = bε and hence Aε becomes the

magnetic potential associated with bε(x). We now define the Hamiltonian

Hε by

Hε = H(Aε, Vε) = (−i∇−Aε)
2 + Vε(3.7)
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and denote by fε(ω → ω′;λ) the scattering amplitude for the pair (Hε,H0).

The eigenfunction of Hα satisfies the invariance relation ϕ∓(x/ε;λε2, ω) =

ϕ∓(x;λ, ω). If u = u(x) obeys the equation Hεu − λu = f , then uε(x) =

u(εx) solves the equation Huε − λε2uε = ε2fε with fε(x) = f(εx), so that

(R(λ+ i0;Hε)f)(x) = ε2
(

R(λε2 + i0;H)fε

)

(x/ε)

for f ∈ C∞
0 (R2). If we take these facts into account and if we make a change

x/ε→ x of variables, we have the relation

fε(ω → ω′;λ) =
√
εf(ω → ω′;λε2)

and hence Proposition 3.1 yields the behavior as ε→ 0 of fε(ω → ω′;λ).

Corollary 3.1. Assume that λ > 0 is fixed. Let fα(ω′ − ω) and

gα(ω → ω′;λ) be as in Proposition 3.1. Then fε(ω → ω′;λ) behaves like

fε(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + gα(ω → ω′;λε2)
)

+ o(1), ε→ 0.

§4. Preliminaries for resolvent estimate I

The problem is now reduced to analysing the behavior at low energy of

the resolvent R(λ+ i0;H). To do this, we introduce the auxiliary operator

Kα = (−i∇− χ∞Bα)2,(4.1)

as stated in section 1, where χ∞ = χ∞(r) = 1−χ(r). The function χ∞ has

support in r > 1 and takes the value χ∞ = 1 for r > 2. The operator Kα

has the same domain as the original operator H, and it follows from (2.3)

that the difference W = H −Kα is a first order differential operator having

smooth coefficients with support in {x ∈ R2 : |x| < 2}. In addition, Kα

admits the partial wave expansion

Kα ' UKαU
∗ =

∑

l∈Z

⊕ (Klα ⊗ Id)

by the unitary mapping U defined by (3.2), where

Klα = Π∗Π + (l − αχ∞)2r−2, Π = d/dr − 1/2r,(4.2)

is self-adjoint in L2(R+) = L2((0,∞); dr) with domain

D(Klα) =
{

u ∈ L2(R+) : Klαu ∈ L2(R+), lim
r→0

r−1/2u(r) <∞
}

.
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If l 6= 0, then the above limit vanishes limr→0 r
−1/2u(r) = 0.

As preliminary steps, the present and next sections are devoted to the

study on the behavior at low energy of R(λ+ i0;Kα). We now fix an integer

l0 � 1 large enough, and we further introduce another auxiliary operators

Xl, l ∈ Z, acting on L2(R+). We define Xl as

Xl = Π∗Π + ql

for l with |l| ≤ l0, where

ql(r) = l2r−2 for 0 < r < 1, ql(r) = ν2r−2 for r > 1

and ν again denotes ν = |l − α|. On the other hand, if |l| > l0, then we

define

Xl = Π∗Π + ν2r−2.

Each operator Xl is self-adjoint in L2(R+) with the same domain as Klα.

This holds true even for |l| > l0 � 1. In fact, we have

D(Klα) = D(Xl) = {u ∈ L2(R+) : u ∈ H2(R+), r−2u ∈ L2(R+)}

for |l| > l0 � 1. Hence R(k2 + i0;Klα), λ = k2, is represented as

R(k2 + i0;Klα) = R(k2 + i0;Xl)
(

Id + (Klα −Xl)R(k2 + i0;Xl)
)−1

by use of the resolvent identity.

As the first step, we here study the behavior as k → 0 of R(k2 + i0;Xl).

Throughout the section, we work in L2(R+), and we denote by ( , ) or

( , )L2(R+) the L2 scalar product and by ‖ ‖ the L2 norm. The same

notation ‖ ‖ is often used to denote the operator norm of bounded operators

acting on L2(R+). We further introduce several new notations required in

the argument below. Let L � 1 be fixed large enough. We write IL for

the interval [0, 2L), and denote by B(L2
com(IL) → L2

loc(R+)) the class of

all operators T such that χRT : L2
com(IL) → L2(R+), χR = χ(r/R), is

bounded for any R > 0, when it is restricted to the subspace

L2
com(IL) = {f ∈ L2(R+) : supp f ⊂ [0, 2L)}.

We say that T (k) ∈ B(L2
com(IL) → L2

loc(R+)) is of class Op(O(kγ)), if it

obeys the bound ‖χRT (k)‖ = O(kγ) as k → 0. We sometimes use the same
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notation T (k) ∈ Op(O(kγ)) for bounded operator T (k) ∈ B(X → Y) from

Hilbert space X to Y, when T (k) obeys the bound ‖T (k)‖ = O(kγ).

4.1. The argument is divided into the two cases |l| ≤ l0 and |l| > l0.

We first deal with the case |l| ≤ l0. We consider the homogeneous equation

Xlu = 0. This equation has the following pair (ul, vl) with the Wronskian

normalized by W (ul, vl) = −1 as linearly independent solutions: If l = 0,

then

u0(r) =

{

ν−1/2r1/2 r ≤ 1,
1
2ν

−1/2
(

rν+1/2 + r−ν+1/2
)

r > 1,

v0(r) =

{

ν−1/2
(

r1/2 − νr1/2 log r
)

r ≤ 1,

ν−1/2r−ν+1/2 r > 1,

with ν = |l − α| = α for l = 0, and if |l| ≤ l0, l 6= 0, then

ul(r) =

{

(|l| + ν)−1/2r|l|+1/2 r ≤ 1,
1
2(|l| + ν)−1/2

(

(1 + |l|/ν)rν+1/2 + (1 − |l|/ν)r−ν+1/2
)

r > 1,

vl(r) =

{

1
2(|l|+ν)−1/2

(

(1 − ν/|l|)r|l|+1/2 + (1 + ν/|l|)r−|l|+1/2
)

r ≤ 1,

(|l| + ν)−1/2r−ν+1/2 r > 1.

Let El0 be defined by

(El0f)(r) =

∫ ∞

0
El0(r, p)f(p) dp,(4.3)

where

El0(r, p) = ul(r ∧ p)vl(r ∨ p), r ∧ p = min (r, p), r ∨ p = max (r, p).

Then u(r) = El0f(r) yields a unique solution to

Xlu = f, lim
r→0

r−1/2u(r) <∞,

for given f ∈ L2
com(IL). If, in particular, l 6= 0, 1, then it follows that

El0f ∈ L2(R+). The kernel El0(r, p) is symmetric with respect to (r, p) and

hence El0 is formally self-adjoint E∗
l0 = El0 in the sense that

(El0f, g) = (f,El0g), f, g ∈ L2
com(IL).

The proposition below plays an important role in the analysis at low energy

of the resolvent R(λ+ i0;H).
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Proposition 4.1. Assume that |l| ≤ l0. Then one has:

(1) The resolvent R(k2 ± i0;Xl), k > 0, has the following asymptotic

expansion in B(L2
com(IL) → L2

loc(R+)): If l = 0 or 1, then

R(k2 ± i0;Xl) = El0 + El1(±k) + k2El2 +Op(o(k2)), k → 0,

and if l 6= 0, 1, then

R(k2 ± i0;Xl) = El0 + k2El2 +Op(o(k2)), k → 0.

(2) El0 and El2 are formally self-adjoint in the above sense.

(3) Let (ul, vl) be as above. Then El1(k), l = 0, 1, belongs to Op(O(k2ν))

and satisfies E∗
l1(k) = El1(−k). This operator acts as

El1(k)f(r) = γl(k)(f, ul)ul(r)(4.4)

for f ∈ L2
com(IL), where

γl(k) = 2ν(l − ν)−1βl(k)(1 + βl(k))
−1(4.5)

with

βl(k) = − ((l − ν)Γ(1 − ν)/(l + ν)Γ(1 + ν)) e−iνπ(k/2)2ν .

Remarks. (1) The argument below does not require the explicit rep-

resentation for the integral kernel of operator El2. (2) The proposition

remains true for R(ζ;Xl) with Im
√
ζ ≥ 0. (3) Since γl(k) = γl(−k),

E∗
l1(k) = El1(−k) and hence the formal self-adjointness of El2 follows at

once.

We proceed with the argument, accepting this proposition as proved.

We will prove it in the last section (section 9). The proof is direct but rather

lengthy, using the asymptotic formulas of Bessel functions.

4.2. Next we consider the case |l| > l0. The homogeneous equation

Xlu = 0 has the following pair (ul, vl) normalized by W (ul, vl) = −1 as

linearly independent solutions:

ul(r) = (2ν)−1/2rν+1/2, vl(r) = (2ν)−1/2r−ν+1/2.(4.6)

The integral operator El0 defined as in (4.3) yields a unique solution to

Xlu = f, lim
r→0

r−1/2u(r) = 0,

for given f ∈ L2
com(IL), and the solution El0f belongs to L2(R+).
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Lemma 4.1. r−2El0 : L2
com(IL) → L2

loc(R+) is defined and it satisfies

‖χRr
−2El0‖ = O(|l|−2), |l| → ∞.

Proof. As stated above, u = El0f is a L2 solution to Xlu = f for f ∈
L2

com(IL). By the density argument, we may assume that f ∈ C∞
0 ((0, 2L)).

Then u ∈ C∞(R+) behaves like u(r) = O(rν+1/2) as r → 0, and hence

r−2u ∈ L2(R+). We take the scalar product between the equation Xlu = f

and r−2u. If |l| � 1, a simple calculation using integration by parts shows

that |l|2 ‖r−2u‖ ≤ c ‖f‖ for c > 0 independent of l. This proves the lemma.

If we take account of the relation W (Jν ,Hν)(z) = 2i/πz, then the

integral kernel Rl(r, p; k) of R(k2 + i0;Xl), k > 0, is given by

Rl(r, p; k) = (iπ/2)r1/2p1/2Jν(k(r ∧ p))Hν(k(r ∨ p)),

where Hν(z) = H
(1)
ν (z) is the first kind of the Hankel function of order ν.

The Hankel function Hν(z) is represented by the formula

Hν(z) = Jν(z) + iNν(z) = (i/ sin νπ)
(

e−iνπJν(z) − J−ν(z)
)

(4.7)

in terms of the Bessel functions J±ν(z), while the Bessel functions J±ν(z)

are expanded as

J±ν(z) =
(z

2

)±ν
∞
∑

n=0

(−1)n(z/2)2n

Γ(n+ 1)Γ(n+ 1 ± ν)
.

Since Γ(1 + ν)Γ(1 − ν) = νπ/ sin νπ, Rl(r, p; k) is expanded in the form

Rl(r, p; k) = El0(r, p) + k2El2(r, p) + El3(r, p; k)

by use of the above formulas, where El2(r, p) and El3(r, p; k) obey

|El2(r, p)| = O(|l|−1)r1/2p1/2(r ∧ p)ν(r ∨ p)2−ν

as |l| → ∞, and

|El3(r, p; k)| = |l|−1r1/2p1/2(r ∧ p)ν
(

O(k2ν)(r ∨ p)ν +O(k4)(r ∨ p)4−ν
)

as k → 0, the order estimates being locally uniform in r and p.
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Lemma 4.2. Let El2 and El3(k) be the integral operators with kernels

El2(r, p) and El3(r, p; k), respectively. Then one has:

(1) r−2El2 : L2
com(IL) → L2

loc(R+) obeys

‖χRr
−2El2‖ = O(|l|−1), |l| → ∞.

(2) r−2El3(k) : L2
com(IL) → L2

loc(R+) is of class Op(o(k2)) and

‖χRr
−2El3(k)‖ = |l|−1o(k2), k → 0,

uniformly in |l| � 1.

Proof. If we use the above estimate for El2(r, p), then the Schwarz

inequality implies that

|r−2(El2f)(r)| ≤ c |l|−1r3/2‖f‖

for f ∈ L2
com(IL). This proves (1). The second statement is verified in a

similar way.

We combine Lemmas 4.1 and 4.2 to obtain the following proposition.

Proposition 4.2. Assume that |l| > l0 � 1. Then one has:

(1) R(k2 ± i0;Xl), k > 0, has the asymptotic expansion

R(k2 ± i0;Xl) = El0 + k2El2 + El3(k), k → 0,

in B(L2
com(IL) → L2

loc(R+)).

(2) El0 is formally self-adjoint and ‖χRr
−2El0‖ = O(|l|−2).

(3) El2 is also formally self-adjoint and ‖χRr
−2El2‖ = O(|l|−1).

(4) El3(k) is of class Op(o(k2)) and ‖χRr
−2El3(k)‖ = |l|−1o(k2).

4.3. We conclude the section by stating several important properties

of El0 and El2 as a series of lemmas.

Lemma 4.3. Assume that l = 0 or 1. Let f, g ∈ L2
com(IL) and let ul =

ul(r) be as above. If f satisfies (f, ul) = 0, then (El2f, g) = (El0f,El0g).
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Proof. We write Rl(±k) for R(k2±i0;Xl). If f satisfies the assumption

in the lemma, then El0f ∈ L2
com(IL) and El1(±k)f(r) = γl(±k)(f, ul)ul(r)

= 0. Thus we have

(El2f, g) = lim
k→0

k−2((Rl(−k) − El0)f, g) = lim
k→0

(El0f,Rl(k)g).

This proves the lemma.

Lemma 4.4. Assume that l 6= 0, 1. Let Im
√
ζ > 0 strictly and let

u ∈ L2(R+) be a solution to Xlu − ζu = f with f ∈ L2
com(IL). Then u(r)

obeys the bound

u(r) = O(|ζ|ν/2)r1/2Hν(
√

ζr), |ζ| → 0,

uniformly in r � 1.

If |l| > l0, then

u(r) = (iπ/2)r1/2Hν(
√

ζr)

∫ ∞

0
p1/2Jν(

√

ζp)f(p) dp

for r � 1, and hence the lemma is obtained in the case |l| > l0. When

|l| ≤ l0 with l 6= 0, 1, we will prove the lemma in section 9. This is implicitly

shown in the course of the proof of Proposition 4.1.

Lemma 4.5. Assume that l 6= 0, 1. Let f, g ∈ L2
com(IL). Then

(El2f, g) = (El0f,El0g).

Proof. If l 6= 0, 1, then both El0f and El0g belong to L2(R+), and

hence the relation in the lemma makes sense. As previously stated, Propo-

sitions 4.1 and 4.2 remain true for R(ζ;Xl) with Im
√
ζ > 0. Hence we

obtain

(El2f, g) = lim
ζ→0

(El0f,R(ζ;Xl)g)

by use of the same argument as in the proof of Lemma 4.3. We divide the

scalar product on the right side into the sum of three integrals

∫ ∞

0
· · · dr =

(

∫ R

0
+

∫ 1/k

R
+

∫ ∞

1/k

)

· · · dr

= I1(k) + I2(k) + I3(k), k = |ζ|1/2,
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for R� 1 fixed. It is easy to see that

lim
k→0

I1(k) =

∫ R

0
(El0f)(r) (El0g)(r) dr.

We may assume that f and g have support in [0, R). If r > R, then El0f

and R(ζ;Xl)g take the forms

El0f(r) = c0r
−ν+1/2, R(ζ;Xl)g(r) = c(ζ)r1/2Hν(

√

ζr)

for some constants c0 and c(ζ). By Lemma 4.4, c(ζ) obeys the bound |c(ζ)| =

O(|k|ν) as k = |ζ|1/2 → 0, and Hν(z) satisfies Hν(z) = O(|z|−ν) as |z| → 0.

Thus we obtain

|R(ζ;Xl)g(r)| ≤ cr−ν+1/2, R < r < 1/k,

for c > 0 independent of k. When l 6= 0, 1, ν = |l − α| > 1 and r−2ν+1

is integrable over [R,∞). Hence it follows by the dominated convergence

theorem that

lim
k→0

I2(k) =

∫ ∞

R
(El0f)(r) (El0g)(r) dr.

To deal with the third term I3(k), we use the asymptotic formula

Hν(z) = (2/πz)1/2 exp(i(z − (2ν + 1)π/4))
(

1 +O(|z|−1)
)

, |z| → ∞.

A simple computation using integration by parts shows that I3 (k) =

O(k2ν−2) as k → 0. Thus the proof is completed.

Lemma 4.6. El2 satisfies XlEl2 = El0 on L2
com(IL).

Proof. Let f ∈ L2
com(IL). We have only to show that (El2f,Xlg) =

(El0f, g) for any g ∈ C∞
0 ((0, 2L)). If l = 0 or 1, then (Xlg, ul) = (g,Xlul)

= 0. Hence it follows from Lemma 4.3 that

(El2f,Xlg) = (El0f,El0Xlg) = (El0f, g).

Lemma 4.5 enables us to repeat the same argument as above for the case

l 6= 0, 1 also. Thus the proof is complete.

Lemma 4.7. Assume that f ∈ L2
com(IL). Then one has:

(1) Let l = 0 or 1. Assume that f satisfies (f, ul) = 0. Then El0f ∈
L2(R+) and ‖El0f‖ ≤ c ‖f‖. If, conversely, El0f ∈ L2(R+), then (f, ul)

= 0.

(2) If l 6= 0, 1, then ‖El0f‖ ≤ c ‖f‖ uniformly in l.
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Proof. (1) can be easily verified. We prove (2) only for the case |l| � 1.

By (4.6), El0(r, p) obeys |El0(r, p)| ≤ L/2ν for (r, p) ∈ [0, L] × [0, L]. Hence

|El0f(r)| ≤
∫ r

0
|El0(r, p)f(p)| dp = O(1)‖f‖, |l| → ∞,

for 0 < r ≤ L. On the other hand, if r > L, then

|El0f(r)| ≤ (2ν)−1r−ν+1/2

∫ L

0
pν+1/2|f(p)| dp = O(1)Lν+1r−ν+1/2‖f‖.

We combine these two estimates to conclude the proof.

§5. Preliminaries for resolvent estimate II

In this section we study the behavior as λ→ 0 of R(λ+ i0;Kα) for the

operator Kα defined by (4.1).

5.1. We begin with the following proposition on the uniqueness of so-

lution to equation Kαw = 0.

Proposition 5.1. Let w ∈ L2
loc(R

2) be a solution to Kαw = 0. If w

satisfies

lim sup
R→∞

R−2

∫

R<|x|<2R
|w(x)|2 dx <∞,

then w = 0.

Remark. The proposition above remains true for magnetic Schrödinger

operators with fields not indentically vanishing.

Proof. The proposition is easy to prove. We write Kα in the form

Kα = Π2
1 + Π2

2, so that the magnetic field bα of Kα is expressed as the

commutator bα = i [Π2,Π1]. We note that bα does not indentially vanish.

Let χR(x) = χ(|x|/R). Then we have

(Kαw,χRw) =

2
∑

j=1

(χRΠjw,Πjw) − ((∆χR)w,w),

where ( , ) denotes the L2 scalar product in L2(R2). By assumption, the

second term on the right side is bounded uniformly in R � 1 and hence it

follows that Πjw ∈ L2(R2). This also implies that

2
∑

j=1

(Πjw,Πjw) = (Kαw,w) = 0,
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so that Πjw = 0. Since bαw = i [Π2,Π1]w = 0, w vanishes on the support of

the field bα. This, together with relation Πjw = 0, proves the proposition.

If w(x) is bounded or if it belongs to the weighted L2 space L2
−1(R

2),

then the assumption in Proposition 5.1 is fulfilled. The proposition is used

for such solutions in the later application. As an immediate consequence of

the above proposition, we obtain the following lemma.

Lemma 5.1. Let Klα be defined by (4.2) and let wl ∈ L2
loc(R+) be a

solution to Klαwl = 0. If wl satisfies

lim sup
R→∞

R−2

∫ 2R

R
|wl(r)|2 dr <∞

and the boundary condition limr→0 r
−1/2wl(r) <∞, then wl = 0.

We now set Wl = Klα −Xl. Then Wl takes the form

Wl(r) =

{

(l − αχ∞(r))2r−2 − ql(r) for |l| ≤ l0,
(

(l − αχ∞(r))2 − ν2
)

r−2 for |l| > l0.

By definition, Wl(r) vanishes in r > 2 for all l ∈ Z. If |l| ≤ l0, then Wl(r)

is bounded and if |l| > l0, then Wl(r) obeys the bound |Wl(r)| ≤ c|l|r−2

uniformly in l.

Lemma 5.2. If we regard Id + WlEl0 as an operator from L2
com(IL)

into itself, then it has an inverse for all l ∈ Z and the inverse

Tl = (Id +WlEl0)
−1 : L2

com(IL) −→ L2
com(IL)(5.1)

is bounded uniformly in l.

Proof. If |l| > l0, then the lemma follows from Lemma 4.1 at once. We

consider the case |l| ≤ l0. Since WlEl0 : L2
com(IL) → L2

com(IL) is a compact

operator, it suffices to show that

w ∈ L2
com(IL), w +WlEl0w = 0 =⇒ w = 0.

To see this, we set v = El0w. Then v satisfies Xlv = w, so that Klαv =

Xlv +Wlv = 0. As is easily seen, v behaves like v(r) ∼ r−ν+1/2 at infinity

and it satisfies the assumptions in Lemma 5.1. Thus we can conclude that

v = 0 and hence w = 0.
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By Proposition 4.1, El1(±k) : L2
com(IL) → L2

loc(R+) is of class

Op(O(k2ν)). Hence we can define

Tl(±k) = (Id + TlWlEl1(±k))−1Tl : L2
com(IL) −→ L2

com(IL)(5.2)

for l = 0, 1. By definition, Tl(±k) is expanded as

Tl(±k) =
∞
∑

j=0

(−1)j (TlWlEl1(±k))j Tl

and hence

El1(±k)Tl(±k)f = 0, f ∈ L2
com(IL),(5.3)

provided that (Tlf, ul) = 0. We also have the relation

Tl(±k) = Tl − TlWlEl1(±k)Tl(±k) = Tl +Op(O(k2ν))(5.4)

in B(L2
com(IL) → L2

com(IL)).

5.2. We first study the behavior as k → 0 of R(k2 + i0;Klα). By the

resolvent identity,

R(k2 + i0;Klα) = R(k2 + i0;Xl)(Id +WlR(k2 + i0;Xl))
−1.(5.5)

Hence Lemma 5.2 implies that there exists a limit

Fl0 = lim
k→0

R(k2 + i0;Klα) = El0Tl : L2
com(IL) −→ L2

loc(R+)

and that it is bounded uniformly in l as an operator in B(L2
com(IL) →

L2
loc(R+)). We can easily show that

Tl = (Id +WlEl0)
−1 = Id −WlFl0 : L2

com(IL) −→ L2
com(IL).(5.6)

Hence the formal adjoint of Tl is defined by

T ∗
l = Id − Fl0Wl : L2

loc(R+) −→ L2
loc(R+).

If |l| ≤ l0, then Wl is bounded and hence we have

(TlWl)
∗ = TlWl.(5.7)
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Even for |l| > l0, we can define

T ∗
l El2Tl = (Id − Fl0Wl)El2Tl : L2

com(IL) −→ L2
loc(R+)

as an operator bounded uniformly in l, which follows from Lemma 4.2.

We now expand the inverse

(Id +WlR(k2 + i0;Xl))
−1 : L2

com(IL) −→ L2
com(IL)

in B(L2
com(IL) → L2

com(IL)). By Propositions 4.1 and 4.2, we can show that:

If l = 0 or 1, then

(Id +WlR(k2 + i0;Xl))
−1 = Tl(k) − k2TlWlEl2Tl +Op(o(k2))(5.8)

and if l 6= 0, 1, then

(Id +WlR(k2 + i0;Xl))
−1 = Tl − k2TlWlEl2Tl +Op(o(k2))

uniformly in |l| � 1. A similar expansion remains true for R(k2 − i0;Xl).

Lemma 5.3. (1) The resolvent R(k2 ± i0;Klα) has the following ex-

pansion in B(L2
com(IL) → L2

loc(R+)): If l = 0 or 1, then

R(k2 ± i0;Klα) = Fl0 + Fl1(±k) + k2Fl2 +Op(o(k2))

and if l 6= 0, 1, then

R(k2 ± i0;Klα) = Fl0 + k2Fl2 +Op(o(k2))

uniformly in |l| � 1, where

Fl0 = El0Tl, Fl1(k) = T ∗
l El1(k)Tl(k), Fl2 = T ∗

l El2Tl.

(2) Fl0 and Fl2 are formally self-adjoint and are bounded uniformly in

|l| � 1 as operators in B(L2
com(IL) → L2

loc(R+)).

(3) Fl1(k), l = 0, 1, belongs to Op(O(k2ν)) and satisfies F ∗
l1(k) = Fl1(−k).

This acts as

Fl1(k)f(r) = γl(k)(Tl(k)f, ul)L2(R+) (T ∗
l ul) (r)

for f ∈ L2
com(IL), γl(k) being as in Proposition 4.1.
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Proof. (1) If l = 0, 1, then it follows from (5.5) and (5.8) that

R(k2 + i0;Klα) = Fl0 + Fl1(k) + k2Fl2 +Op(o(k2)),

where Fl0 = El0Tl, and

Fl1(k) = El0(Tl(k) − Tl) + El1(k)Tl(k),

Fl2 = −El0TlWlEl2Tl + El2Tl.

If we further make use of relations (5.4) and (5.6), then we have

Fl1(k) = (Id −El0TlWl)El1(k)Tl(k)

= (Id − Fl0Wl)El1(k)Tl(k)

= T ∗
l El1(k)Tl(k).

We can show in the same way that Fl2 = T ∗
l El2Tl. A similar argument

applies to the case l 6= 0, 1 and we can obtain the asymptotic expansion

with remainder operator Op(o(k2)) bounded uniformly in |l| � 1. Thus

(1) is verified. (2) As already stated, Fl0 and Fl2 are uniformly bounded

in B(L2
com(IL) → L2

loc(R+)), and it is easy to see that these operators

are formally self-adjoint. (3) Since El1(k) ∈ Op(O(k2ν)) satisfies E∗
l1(k) =

El1(−k), Fl1(k) also belongs to ∈ Op(O(k2ν)), and it follows from (5.7) that

F ∗
l1(k) = T ∗

l (k)El1(−k)Tl = T ∗
l

( ∞
∑

j=0

(−1)j(El1(−k)TlWl)
j

)

El1(−k)Tl

= T ∗
l El1(−k)

( ∞
∑

j=0

(−1)j(TlWlEl1(−k))j
)

Tl = Fl1(−k).

Thus Fl1(k) preserves the same properties as El1(k). It can be easily seen

from Proposition 4.1 that Fl1(k) acts as in the lemma.

The operators Fl0 and Fl2 have the same properties as El0 and El2.

Lemma 5.4. Let f, g ∈ L2
com(IL). Then one has:

(1) Assume that l = 0 or 1.If (Tlf, ul) = 0, then (Fl2f, g) = (Fl0f, Fl0g).

(2) Assume that l 6= 0, 1. Then (Fl2f, g) = (Fl0f, Fl0g).
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Proof. (1) If f satisfies the assumption in the lemma, then Fl0f =

El0Tlf ∈ L2
com(IL) and it follows from (5.3) that Fl1(k)f = T ∗

l El1(k)Tl(k)f

= 0. This enables us to repeat the same argument as in the proof of

Lemma 4.3 and we get the desired relation. (2) Since Tlf ∈ L2
com(IL) for

f ∈ L2
com(IL), this is an immediate consequence of Lemma 4.5. In fact, we

have

(Fl2f, g) = (El2Tlf, Tlg) = (El0Tlf,El0Tlg) = (Fl0f, Fl0g).

Thus (2) is verified.

Lemma 5.5. Fl2 satisfies KlαFl2 = Fl0 on L2
com(IL).

Proof. By (5.6), ul(r), l = 0, 1, satisfies

KlαT
∗
l ul = Klα (ul − Fl0Wlul) = Xlul = 0.(5.9)

This yields that (TlKlαg, ul) = 0 for g ∈ C∞
0 ((0, 2L)). Hence the lemma is

proved in exactly the same way as in the proof of Lemma 4.6, if we make

use of Lemma 5.4.

The next lemma is obtained from Lemma 4.7. We skip the proof.

Lemma 5.6. Assume that f ∈ L2
com(IL). Then one has:

(1) Assume that l = 0 or 1. If f satisfies (Tlf, ul) = 0, then Fl0f ∈
L2(R2

+) and ‖Fl0f‖ ≤ c ‖f‖. If, conversely, Fl0f ∈ L2(R2
+), then (Tlf, ul)

= 0.

(2) If l 6= 0, 1, then ‖Fl0f‖ ≤ c ‖f‖ uniformly in l.

5.3. We proceed to the study on the behavior at low energy of R(λ+

i0;Kα). We use similar notations L2
com(ΣL), B(L2

com(ΣL) → L2
loc(R

2)) and

Op(O(kγ)) with natural modifications for the domain ΣL = {x ∈ R2 :

|x| < 2L} with L� 1 fixed again. Let Ul, l ∈ Z, be defined by

Ulf(r) = (2π)−1/2

∫ 2π

0
r1/2f(rθ)e−ilθ dθ : L2

loc(R
2) −→ L2

loc(R+).

If f, g ∈ L2(R2), then

(f, g)L2(R2) =
∑

l∈Z

(Ulf, Ulg)L2(R+)
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and the formal adjoint operator U∗
l is calculated as

U∗
l g(x) = (2π)−1/2r−1/2g(r)eilθ : L2

loc(R+) −→ L2
loc(R

2).

We now define the following operators:

G0 =
∑

l∈Z

U∗
l Fl0Ul =

∑

l∈Z

U∗
l El0TlUl,

G2 =
∑

l∈Z

U∗
l Fl2Ul =

∑

l∈Z

U∗
l T

∗
l El2TlUl

and G1(±k) = Z0(±k) + Z1(±k), where

Zl(±k) = U∗
l Fl1(±k)Ul = U∗

l T
∗
l El1(±k)Tl(±k)Ul.

We further define

ũl(x) = (U∗
l T

∗
l ul) (x), l = 0, 1.(5.10)

By (5.9), ũl(x) solves the equationKαũl = U∗
l KlαT

∗
l ul = 0. The next lemma

is obtained as an immediate consequence of Lemma 5.3.

Lemma 5.7. (1) R(k2 ± i0;Kα) has the asymptotic expansion

R(k2 ± i0;Kα) = G0 +G1(±k) + k2G2 +Op(o(k2))

in B(L2
com(ΣL) → L2

loc(R
2)).

(2) G0 and G2 are formally self-adjoint.

(3) Zl(k), l = 0, 1, belongs to Op(O(k2ν)) as an operator in B(L2
com(ΣL)

→ L2
loc(R

2)). It satisfies Z∗
l (k) = Zl(−k) and acts as

Zl(k)f(x) = γl(k)(Tl(k)Ulf, ul)L2(R+)ũl(x)

for f ∈ L2
com(ΣL), γl(k) being again as in Proposition 4.1.

The following two lemmas also follow from Lemmas 5.4 and 5.6 at once.

Lemma 5.8. Let ũl be as above. Assume that f, g ∈ L2
com(ΣL). If

f satisfies (f, ũl) = 0 (and hence Zl(k)f = 0 by (5.3)), then (G2f, g) =

(G0f,G0g).
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Lemma 5.9. Assume that f ∈ L2
com(ΣL). Then G0f takes the form

G0f =

1
∑

l=0

U∗
l Fl0Ulf + g, g ∈ L2(R2).

If f satisfies (f, ũl) = 0 for l = 0, 1, then G0f ∈ L2(R2) and obeys

‖G0f‖ ≤ c ‖f‖ for c > 0 independent of f . If, conversely, G0f ∈ L2(R2),

then (f, ũl) = 0.

We conclude the section by proving the following lemma.

Lemma 5.10. (1) ∇G0 and ∇G2 belong to B(L2
com(ΣL) → L2

loc(R
2)),

and ∇Zl(±k) is of class Op(O(k2ν)).

(2) ∇G(±k) ∈ Op(o(k2)), where

G(±k) = R(k2 ± i0;Kα) −G0 −G1(±k) − k2G2.

Proof. The lemma follows by elliptic estimate. We prove (2) only. We

first note that KlαFl0 = Id on L2
com(ΣL). By Lemma 5.5, KlαFl2 = Fl0, and

by (5.9), KlαFl1(k) = 0. These relations yield

KαG0 = Id, KαG1(k) = 0, KαG2 = G0

on L2
com(ΣL). Hence G(k) obeys

(Kα − k2)G(k) = k2G1(k) + k4G2.

Since G(k) ∈ Op(o(k2)) by Lemma 5.7, (2) is obtained by elliptic estimate.

§6. Resolvent estimate at low energy

In this section we study the behavior as λ→ 0 of R(λ+ i0;H). Recall

that W = H − Kα, W ∗ = W , is a first order differential operator having

smooth coefficients with support in {x ∈ R2 : |x| < 2}. We may assume

that L� 1 is chosen so large that

χLW = WχL = W, χL(x) = χ(|x|/L).(6.1)

By the resolvent identity, we have

χLR(k2 + i0;H)χL = χLR(k2 + i0;Kα)
(

Id −WχLR(k2 + i0;H)
)

χL
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and hence

χLR(k2 + i0;H)χL =
(

Id + χLR(k2 + i0;Kα)W
)−1

χLR(k2 + i0;Kα)χL,

provided that the inverse

(

Id + χLR(k2 + i0;Kα)W
)−1

: L2(R2) −→ L2(R2)(6.2)

exists. Thus the problem is reduced to analysing the behavior as k → 0 of

the inverse on the right side. To do this, we follow the idea due to Jensen-

Kato [7], although technical details are different in many aspects. We often

use the following proposition in the argument below.

Proposition 6.1. Let Xj , Yj , j = 0, 1, be vector spaces and let A :

X1 → Y1. Assume that B : X0 → X1 is surjective and C : Y1 → Y0 is

injective. Define A = CAB : X0 → Y0. If A−1 exists, then A−1 = BA−1C.

Proof. The lemma is due to [7, Lemma 3.12]. We repeat the argument

there. Let D = BA−1C : Y1 → X1. Then

CAD = CABA−1C = AA−1C = C.

Since C is injective, it follows that AD = Id. On the other hand, we have

DAB = BA−1CAB = BA−1A = B.

Since B is surjective, we obtain DA = Id. This proves the proposition.

6.1. Let G0 = K−1
α be as in Lemma 5.7. We define the subspace M of

L2(R2) by

M = {u ∈ L2(R2) : (Id + χLG0W )u = 0}.

Since χLG0W : L2(R2) → L2(R2) is compact, the dimension of the space

M is finite dimM <∞. We further introduce another subspace of L2
−1(R

2).

Since G0W : L2
−1(R

2) → L2
−1(R

2) is well defined, we can define

E = {u ∈ L2
−1(R

2) : (Id +G0W )u = 0}.

Lemma 6.1. If v = G0Wu for u ∈ C∞(R2), then G0Kαv = v.
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Proof. By assumption, Kαv = Wu ∈ C∞
0 (R2). We set w = G0Kαv−v.

Then w belongs to L2
−1(R

2) and it solves the equation Kαw = Kα(G0Kαv−
v) = 0. However such a solution identically vanishes by Proposition 5.1. This

proves the lemma.

Lemma 6.2.

(1) G0W : M → E is injective and surjective.

(2) χL : E → M is also injective and surjective.

Proof. (1) Let u ∈ M and set v = G0Wu. We assert that v ∈ E . If

u ∈ M, then u ∈ C∞
0 (R2) by the regularity property for solutions to elliptic

equations. Since v satisfies Kαv = Wu ∈ C∞
0 (R2), we have Kαv +Wv =

W (u+ χLG0Wu) = 0 by (6.1). Hence it follows from Lemma 6.1 that

v +G0Wv = G0 (Kαv +Wv) = 0.

This proves that v ∈ E . If G0Wu = 0 for u ∈ M, then u = −χLG0Wu =

0 and hence G0W is shown to be injective. We shall show that G0W is

surjective. Let v ∈ E . We set u = −χLv. Then u belongs to L2(R2) and

satisfies

(Id + χLG0W )u = −(Id + χLG0W )χLv = −χL(v +G0Wv) = 0.

Hence u ∈ M and we have

v = −G0Wv = −G0WχLv = G0Wu.

This proves that G0W is surjective. (2) By (1), dim E = dimM < ∞. We

have already shown that χL : E → M is well defined. It is easy to see that

χL is injective. This proves (2).

Let ũl be defined by (5.10). We further define the following two sub-

spaces:

M0 = {u ∈ M : (u,Wũl) = 0, l = 0, 1}, E0 = {u ∈ E : u ∈ L2(R2)}.

Obviously u ∈ E0 means that u is a bound state of H associated with zero

eigenvalue.

Lemma 6.3.

(1) G0W : M0 → E0 is injective and surjective.

(2) χL : E0 → M0 is also injective and surjective.
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Proof. (1) We set v = G0Wu for u ∈ M0. Since (Wu, ũl) = (u,Wũl)

= 0, it follows from Lemma 5.9 that v ∈ L2(R2), and v obeys Hv = 0. Thus

G0W : M0 → E0 is well defined. It is easy to see that G0W is injective.

To prove that it is surjective, we again set u = −χLv for v ∈ E0. Then

v is represented as v = G0Wu ∈ L2(R2). Hence it follows again from

Lemma 5.9 that (Wu, ũl) = 0 for l = 0, 1. This implies that u ∈ M0 and

G0W is shown to be surjective. (2) This is verified in the same way as used

to prove Lemma 6.2 (2).

Lemma 6.4. The geometric null space M coincides with the algebraic

null space of the operator Id + χLG0W acting on L2(R2).

Proof. To prove the lemma, it suffices to show that: If u = (Id +

χLG0W )u1 ∈ M for some u1 ∈ L2(R2), then u = 0. To see this, we

calculate

(u,Wu) = ((Id + χLG0W )u1,Wu) = (u1,W (Id + χLG0W )u) = 0.

Since u ∈ M satisfies Wu = −WG0Wu, we have (Wu,G0Wu) = 0. Set v =

G0Wu ∈ L2
−1(R

2). Then Kαv = Wu and hence (Kαv, v) = 0. This enables

us to repeat the the same argument as in the proof of Proposition 5.1. We

can show that v = 0, which implies that u = −χLG0Wu = −χLv = 0. Thus

the proof is complete.

As a consequence of Lemma 6.4, we obtain that: (1) There exists a

projection (not necessarily orthogonal) Q : L2(R2) → M, Q2 = Q, on the

space M. (2) There exists a bounded operator Y3 : L2(R2) → L2(R2) such

that

(Id + χLG0W )Y3 = Y3(Id + χLG0W ) = Id −Q, QY3 = Y3Q = 0.(6.3)

Let

P0 : L2(R2) → E0, P 2
0 = P0, P ∗

0 = P0

be the orthogonal projection onto the zero eigenstate E0 of H.

Lemma 6.5. Let G2 be as in Lemma 5.7. Then P0WG2WP0 = P0.

Proof. Since P0f = −G0WP0f ∈ L2(R2) for f ∈ L2(R2), we obtain

by Lemma 5.9 that (WP0f, ũl) = 0 for l = 0, 1. Hence it follows from

Lemma 5.8 that

(P0WG2WP0f, g) = (G2WP0f,WP0g) = (P0f, g)

for any f, g ∈ L2(R2). This proves the lemma.
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Lemma 6.6. Let D0 : L2(R2) → L2(R2) be defined by D0 =

χLP0WG2WQ. Then D0 has the following properties:

D2
0 = D0, D0Q = D0, QD0 = D0.

Proof. We first note that QχLP0 = χLP0, which is an immediate con-

sequence of Lemma 6.3. Hence a simple calculation using Lemma 6.5 yields

the relations in the lemma.

The above lemma enables us to define the family of projections as

Γ1 = (Id −D0)Q, Γ2 = D0Q, Γ3 = Id −Q(6.4)

with the properties

Γ1 + Γ2 + Γ3 = Id, ΓiΓj = δijΓj,(6.5)

δij being the Kronecker notation. We see that Γ2 : L2(R2) → M0 is the

projection on M0. This follows from Lemma 6.3, because χLP0 = D0χLP0

by Lemma 6.5. We decompose M and E as M = M0⊕M1 and E = E0⊕E1,

where M1 = Γ1(M) and E1 = G0W (M1). By Lemma 6.3 again, dimM1 =

dim E1 ≤ 2, and the mappings G0W : M1 → E1 and χL : E1 → M1

are injective and surjective. An element u ∈ E1, u 6∈ L2(R2), is called a

resonance state at energy zero of H.

Lemma 6.7.

(1) (Id + χLG0W )Γ1 = 0, (Id + χLG0W )Γ2 = 0.

(2) Γ∗
1W (Id + χLG0W ) = 0, Γ∗

2W (Id + χLG0W ) = 0.

Proof. (1) is obvious by definition, and (2) easily follows by adjoint, if

(6.1) is taken into account.

Lemma 6.8. Let G1(±k) = Z0(±k) + Z1(±k) be as in Lemma 5.7.

Then one has Γ∗
2WZl(±k)WΓ2 = 0 and

Γ∗
1WZl(±k)WΓ2 = 0, Γ∗

2WZl(±k)WΓ1 = 0,

Γ3WZl(±k)WΓ2 = 0, Γ∗
2WZl(±k)WΓ3 = 0.

Proof. If u ∈ M0, then (TlUlWu,ul)L2(R+) = (u,Wũl)L2(R2) = 0.

This, together with (5.3), implies that

Zl(±k)Wu = U∗
l Fl1(±k)UlWu = U∗

l T
∗
l El1(±k)Tl(±k)UlWu = 0

and hence Zl(±k)WΓ2 = 0. Since Z∗
l (k) = Zl(−k), we have Γ∗

2WZl(±k)
= 0 by adjoint. Thus all the relations in the lemma follow at once.
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Lemma 6.9.

Γ∗
2WG2WΓ1 = 0, Γ∗

1WG2WΓ2 = 0.

Proof. The second relation follows from the first one by adjoint. To

prove the first relation, we calculate:

(WG2WΓ1f,Γ2g) = (WG2WΓ1f, χLP0WG2WQg)

= (χLP0WG2WΓ1f,WG2WQg)

= (D0QΓ1f,WG2WQg)

= (Γ2Γ1f,WG2WQg) = 0

for any f, g ∈ L2(R2). This completes the proof.

Lemma 6.10. (1) Γ3(Id + χLG0W )Γ3 has the bounded inverse

Y3 = (Γ3(Id + χLG0W )Γ3)
−1 : Ran Γ3 −→ Ran Γ3.

(2) Γ∗
2WG2WΓ2 has the bounded inverse

Y2 = (Γ∗
2WG2WΓ2)

−1 : Ran Γ∗
2 −→ Ran Γ2.

Proof. (1) This is nothing but (6.3). (2) Since dim Ran Γ2 = dim Ran Γ∗
2

<∞, it is enough to show that: If Γ∗
2WG2WΓ2u = 0 for u ∈ L2(R2), then

Γ2u = 0. Since Γ2u ∈ M0, (WΓ2u, ũl) = 0 for l = 0, 1. Hence it follows

from Lemma 5.8 that

(G0WΓ2u,G0WΓ2u) = (G2WΓ2u,WΓ2u) = 0,

so that G0WΓ2u = 0. By Lemma 6.3, G0W : M0 → E0 is injective. This

yields Γ2u = 0 and the proof is complete.

6.2. We analyse the inversion of Γ∗
1WG1(k)WΓ1 : Ran Γ1 → Ran Γ∗

1.

This is separately done according as dim E1 = 0, 1 or 2. We first discuss the

case dim E1 = 2. Let P1 : L2(R2) → M1 be the orthogonal projection on

M1, dimM1 = 2. We set

ψl = P1Wũl ∈ M1, l = 0, 1,(6.6)

for ũl defined by (5.10). Then ψ0 and ψ1 are linearly independent and span

M1. We further introduce ηl ∈ M1, l = 0, 1, with property (ψi, ηj) = δij



130 H. TAMURA

for 0 ≤ i, j ≤ 1, and we define the projection Ql, l = 0, 1, as Ql = ( · , η∗l )ηl,

where η∗l ∈ L2(R2) denotes the basis dual to ηl such that (ηi, η
∗
j ) = δij and

η∗l ⊥ Ran Γ2 ⊕ Ran Γ3, Ran Γ2 = M0.

The projection Ql, l = 0, 1, is easily shown to have the following properties:

Q0 +Q1 = Γ1, QiQj = δijQj , 0 ≤ i, j ≤ 1.

Lemma 6.11. If i 6= j, 0 ≤ i, j ≤ 1, then

Zi(±k)WQj = 0, Q∗
jWZi(±k) = 0.

Proof. If i 6= j, then

(TiUiWηj, ui)L2(R+) = (ηj ,W ũi)L2(R2) = (ηj , P1Wũi) = (ηj , ψi) = 0.

This, together with (5.3), implies that Ei1(±k)Ti(±k)UiWηj = 0, and hence

Zi(±k)WQjf = (f, η∗j )U
∗
i T

∗
i Ei1(±k)Ti(±k)UiWηj = 0

for f ∈ L2(R2). Thus the first relation is obtained. The second one follows

by adjoint at once.

Lemma 6.12. Q∗
lWZl(k)WQl, l = 0, 1, takes the form

Q∗
lWZl(k)WQl = γl(k)(1 +O(k2ν))( · , η∗l )η∗l

and it has the inverse of the form

(Q∗
lWZl(k)WQl)

−1 = k−2ν(1 +O(k2ν))Yl : RanQ∗
l −→ RanQl,

where Yl = κl( · , ηl)ηl with

κl = − ((l + ν)Γ(1 + ν)/2νΓ(1 − ν)) 22νeiνπ, l = 0, 1.

Proof. By (5.4), we have

(Tl(k)UlWηl, ul)L2(R+) = (TlUlWηl, ul)L2(R+) +O(k2ν)

= (ηl, ψl)L2(R2) +O(k2ν) = 1 +O(k2ν).

This, together with Lemma 5.7 (3), yields that

Q∗
lWZl(k)WQlf = γl(k)(f, η

∗
l )(Tl(k)UlWηl, ul)L2(R+)(Wũl, ηl)η

∗
l

= γl(k)(1 +O(k2ν))|(ψl, ηl)|2(f, η∗l )η∗l
for any f ∈ L2(R2). Thus Q∗

lWZl(k)WQl takes the desired form. By (4.5),

1/γl(k) behaves like 1/γl(k) = κlk
−2ν(1 + O(k2ν)) as k → 0. Hence the

inverse also has the form in the lemma and the proof is complete.
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We set Q2 = Γ2 and Q3 = Γ3. Then the family {Qj}3
j=0 of projections

has properties similar to those in (6.5). We are now in a position to apply

Proposition 6.1 to the operator

A = Id + χLR(k2 + i0;Kα)W : X1 −→ Y1

with X1 = Y1 = L2(R2) under the situation

B = (k−αQ0, k
−(1−α)Q1, k

−1Q2, Q3) : X0 −→ X1(6.7)

C = t(k−αQ∗
0W,k

−(1−α)Q∗
1W,k

−1Q∗
2W,Q3) : Y1 −→ Y0,(6.8)

where

X0 =
3
∑

j=0

⊕RanQj, Y0 =





2
∑

j=0

⊕RanQ∗
j



⊕ RanQ3.

By Lemmas 5.7 and 5.10, A has an asymptotic expansion in B(X1 → Y1),

and it follows from Lemmas 6.7 ∼ 6.12 that the matrix notation A = CAB :

X0 → Y0 associated with A has the inverse of the form

A−1 =









Y0 0 0 0

0 Y1 0 0

0 0 Y2 0

0 0 0 Y3









+Op(o(k0))

in B(Y0 → X0). It is obvious that B is surjective. We shall show that C is

injective. Assume that Cu = 0 for u ∈ L2(R2). Since Q3u = 0, u is in M
and hence Qu = u. We further have Q∗Wu = (Q∗

0 +Q∗
1 +Q∗

2)Wu = 0. This

implies that

(Wu,G0Wu) = (Wu,χLG0Wu) = −(Wu,u) = −(Wu,Qu) = 0.

If we set v = G0Wu, then v ∈ L2
−1(R

2) and (Kαv, v) = 0. We can obtain

v = 0 by the same argument as in the proof of Proposition 5.1, and hence it

follows that u = −χLG0Wu = −χLv = 0. Thus C is shown to be injective.

Hence the inverse A−1 = BA−1C is expanded as

A−1 = k−2αQ0Y0Q
∗
0W + k−2(1−α)Q1Y1Q

∗
1W

+k−2Q2Y2Q
∗
2W +Q3Y3Q3 +B

(

Op(o(k0))
)

C,



132 H. TAMURA

so that R(k2 + i0;H) takes the form

χLR(k2 + i0;H)χL(6.9)

=
(

k−2αQ0Y0Q
∗
0 + k−2(1−α)Q1Y1Q

∗
1

)

WR(k2 + i0;Kα)χL

+
(

k−2Q2Y2Q
∗
2W +Q3Y3Q3

)

χLR(k2 + i0;Kα)χL

+B
(

Op(o(k0))
)

CχLR(k2 + i0;Kα)χL.

6.3. Next we consider the case dim E1 = 1. Let P1 : L2(R2) → M1 be

again the orthogonal projection on M1 and let ψl, l = 0, 1, be defined by

(6.6). Since dimM1 = 1, at least one of ψ0 and ψ1 never vanishes. Assume

that ψ0 6= 0. Then ψ0 spans M1, and there exists σ ∈ C such that

ψ1 = σψ0.(6.10)

We normalize ψ0 as η0 = ψ0/(ψ0, ψ0) ∈ M1, so that (ψ0, η0) = 1 and

hence (ψ1, η0) = σ. We further denote by η∗0 ∈ L2(R2) the basis dual

to η0 such that (η0, η
∗
0) = 1 and η∗0 ⊥ Ran Γ2 ⊕ Ran Γ3, and we define

the projection Q̃0 = ( · , η∗0)η0 : L2(R2) → M1. If ψ0 = 0 (and hence

ψ1 6= 0), then we take η1 and η∗1 in the same way as above and define

Q̃1 = ( · , η∗1)η1 : L2(R2) → M1.

Lemma 6.13. (1) Assume that ψ0 = P1Wũ0 6= 0. Let σ be as above.

Then Q̃∗
0WG1(k)WQ̃0 has the inverse of the form

(

Q̃∗
0WG1(k)WQ̃0

)−1
= (1 + o(1))Y0(k) : Ran Q̃∗

0 −→ Ran Q̃0,

where Y0(k) =
(

γ0(k) + |σ|2γ1(k)
)−1

( · , η0)η0.

(2) If ψ0 = 0, then

(

Q̃∗
1WG1(k)WQ̃1

)−1
= (1 + o(1))Y1(k) : Ran Q̃∗

1 −→ Ran Q̃1,

where Y1(k) = γ1(k)
−1( · , η1)η1.

Proof. We prove (1) only. (2) is verified in the same way. As in the

proof of Lemma 6.12, we calculate

Q̃∗
0WZ0(k)WQ̃0f = γ0(k)(1 + o(1))|(ψ0, η0)|2(f, η∗0)η∗0

Q̃∗
0WZ1(k)WQ̃0f = γ1(k)(1 + o(1))|(ψ1, η0)|2(f, η∗0)η∗0

for f ∈ L2(R2). Thus the desired relation is obtained.
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We discuss the case α = 1/2 in detail. Assume that ψ0 6= 0. If α = 1/2,

then ν = |l − α| = 1/2 for l = 0, 1, and the operator Y0(k) in Lemma 6.13

is represented as

Y0(k) = k−1(1 + o(1))Ỹ0,

where

Ỹ0 = κ( · , η0)η0, κ = − (Γ(3/2)/Γ(1/2))
(

1 + |σ|2/3
)−1

eiπ/2.(6.11)

We again set Q2 = Γ2 and Q3 = Γ3, and apply Proposition 6.1 to

A = Id + χLR(k2 + i0;Kα)W : X1 −→ Y1

with X1 = Y1 = L2(R2) under the situation

B = (k−1/2Q̃0, k
−1Q2, Q3) : X0 −→ X1,

C = t(k−1/2Q̃∗
0W,k

−1Q∗
2W,Q3) : Y1 −→ Y0,

where

X0 = Ran Q̃0 ⊕ RanQ2 ⊕ RanQ3, Y0 = Ran Q̃∗
0 ⊕ RanQ∗

2 ⊕ RanQ3.

Then the matrix notation A = CAB has the inverse of the form

A−1 =





Ỹ0 0 0

0 Y2 0

0 0 Y3



+Op(o(k0))

in B(Y0 → X0), and A−1 is expanded as

A−1 = k−1Q̃0Ỹ0Q̃
∗
0W + k−2Q2Y2Q

∗
2W +Q3Y3Q3 +B

(

Op(o(k0))
)

C.

Thus we have

χLR(k2 + i0;H)χL = k−1Q̃0Ỹ0Q̃
∗
0WR(k2 + i0;Kα)χL(6.12)

+
(

k−2Q2Y2Q
∗
2W +Q3Y3Q3

)

χLR(k2 + i0;Kα)χL

+B
(

Op(o(k0))
)

CχLR(k2 + i0;Kα)χL,

provided that α = 1/2 and ψ0 6= 0. If ψ0 = 0, the operator Y1(k) in

Lemma 6.13 takes the form

Y1(k) = k−1(1 + o(1))Ỹ1, Ỹ1 = κ̃( · , η1)η1
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with κ̃ = −(3Γ(3/2)/Γ(1/2))eiπ/2 . Similarly we obtain

χLR(k2 + i0;H)χL = k−1Q̃1Ỹ1Q̃
∗
1WR(k2 + i0;Kα)χL

+
(

k−2Q2Y2Q
∗
2W +Q3Y3Q3

)

χLR(k2 + i0;Kα)χL

+B
(

Op(o(k0))
)

CχLR(k2 + i0;Kα)χL.

We briefly discuss the case α 6= 1/2. Let 0 < α < 1/2 and assume that

ψ0 6= 0. Then α < 1 − α and Y0(k) takes the form

Y0(k) = k−2α(1 + o(1))Ỹ0α,

where

Ỹ0α = κα( · , η0)η0, κα = − (Γ(1 + α)/2Γ(1 − α)) 22αeiαπ.(6.13)

We repeat the same argument as in the case α = 1/2 to obtain that

χLR(k2 + i0;H)χL = k−2αQ̃0Ỹ0αQ̃
∗
0WR(k2 + i0;Kα)χL

+
(

k−2Q2Y2Q
∗
2W +Q3Y3Q3

)

χLR(k2 + i0;Kα)χL

+B
(

Op(o(k0))
)

CχLR(k2 + i0;Kα)χL,

where

B = (k−αQ̃0, k
−1Q2, Q3), C = t(k−αQ̃∗

0W,k
−1Q∗

2W,Q3).

If ψ0 = 0, then

Y1(k) = k−2(1−α)(1 + o(1))Ỹ1α, Ỹ1α = κ̃α( · , η1)η1

with

κ̃α = − ((2 − α)Γ(2 − α)/2(1 − α)Γ(α)) 22(1−α)ei(1−α)π

and we have

χLR(k2 + i0;H)χL = k−2(1−α)Q̃1Ỹ1αQ̃
∗
1WR(k2 + i0;Kα)χL(6.14)

+
(

k−2Q2Y2Q
∗
2W +Q3Y3Q3

)

χLR(k2 + i0;Kα)χL

+B
(

Op(o(k0))
)

CχLR(k2 + i0;Kα)χL,

where

B = (k−(1−α)Q̃1, k
−1Q2, Q3), C = t(k−(1−α)Q̃∗

1W,k
−1Q∗

2W,Q3).
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A similar argument applies to the case 1/2 < α < 1. We skip the details.

Finally we consider the case dim E1 = 0. This is the most simple case.

If we again repeat the same argument as above, we have

χLR(k2 + i0;H)χL(6.15)

=
(

k−2Q2Y2Q
∗
2W +Q3Y3Q3

)

χLR(k2 + i0;Kα)χL

+B
(

Op(o(k0))
)

CχLR(k2 + i0;Kα)χL,

where B = (k−1Q2, Q3) and C = t(k−1Q∗
2W,Q3).

§7. Behavior at low energy of scattering amplitude

In this section we study the behavior as λ → 0 of the scattering am-

plitude f(ω → ω′;λ). The argument is again divided into the three cases

according as dim E1 = 0, 1 or 2. Let DM = [Hα, χ∞M ] be defined by (3.6),

M > 2 being fixed. We again take L � 1 so large that χLDM = DMχL =

DM .

7.1. We first discuss the case dim E1 = 2. We set ourselves under the

situation in subsection 6.2 and use the same notations with the meanings

ascribed there. We define

ρl = G0Wηl, l = 0, 1.

Since ηl ∈ M1, it follows from Lemmas 6.2 and 6.3 that ρl ∈ E1, and

Lemma 5.9 implies that ρl takes the form

ρl =
∑

j∈Z

U∗
j Fj0UjWηl =

∑

j=0,1

U∗
j Ej0TjUjWηl + g

for some g ∈ L2(R2). By (5.6), we have

(TjUjWηl)(r) = ((Id −WjFj0)UjWηl) (r).

Recall that Wl(r) = 0 for r > 2 and the coefficients of the differential

operator W = H − Kα also vanishes for r = |x| > 2. Hence we have

(TjUjWηl)(r) = 0 for r > 2. Let (ul, vl) be the pair of linearly independent

solutions defined in subsection 4.1. If r > 2, then we calculate

(Ej0TjUjWηl) (r) = (TjUjWηl, uj)L2(R+)vj(r)

= (ηl,WU∗
j T

∗
j uj)L2(R2)vj(r)

= (ηl,W ũj)vj(r) = (ηl, ψj)vj(r) = δljvj(r)
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for j = 0, 1. Thus ρl(x) is represented as

ρl(x) = (U∗
l vl)(x) + g = (2π)−1/2r−1/2vl(r)e

ilθ + g(7.1)

= (2π(l + ν))−1/2 r−νeilθ + g

with another g ∈ L2(R2). Since ρl ∈ E1 satisfies Hρl = 0 as a resonance

function at energy zero and since

Hr−νeilθ = Kαr
−νeilθ = (2π)1/2U∗

l Klαr
−ν+1/2 = 0

for r = |x| > 2, the remainder term g in (7.1) also satisfies Hg = Kαg = 0

for |x| > 2.

Lemma 7.1. Let ϕ∓(x;λ, ω) be the generalized eigenfunction of Hα.

Then

(ρl,DMϕ+( · ;λ, ω)) = −(−1)l2νµl (2π/(l + ν))1/2 eiνπ/2eilωkν +O(k),

(ρl,DMϕ−( · ;λ, ω)) = −2νµl (2π/(l + ν))1/2 e−iνπ/2eilωkν +O(k)

as k = λ1/2 → 0, where µl = 2−ν/Γ(1 + ν), ν = |l − α|.

Proof. We prove the first relation only. The second one can be verified

in exactly the same way. For notational brevity, we write ϕ+ for ϕ+(x;λ, ω).

Since Hα = (−i∇ − Bα)2 is rotationally invariant, DM = [Hα, χ∞M ] is a

differential operator of variable r only. By definition (3.4) of ϕ+, we have

DMϕ+ =
∑

l=0,1

(−1)le−iνπ/2µle
il(θ−ω)kνDMrν + oL2(k),(7.2)

where OL2(kγ) denotes a L2-valued function of which the L2 norm obeys

the bound O(kγ) as k → 0. Since Kα = Hα for |x| > M > 2 and

χ∞MHαr
νeilθ = 0, it follows that

DMrν = e−ilθDMe
ilθrν = e−ilθ[Hα, χ∞M ]eilθrν = e−ilθKαe

ilθχ∞Mr
ν .

If g ∈ L2(R2) satisfies Hg = Kαg = 0 for |x| > M , then

(g,Kαχ∞Mr
νeilθ) = 0, l = 0, 1,

and hence (g,DMϕ+) = o(k). Thus the scalar product (ρl,DMϕ+) under

consideration obeys

(ρl,DMϕ+) = (−1)l (2π(l + ν))−1/2 µle
iνπ/2eilω(r−νeilθ,Kαχ∞Mr

νeilθ)kν

+o(k)



MAGNETIC SCATTERING IN TWO DIMENSIONS 137

by (7.1). If we take account of relation Klαr
−ν+1/2 = 0 for r > 2, then a

simple calculation using integration by parts shows that

(r−νeilθ,Kαχ∞Mr
νeilθ)L2(R2) = 2π(r−ν+1/2,Klαχ∞Mr

ν+1/2)L2(R+)

= −4νπ.

This proves the desired relation.

Lemma 7.2. Let ‖ ‖ denote the L2 norm in L2(R2). Then one has:

(1) ‖k−νQ∗
lWR(k2 + i0;Kα)DMϕ+( · ;λ, ω)‖ = O(1), l = 0, 1.

(2) ‖k−1Q∗
2WR(k2 + i0;Kα)DMϕ+( · ;λ, ω)‖ = o(1).

(3) ‖Q3χLR(k2 + i0;Kα)DMϕ+( · ;λ, ω)‖ = o(1).

Proof. We again write ϕ+ for ϕ+(x;λ, ω). (1) We prove this for l = 0

only. Since Q∗
0WZ1(k) = 0 by Lemma 6.11, we have by Lemmas 5.7 and 5.10

that

‖k−αQ∗
0WR(k2 + i0;Kα)DMϕ+‖ = ‖k−αQ∗

0WG0DMϕ+‖ + o(1).

We calculate

Q∗
0WG0DMϕ+ = (WG0DMϕ+, η0)η

∗
0 = (DMϕ+, ρ0)η

∗
0 .

This, together with Lemma 7.1, implies (1). (2) As is seen from the proof

of Lemma 6.8, Q∗
2WZl(k) = 0. Hence it follows again from Lemmas 5.7

and 5.10 that

‖k−1Q∗
2WR(k2 + i0;Kα)DMϕ+‖ = ‖k−1Q∗

2WG0DMϕ+‖ + o(1).

Recall that Q2(= Γ2) : L2(R2) → M0 is the projection on the finite dimen-

sional space M0. If ψ ∈ M0, then G0Wψ ∈ E0 ⊂ L2(R2) by Lemma 6.3

and HG0Wψ = 0. Hence we can show as in the proof of Lemma 7.1 that

(WG0DMϕ+, ψ) = (DMϕ+, G0Wψ) = o(k).

This proves (2). (3) This follows from Lemma 5.7 and (7.2) at once.

Lemma 7.3.

(1) ‖k−νQ∗
lDMϕ−( · ;λ, ω)‖ = O(1), l = 0, 1.

(2) ‖k−1Q∗
2DMϕ−( · ;λ, ω)‖ = o(1).

(3) ‖Q∗
3DMϕ−( · ;λ, ω)‖ = o(1).
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Proof. The lemma is verified in almost the same way as Lemma 7.2.

(1) Since ηl ∈ M1, we have

Q∗
lDMϕ− = (DMϕ−, ηl)η

∗
l = −(DMϕ−, χLG0Wηl)η

∗
l = −(DMϕ−, ρl)η

∗
l .

Hence (1) follows from Lemma 7.1. (2) If ψ ∈ M0, then ψ + χLG0Wψ = 0

and hence

(DMϕ−, ψ) = −(DMϕ−, G0Wψ) = o(k).

This proves (2). (3) This again follows from (7.2) at once.

Let gα(ω → ω′;λ) be as in Proposition 3.1. We set

I(k) = (R(λ+ i0;H)DMϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)).

Then gα(ω → ω′;λ) = G/4π)I(k) with k = λ1/2. We analyse the behavior

as k → 0 of the scalar product I(k). Let B : X0 → X1 and C : Y1 → Y0

be as in (6.7) and (6.8), respectively. If T (k) is of class o(k0) as a bounded

operator in B(Y0 → X0), then we combine Lemmas 7.2 and 7.3 to obtain

that

(BT (k)CχLR(k2 + i0;Kα)DMϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)) = o(1)

and also it follows that

k−2(Q2Y2Q
∗
2WR(k2 + i0;Kα)DMϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)) = o(1),

(Q3Y3Q3χLR(k2 + i0;Kα)DMϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′)) = o(1).

Thus we use the expansion (6.9) of R(k2 + i0;H) to obtain that

I(k) =
∑

l=0,1

k−2ν(QlYlQ
∗
lWR(k2 + i0;Kα)DMϕ+( · ;λ, ω),DMϕ−( · ;λ, ω′))

+o(1).

We denote by Il(k), l = 0, 1, the two leading terms on the right side. By

Lemmas 5.7, 5.10 and 6.12, Il(k) is calculated as follows:

Il(k) = κlk
−2ν(DMϕ+( · ;λ, ω), ρl) × (ηl,DMϕ−( · ;λ, ω′)) + o(1)

= κlk
−2ν(DMϕ+( · ;λ, ω), ρl) × (−G0Wηl,DMϕ−( · ;λ, ω′)) + o(1)

= −κlk
−2ν(DMϕ+( · ;λ, ω), ρl) × (ρl,DMϕ−( · ;λ, ω′)) + o(1),
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where κl is the constant in Lemma 6.12. We further make use of Lemma 7.1

to obtain that

Il(k) =
(

−(−1)lκl(2νµl)
2 (2π/(l + ν)) e−iνπ + o(1)

)

eil(ω
′−ω)

with µl as in Lemma 7.1. The leading constant on the right side equals

−(−1)lκl(2νµl)
2 (2π/(l + ν)) e−iνπ = 4(−1)lπ/Γ(ν)Γ(1 − ν)

= 4(−1)l sin νπ.

Hence Proposition 3.1 shows that

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ
(

1 − ei(ω
′−ω)

)

+ o(1)
)

with c(λ) = (2π/i
√
λ)1/2. Thus the asymptotic formula at low energy of

f(ω → ω′;λ) is established, when dim E1 = 2.

7.2. We consider the case dim E1 = 1. We set ourselves under the

situation in subsection 6.3 and recall the notations there. Let ψl ∈ M1,

l = 0, 1, be defined by (6.6). If ψ0 6= 0, then ψ0 spans the one dimensional

space M1, and ψ0 and ψ1 are related through the relation ψ1 = σψ0 for

some σ ∈ C (see (6.10)). Set η0 = ψ0/(ψ0, ψ0) ∈ M1, so that (ψ0, η0) = 1

and hence (ψ1, η0) = σ. We now define ρ0 = G0Wη0 ∈ E1. Then ρ0 spans

E1, and it takes the form

ρ0(x) = (U∗
0 v0)(x) + σ(U∗

1 v1)(x) + g

= (2πα)−1/2r−α + σ(2π(2 − α))−1/2r−(1−α)eiθ + g, g ∈ L2(R2),

by the same calculation as in subsection 7.1. If ψ0 = 0 (and hence ψ1 6= 0),

then E1 is spanned by ρ1 = G0Wη1 behaving like

ρ1(x) = (U∗
1 v1)(x) + g = (2π(2 − α))−1/2r−(1−α)eiθ + g, g ∈ L2(R2).

In any case, the resonance space E1 is spanned by a function of the form

ρ(x) = c0r
−α + c1r

−(1−α)eiθ + g, g ∈ L2(R2),

with some pair (c0, c1), where g satisfies Hg = Kαg = 0 in |x| > 2.

We calculate the scalar product I(k) defined above. We again discuss

the case α = 1/2 in some detail. Assume that ψ0 6= 0. If α = 1/2, then

ρ0(x) = π−1/2r−1/2 + π−1/2(σ/
√

3)r−1/2eiθ + g
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and hence

c = c1/c0 = σ/
√

3(7.3)

for c0 6= 0. We make use of (6.12) and repeat the same argument as in

subsection 7.1 to obtain that

I(k) = −κk−1(DMϕ+( · ;λ, ω), ρ0) × (ρ0,DMϕ−( · ;λ, ω′)) + o(1)

with κ as in (6.11). The two scalar products on the right side are calculated

as

(ρ0,DMϕ+( · ;λ, ω)) = −µeiπ/4
(

1 − (σ/
√

3)eiω
)

k1/2(1 + o(1))

(ρ0,DMϕ−( · ;λ, ω)) = −µe−iπ/4
(

1 + (σ/
√

3)eiω
)

k1/2(1 + o(1))

in the same way as in the proof of Lemma 7.1, where µ = (2π)1/2/Γ(3/2).

Thus we have

I(k) =
4

1 + |c|2
(

1 − ce−iω
)(

1 + ceiω
′)

+ o(1)

by (7.3). Hence Proposition 3.1 implies that

f(ω → ω′;λ) = c(λ)

(

fα(ω′ − ω) +
i(1 − ce−iω)(1 + ceiω

′

)

π(1 + |c|2) + o(1)

)

,

when α = 1/2 and ψ0 6= 0. Even if ψ0 = 0 (and hence c0 = 0), this formula

remains true with c = ∞.

We briefly discuss the case α 6= 1/2. Assume that 0 < α < 1/2. If

ψ0 6= 0, then we have

I(k) = −καk
−2α(DMϕ+( · ;λ, ω), ρ0) × (ρ0,DMϕ−( · ;λ, ω′)) + o(1)

with κα as in (6.13). Since α < 1 − α, we can calculate the two scalar

products on the right side as follows:

(ρ0,DMϕ+( · ;λ, ω)) = −
(

α1/2π1/2/Γ(1 + α)
)

23/2−αeiαπ/2kα + o(kα),

(ρ0,DMϕ−( · ;λ, ω)) = −
(

α1/2π1/2/Γ(1 + α)
)

23/2−αe−iαπ/2kα + o(kα).

This yields that I(k) = 4 sinαπ + o(1) and hence

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ + o(1)
)

.
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If ψ0 = 0, then we have by (6.14) that

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) − (i/π) sinαπei(ω
′−ω) + o(1)

)

.

A similar argument applies to the case 1/2 < α < 1. We mention only the

result in the next subsection.

Finally, if dim E1 = 0, then we obtain

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + o(1)
)

by (6.15). If V (x) = 0, then it follows from Proposition 5.1 that dim E1 = 0

and hence f(ω → ω′;λ) obeys the asymptotic formula above.

7.3. We sum up the results obtained above in the main theorem. As-

sume that b, V ∈ C∞
0 (R2) : R2 → R are real smooth functions with

compact support and that the total flux α = (2π)−1
∫

b(x) dx satisfies

0 < α < 1. Then the main theorem is formulated as follows.

Theorem 7.1. Assume that the above assumptions are fulfilled. Let

fα(ω′ − ω) be as in Proposition 3.1 and let E1 denote the resonance space

at zero energy of the Hamiltonian H = H(A,V ). Set c(λ) = (2π/i
√
λ)1/2

again. Then the scattering amplitude f(ω → ω′;λ) for scattering from ini-

tial direction ω to final one ω′ at energy λ obeys the following asymptotic

formula as λ→ 0.

(1) If dim E1 = 2, then

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ
(

1 − ei(ω
′−ω)

)

+ o(1)
)

.

(2) Assume that dim E1 = 1. Let

ρ = c0r
−α + c1r

−(1−α)eiθ + g, g ∈ L2(R2),

be a resonance function spanning E1. Then one has:

(i) Assume that 0 < α < 1/2. If c0 6= 0, then

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sinαπ + o(1)
)

and if c0 = 0, then

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) − (i/π) sinαπei(ω
′−ω) + o(1)

)

.
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(ii) Assume that α = 1/2. Set c = c1/c0 (c = ∞ if c0 = 0). Then

f(ω → ω′;λ) = c(λ)

(

fα(ω′ − ω) +
i(1 − ce−iω)(1 + ceiω

′

)

π(1 + |c|2) + o(1)

)

.

(iii) Assume that 1/2 < α < 1. If c1 6= 0, then

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) − (i/π) sin απei(ω
′−ω) + o(1)

)

and if c1 = 0, then

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ + o(1)
)

.

(3) Assume that dim E1 = 0. Then

f(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + o(1)
)

.

Remark. We make a brief comment on the case α 6∈ Z. If α 6∈ Z, then

(−1)[α]f(ω → ω′;λ), [ ] being the Gauss notation, obeys the asymptotic

formula in the theorem.

§8. Scattering by magnetic field with small support

As a simple application of Theorem 7.1, we here study the scattering

by magnetic fields with small support. Let Hε be again defined by

Hε = H(Aε, Vε) = (−i∇−Aε)
2 + Vε, 0 < ε� 1,

where Vε(x) = ε−2V (x/ε) and Aε(x) = ε−1A(x/ε) with ∇ × Aε = bε =

ε−2b(x/ε). We denote by fε(ω → ω′;λ) the scattering amplitude for the

pair (Hε,H0). The next theorem is obtained as an immediate consequence

of Corollary 3.1 and Theorem 7.1.

Theorem 8.1. Let the notations and assumptions be as in Theo-

rem 7.1. Then the scattering amplitude fε(ω → ω′;λ), λ > 0 being fixed,

obeys the following asymptotic formula as ε→ 0.

(1) If dim E1 = 2, then

fε(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ
(

1 − ei(ω
′−ω)

))

+ o(1).

(2) Assume that dim E1 = 1. Let

ρ = c0r
−α + c1r

−(1−α)eiθ + g, g ∈ L2(R2),
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again denote a resonance function spanning E1. Then one has:

(i) Assume that 0 < α < 1/2. If c0 6= 0, then

fε(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ
)

+ o(1),

and if c0 = 0, then

fε(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) − (i/π) sinαπei(ω
′−ω)

)

+ o(1).

(ii) Assume that α = 1/2. Set c = c1/c0 (c = ∞ if c0 = 0). Then

fε(ω → ω′;λ) = c(λ)

(

fα(ω′ − ω) +
i(1 − ce−iω)(1 + ceiω

′

)

π(1 + |c|2)

)

+ o(1).

(iii) Assume that 1/2 < α < 1. If c1 6= 0, then

fε(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) − (i/π) sinαπei(ω
′−ω)

)

+ o(1),

and if c1 = 0, then

fε(ω → ω′;λ) = c(λ)
(

fα(ω′ − ω) + (i/π) sin απ
)

+ o(1).

(3) Assume that dim E1 = 0. Then

fε(ω → ω′;λ) = c(λ)fα(ω′ − ω) + o(1).

If, in particular, α = 1/2, then the theorem above shows the lack of

conservation of angular momentum in the limit ε → 0. For example, in-

coming particles with only l = 0 as angular momentum may have angular

momentum l = 1 after scattering by the field bε with support small enough.

When ε→ 0, Hε is formally convergent to the Hamiltonian

H0α = (−i∇−Bα)2, D(H0α) = C∞
0 (R2 \ {0}),

defined by (1.4). This has the δ-like magnetic field ∇ × Bα = 2παδ(x) at

the orgin. We discuss the relation between the limits in the above theorem

and the scattering amplitude for the Hamiltonian obtained as a self-adjoint

extension of H0α.
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We denote by H0α the closure of H0α. This is symmetric, but is not

self-adjoint. Let Σ± = Ker (H
∗
0α ∓ i). Then Σ± is spanned by ψ±l, l = 0, 1,

where

ψ+l(x) = τlKν(e
−iπ/4r)eilθ, ψ−l(x) = τle

iνπ/2Kν(e
iπ/4r)eilθ

with the modified Bessel function Kν(z) = (iπ/2)eiνπ/2Hν(iz). The con-

stant τl > 0 is determined by normalization ‖ψ±l‖L2(R2) = 1, and the phase

factor eiνπ/2 is taken so that ψ+l − ψ−l → 0 as r → 0. Thus the closure

H0α has its deficiency indices (2, 2). By the general theory due to Krein,

H0α has a family of self-adjoint extensions parameterized by 2 × 2 unitary

mapping from one deficiency space to the other one. Let

U = U(η, a, b) = eiη
(

a −b
b a

)

, |a|2 + |b|2 = 1, η ∈ R, a, b ∈ C,

be a 2× 2 unitary matrix. We denote by the same notation U the mapping

U : Σ+ → Σ− defined by

Uψ+ = ẽ0ψ−0 + ẽ1ψ−1, ψ+ = e0ψ+0 + e1ψ+1,

with t(ẽ0, ẽ1) = U t(e0, e1). Then, for given U = U(η, a, b), there exists a

self-adjoint extension HU
α such that

HU
α u = H0αv + iψ+ − iUψ+

with domain

D(HU
α ) = {u ∈ L2(R2) : u = v + ψ+ + Uψ+, v ∈ D(H0α), ψ+ ∈ Σ+}.

The unitary matrix U(η, a, b) specifies the boundary condition at the origin.

If, for example, U = U(0,−1, 0), then the domain D(HU
α ) is given by

D(HU
α ) =

{

u ∈ L2(R2) : H0αu ∈ L2(R2), lim
r→0

u(x) = 0
}

,

and this extension coincides withHα defined by (1.3). We denote by fU(ω →
w′;λ) the scattering amplitude for the pair (HU

α ,H0). It is defined through

the asymptotic behavior

u(x) = ei
√

λ x·ω +fU (ω → w′;λ)ei
√

λ rr−1/2 (1 + o(1)) , x = rω′, |x| → ∞,
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of the solution u(x) to equation (H0α − λ)u = 0, where u(x) satisfies the

boundary condition specified by U(η, a, b) at the origin. The scattering am-

plitude fU(ω → w′;λ) has been calculated in the recent work [2] and it takes

a rather complicated form. We do not copy the explicit form obtained there.

If, in particular, U = U(0,−1, 0), then fU(ω → ω′;λ) = c(λ)fα(ω′ − ω). As

previously stated, this is just the scattering amplitude calculated by [1]

(see [11] also). We mention only the results. According to the results in [2],

Theorem 8.1 is now reformulated as follows.

Theorem 8.2. Let the notations and assumptions be again as in The-

orem 7.1.

(1) If dim E1 = 2, then

lim
ε→0

fε(ω → ω′;λ) = fU(ω → ω′;λ)

with U = U(π/2, exp(i(1/2 − α)π), 0).

(2) Assume that dim E1 = 1. Then one has:

(i) Assume that 0 < α < 1/2. If c0 6= 0, then

lim
ε→0

fε(ω → ω′;λ) = fU(ω → ω′;λ)

with U = U((1 − α/2)π, exp(−iαπ/2), 0), and if c0 = 0, then

lim
ε→0

fε(ω → ω′;λ) = fU(ω → ω′;λ)

with U = U((1/2 + α/2)π, exp(i(1 − α)π/2),0).

(ii) Assume that α = 1/2 and set c = c1/c0 again. Then

lim
ε→0

fε(ω → ω′;λ) = fU(ω → ω′;λ)

with U = U(3π/4, a, b), where

a =
1√
2

(

1 − i
1 − |c|2
1 + |c|2

)

, b =
2ic√

2(1 + |c|2)
.

(iii) Assume that 1/2 < α < 1. If c1 6= 0, then

lim
ε→0

fε(ω → ω′;λ) = fU(ω → ω′;λ)

with U = U((1/2 + α/2)π, exp(i(1 − α)π/2),0), and if c1 = 0, then

lim
ε→0

fε(ω → ω′;λ) = fU(ω → ω′;λ)
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with U = U((1 − α/2)π, exp(−iαπ/2), 0).

(3) Assume that dim E1 = 0. Then

lim
ε→0

fε(ω → ω′;λ) = fU(ω → ω′;λ)

with U = U(0,−1, 0).

§9. Proof of Proposition 4.1

In this section we prove Proposition 4.1 and Lemma 4.4, which remain

unproved.

Proof of Proposition 4.1. As stated in Remark (3) after the proposition,

(2) has been already verified. We prove (1) and (3) for the + case only. The

− case follows by adjoint at once. The proof is rater long and it is divided

into several steps.

(i) Let Rl(r, p; k) be the integral kernel of R(k2 + i0;Xl), k > 0. The

kernel is given by

Rl(r, p; k) = −fl(r ∧ p; k)gl(r ∨ p; k)/W (fl, gl),

where

fl(r; k) =

{

r1/2Jl(kr) 0 < r ≤ 1

c1l(k)r
1/2Jν(kr) + c2l(k)r

1/2J−ν(kr) r > 1,

gl(r; k) =

{

d1l(k)r
1/2Jl(kr) + d2l(k)r

1/2Nl(kr) 0 < r ≤ 1

r1/2Hν(kr) r > 1,

Nl(z) being the Neumann function, and the four coefficients are determined

so as to satisfy the connecting conditions at r = 1. Since W (Jl, Nl)(z) =

2/πz and W (Jν , J−ν)(z) = −2 sin νπ/πz, the Wronskian W (fl, gl) is calcu-

lated as

W (fl, gl) = d2l(k)kW (Jl, Nl)(k) = 2d2l(k)/π

and the four coefficients above are determined as follows:

c1l(k) = (π/2 sin νπ)k(J−ν(k)J ′
l (k) − J ′

−ν(k)Jl(k)),

c2l(k) = (π/2 sin νπ)k(Jl(k)J
′
ν(k) − J ′

l (k)Jν(k)),

d1l(k) = (π/2)k(Hν(k)N ′
l (k) −H ′

ν(k)Nl(k)),

d2l(k) = (π/2)k(Jl(k)H
′
ν(k) − J ′

l (k)Hν(k)).
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Hence we have

Rl(r, p; k) = fl(r ∧ p; k)hl(r ∨ p; k),(9.1)

where

hl(r; k) = el(k)gl(k; r), el(k) = −π/2d2l(k).

(ii) We investigate only the case l = 0 or 1 in some detail. We first look

at the behavior as k → 0 of fl(r; k). Recall the representation for the pair

(ul, vl), l = 0, 1, of linearly independent solutions to Xlu = 0. If 0 < r ≤ 1,

then

fl(r; k) = (l + ν)1/2(k/2)l
(

ul(r) +O(k2)
)

.

By the asymptotic formula of Bessel functions, we have

c1l(k) = (π/2 sin νπ) ((l + ν)/Γ(1 − ν)) (k/2)l−ν
(

1 +O(k2)
)

,

c2l(k) = −(π/2 sin νπ) ((l − ν)/Γ(1 + ν)) (k/2)l+ν
(

1 +O(k2)
)

.

Since Γ(1+ν)Γ(1−ν) = νπ/ sin νπ, this implies that fl(r; k) still obeys the

same relation as above for r > 1 and hence we obtain

fl(r; k) = (l + ν)1/2(k/2)l
(

ul(r) +O(k2)
)

(9.2)

locally uniformly in r ≥ 0.

(iii) Let el(k) be as above. We study the behavior of el(k). Recall that

βl(k) in the proposition is defined by

βl(k) = − ((l − ν)Γ(1 − ν)/(l + ν)Γ(1 + ν)) e−iνπ(k/2)2ν(9.3)

and hence βl(k) = (c2l(k)/c1l(k))e
−iνπ

(

1 +O(k2)
)

. Since Hν(z) is repre-

sented by the formula

Hν(z) = (i/ sin νπ)
(

Jν(z)e−iνπ − J−ν(z)
)

,(9.4)

we have d2l(k) = i(c2l(k)e
−iνπ + c1l(k)), so that

d2l(k) = ic1l(k)(1 + βl(k))
(

1 +O(k2)
)

.

Thus el(k), l = 0, 1, behaves like

el(k) = i sin νπ (Γ(1 − ν)/(l + ν)) (1 + βl(k))
−1 (k/2)ν−l

(

1 +O(k2)
)

.(9.5)
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(iv) We analyse the behavior as k → 0 of hl(r; k) in (9.1). According to

(9.4), we decompose it into the sum of two terms hl = I+(r; k) − I−(r; k)

for r > 1, where

I+(r; k) = (i/ sin νπ)e−iνπel(k)Jν(kr)r1/2,

I−(r; k) = (i/ sin νπ)el(k)J−ν(kr)r1/2.

Since γl(k) = 2ν(l − ν)−1βl(k)(1 + βl(k))
−1, it follows from (9.5) that

I−(r; k) = −(l + ν)−1(1 + βl(k))
−1(k/2)−l

(

r−ν+1/2 +O(k2)
)

= −(l + ν)−1
(

1 − βl(k)(1 + βl(k))
−1
)

(k/2)−l
(

r−ν+1/2 +O(k2)
)

= −(l + ν)−1(k/2)−l
(

(1 + (1/2 − l/2ν)γl(k))r
−ν+1/2 +O(k2)

)

locally uniformly in r ≥ 1. If we use (9.3), we obtain in a similar way that

I+(r; k) = (l − ν)−1βl(k)(1 + βl(k))
−1(k/2)−l

(

rν+1/2 +O(k2)
)

= (l + ν)−1(k/2)−l
(

(1/2 + l/2ν)γl(k)r
ν+1/2 +O(k2)

)

.

Hence hl(r; k) behaves like

hl(r; k) = (l + ν)−1/2(k/2)−l
(

vl(r) + γl(k)ul(r) +O(k2)
)

for r > 1. This, together with (9.1) and (9.2), implies that

Rl(r, p; k) = ul(r ∧ p)vl(r ∨ p) + γl(k)ul(r)ul(p) +O(k2)(9.6)

locally uniformly in (r, p) ∈ [0,∞) × [0,∞), when r ∨ p ≥ 1.

(v) We represent hl(r; k) as

hl(r; k) = d1l(k)el(k)Jl(kr)r
1/2 − (π/2)Nl(kr)r

1/2

for 0 < r ≤ 1 and we continue to analyse its behavior as k → 0. We look

at the behavior of d1l(k)el(k). For brevity, we consider only the case l = 0.

The Neumann function N0(z) behaves like

(π/2)N0(z) = (γ + log(z/2))J0(z) +O(|z|2), |z| → 0,(9.7)

where γ is the Euler constant. Hence d10(k) obeys

d10(k) = −(2/π) (γ + log(k/2))d20(k) +Hν(k)J0(k) +O(k−ν+2).
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By (9.4), we further see that

d10(k) = (γ + log(k/2)) /e0(k) + d(k) +O(k−ν+2),

where

d(k) =
i

sin νπ

(

1

Γ(1 + ν)
(k/2)νe−iνπ − 1

Γ(1 − ν)
(k/2)−ν

)

.

If we make use of (9.3) and (9.5) with l = 0, then

d(k)e0(k) = (1/ν − β0(k)/ν) (1 + β0(k))
−1 +O(k2)

= 1/ν + γ0(k)/ν +O(k2)

and hence we have

d10(k)e0(k) =
(

(γ + log(k/2)) + 1/ν + γ0(k)/ν
)

+O(k2).

This, together with (9.7), yields that

h0(r; k) =
(

(1/ν − log r) + (γ0(k)/ν)
)

r1/2J0(kr) +O(k2)

= ν−1/2 (v0(r) + γ0(k)u0(r)) +O(k2)

uniformly in 0 ≤ r ≤ 1. Hence it follows from (9.2) and (9.6) that

R0(r, p; k) = u0(r ∧ p)v0(r ∨ p) + γ0(k)u0(r)u0(p) +O(k2)

locally uniformly in (r, p) ∈ [0,∞) × [0,∞). If we check the argument

through the above steps more carefully, we see that

R0(r, p; k) = u0(r ∧ p)v0(r ∨ p) + γ0(k)u0(r)u0(p) + k2E02(r, p) + o(k2).

for some function E02(r, p) bounded locally. Thus (1) is proved for l = 0 and

(3) is immediately obtained. A similar argument applies to the case l = 1.

We skip the details. The case l 6= 0, 1 is much easier to prove. If l 6= 0, 1,

then ν > 1 and Rl(r, p; k) is shown to be expanded as

Rl(r, p; k) = ul(r ∧ p)vl(r ∨ p) + k2El2(r, p) + o(k2)

locally uniformly in (r, p). The proof of the proposition is now completed.
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We end the paper by proving Lemma 4.4.

Proof of Lemma 4.4. As is seen from the proof of Proposition 4.1,

(Rl(k
2 + i0;Xl)f)(r) = el(k)r

1/2Hν(kr)

∫ r

0
fl(p; k)f(p) dp, r � 1,

for f ∈ L2
com(IL). Since fl(r; k) = O(kl) locally uniformly in r ≥ 0 and since

el(k) obeys el(k) = O(kν−l), it follows that

(Rl(k
2 + i0;Xl)f)(r) = O(kν)r1/2Hν(kr), k → 0,

uniformly in r � 1. This remains true for ζ with Im
√
ζ ≥ 0. Thus the

lemma is proved.
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