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To the memory of Prof. Makoto Suzuki

Abstract. We consider a problem whether Kodaira’s ∂∂-Lemma holds on
weakly 1-complete Kähler manifolds or not. This problem was proposed by
S. Nakano. We prove that the Lemma holds for some class of complex quasi-
tori

� n/Γ, and it does not hold for the other class of them. Every complex
quasi-tori is weakly 1-complete and complete Kähler. Then we get a negative
answer for the above problem.

§1. Introduction

The following lemma proved by Kodaira is well-known and usually

called “∂∂-Lemma” ([9, Proposition 7.1]).

∂∂-Lemma. Let X be a compact Kähler manifold and ϕ a d-exact

(1, 1)-form on X. Then there exists a C∞-function Ψ on X such that

ϕ = ∂∂Ψ

on X.

In [14] many problems concerning function theory of several complex

variables are posed. There S. Nakano gives a problem concerning the above

∂∂-Lemma as follows.

A complex manifold X is called weakly 1-complete if there exists a C∞-

plurisubharmonic exhaustive function on X. Easily we can see that a com-

pact complex manifold is weakly 1-complete, a strongly 1-convex manifold

is weakly 1-complete and then every Stein manifold is weakly 1-complete.

Problem 1.1. Can one show ∂∂-Lemma on weakly 1-complete Kähler

manifolds ?
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We can give a very easy counterexample to this problem (Example 4.1);

nevertheless, it is very interesting to consider this from the other aspects.

We give reformed problems of it in §4.

A connected complex Lie group without global non-constant holomor-

phic function is called a toroidal group. Every complex n-dimensional toroidal

group is isomorphic to C
n/Γ for some discrete subgroup Γ ([8]). A complex

torus is an example of a toroidal group.

It is shown that every toroidal group is always weakly 1-complete

([4], [11]). From the natural covering structure

C
n −→ C

n/Γ

it follows that every toroidal group C
n/Γ is a complete Kähler manifold.

In this paper we will consider whether ∂∂-Lemma holds on toroidal

groups or not.

Every toroidal group C
n/Γ satisfies either of the following statements

(1) and (2) ([5], [12]):

(1) Hp(Cn/Γ,O) is finite-dimensional for any p;

(2) Hp(Cn/Γ,O) is a non-Hausdorff and then infinite-dimensional locally

convex space for any p with 1 ≤ p ≤ q,

where O denotes the structure sheaf of C
n/Γ and q := rank Γ − n. From

this result we can classify all toroidal groups. We say that a toroidal group

is of cohomologically finite type if it satisfies the above property (1) and of

non-Hausdorff type if it satisfies the above property (2), respectively.

We will show that ∂∂-Lemma holds for toroidal groups of cohomo-

logically finite type and that it does not hold for toroidal groups of non-

Hausdorff type.

This gives the negative answer for the above problem even if we consider

it only for toroidal groups.

We wish to thank Prof. Koji Cho who gave a suggestion for us to

generalize our former statements of Theorem 3.3.

§2. Toroidal groups

Throughout this section we consider a toroidal group C
n/Γ, where Γ is

a discrete subgroup of C
n and of rank n+q generated by R-linearly indepen-

dent vectors {e1, e2, . . . , en, v1 = (v11, . . . , v1n), v2 = (v21, . . . , v2n), . . . , vq =

(vq1, . . . , vqn)} over Z and ei denotes the i-th unit vector of C
n. We take
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Re vi, Im vi ∈ R
n with vi = Re vi+

√
−1 Im vi. Since e1, e2, . . . , en, v1, v2, . . . ,

vq are R-linearly independent, Im v1, Im v2, . . . , Im vq are R-linearly inde-

pendent. Then without loss of generality we may assume det [ Im vij ; 1 ≤
i, j ≤ q ] 6= 0 from now on. We set

Km,i :=

n
∑

j=1

vijmj −mn+i and Km := max{|Km,i| ; 1 ≤ i ≤ q}(2.1)

for m = (m1,m2, . . . ,mn+q) ∈ Z
n+q. From the result of [8] it follows that

C
n/Γ is toroidal if and only if

Km > 0 for any m ∈ Z
n+q \ {0}.(2.2)

We denote by πq the projection C
n 3 (z1, . . . , zn) 7→ (z1, . . . , zq) ∈ C

q.

Since πq(ei), πq(vi) (1 ≤ i ≤ q) are R-linearly independent, πq induces the

C
∗n−q-principal bundle

πq : C
n/Γ 3 z + Γ 7−→ πq(z) + Γ∗ ∈ T

q
C := C

q/Γ∗(2.3)

over the complex q-dimensional torus T
q
C , where Γ∗ := πq(Γ) ([5]). We put

αij :=

{

Re vij (1 ≤ i ≤ q, 1 ≤ j ≤ n)

0 (q + 1 ≤ i ≤ n, 1 ≤ j ≤ n),

βij :=

{

Im vij (1 ≤ i ≤ q, 1 ≤ j ≤ n)

δij (q + 1 ≤ i ≤ n, 1 ≤ j ≤ n),

[γij ; 1 ≤ i, j ≤ n] := [βij ; 1 ≤ i, j ≤ n]−1 and vi :=
√
−1 ei for

q + 1 ≤ i ≤ n. Since {e1, . . . , en, v1, . . . , vn} are R-linearly independent, we

have an isomorphism

φ : C
n 3 (z1, . . . , zn) 7−→ (t1, . . . , t2n) ∈ R

2n

as a real Lie group, where (z1, . . . , zn) =
∑n

i=1(tiei+tn+ivi). Then we obtain

the relations

tj = xj −
n
∑

i, k=1

ykγkiαij and tn+j =

n
∑

i=1

yiγij(2.4)

for 1 ≤ j ≤ n, where zi = xi+
√
−1 yi. We put t = (t′, t′′), t′ = (t1, . . . , tn+q)

∈ R
n+q and t′′ = (tn+q+1, . . . , t2n) ∈ R

n−q. φ induces the isomorphism:
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φ : C
n/Γ ∼= T

n+q × R
n−q as a real Lie group, where T

n+q is an (n + q)-

dimensional real torus. Sometimes we identify C
n/Γ with the real Lie group

T
n+q × R

n−q and use the real coordinate system (t1, . . . , t2n) instead of

holomorphic coordinates.

We make the following change of holomorphic coordinates of C
n:

ζi =
n
∑

j=1

zjγji.

Then we can regard (ζ1, . . . , ζn) as a local holomorphic coordinate system

of C
n/Γ and we have global vector fields and global 1-forms:

∂

∂ζ i

=
n
∑

j=1

βij
∂

∂zj
,

∂

∂ζi
=

n
∑

j=1

βij
∂

∂zj
,

dζi =

n
∑

j=1

γij dzj , and dζi =

n
∑

j=1

γij dzj

(1 ≤ i ≤ n) on C
n/Γ. It follows from (2.4) that

∂

∂ζ i

=
1

2

(

n
∑

j=1

βij
∂

∂tj
−

√
−1

n
∑

j=1

αij
∂

∂tj
+

√
−1

∂

∂tn+i

)

,

∂

∂ζi
=

1

2

(

n
∑

j=1

βij
∂

∂tj
+

√
−1

n
∑

j=1

αij
∂

∂tj
−

√
−1

∂

∂tn+i

)

.

(2.5)

Then particularly for q + 1 ≤ i ≤ n we have

∂

∂ζ i

=
1

2

(

∂

∂ti
+

√
−1

∂

∂tn+i

)

.(2.6)

§3. ∂∂-Lemma

Let A be the sheaf of germs of real analytic functions on C
n/Γ and

H its subsheaf of germs of real analytic functions on C
n/Γ that are holo-

morphic along each fiber of πq of (2.3). We may consider (ζq+1, . . . , ζn) is

a holomorphic coordinate of each fiber of πq. For 0 ≤ p ≤ q we denote by

Hr,p the sheaf of germs of (r, p)-forms as follows

ϕ =
1

r!p!

∑

1≤j1,...,jr≤n, 1≤i1,...,ip≤q

ϕj1···jr ,i1···ipdζj1 ∧ · · · ∧ dζjr

∧ dζi1
∧ · · · ∧ dζip ,
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where ϕj1···jr ,i1···ip ∈ H is skew-symmetric in all indices. Henceforth all

differential forms are denoted skew-symmetrically and we use the notations

Jr = (j1, . . . , jr), dζJr = dζj1 ∧ · · · ∧ dζjr ,

Ip = (i1, . . . , ip), dζIp
= dζi1 ∧ · · · ∧ dζip .

Then we write ϕ = 1/(r!p!)
∑

Jr ,Ip
ϕJr ,Ip dζJr ∧ dζIp

.

Let Ωr be the sheaf of germs of holomorphic (r, 0)-forms on C
n/Γ. We

have the following lemma.

Lemma 3.1. The sequence

0 −→ Ωr −→ Hr,0 ∂−→ Hr,1 ∂−→ · · · ∂−→ Hr,q −→ 0

is exact on C
n/Γ and one obtain a kind of Dolbeault isomorphism

Hp(Cn/Γ,Ωr) =
{ϕ ∈ H0(Cn/Γ,Hr,p) | ∂ϕ = 0}

∂H0(Cn/Γ,Hr,p−1)

for p ≥ 1.

Proof. If r = 0, then Ωr = O. We obtain the exact sequence:

0 −→ Ω0 −→ H0,0 −→ H0,1 −→ · · · −→ H0,q −→ 0(3.1)

by [5, Proposition 3.4]. We can take a basis

{dζJr | 1 ≤ j1 < · · · < jr ≤ n}

of H0(Cn/Γ,Ωr). For every points [z] ∈ C
n/Γ we have the isomorphisms

Ωr
[z]

∼=
⊕

Jr

Ω0
[z](dζJr)[z],

Hr,p
[z]

∼=
⊕

Jr

H0,p
[z] (dζJr)[z]

of each stalk of sheaves. Observing coefficients of each (dζJr)[z], we can

divide the sheaf complex of the statement of the lemma to
(

n
r

)

complexes

so that each complex can be identified with (3.1). This argument shows also

the latter half of the lemma.
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Now we recall the argument of §4 of [5]. For ϕ ∈ H0(Cn/Γ,Hr,p). We

can write

ϕ =
1

r!p!

∑

Jr,Ip

ϕJr ,Ip dζJr ∧ dζIp
,

where ϕJr,Ip ∈ H0(Cn/Γ,H0,0). The function ϕJr ,Ip has the Fourier expan-

sion on C
n/Γ:

ϕJr ,Ip =
∑

m∈Zn+q

Cm
Jr,Ip

(t′′) exp(2π
√
−1 〈m, t′〉),

where Cm
Jr,Ip

(t′′)’s are C∞ functions on t′′ and 〈m, t′〉 :=
∑n+q

i=1 miti. Since

the function ϕJr ,Ip is holomorphic along the fibers of the map of (2.3), then

for q + 1 ≤ i ≤ n
∂Cm

Jr ,Ip
(t′′)

∂ζ i

= 0.

From (2.6) we have the following Fourier series:

ϕJr ,Ip =
∑

m∈Zn+q

cmJr,Ip
exp

(

−2π

n
∑

i=q+1

mitn+i

)

exp(2π
√
−1 〈m, t′〉),

where cmJr ,Ip
’s are constants.

We put

ϕm
Jr ,Ip

= cmJr ,Ip
exp

(

−2π

n
∑

i=q+1

mitn+i

)

exp(2π
√
−1 〈m, t′〉)(3.2)

and

ϕm =
1

r!p!

∑

Jr,Ip

ϕm
Jr,Ip

dζJr ∧ dζIp
.

Then ϕ =
∑

m∈Zn+q ϕm. It follows from (2.1), (2.5) and (3.2) that for 1 ≤
` ≤ q

∂ϕm
Jr ,Ip

∂ζ`

= πKm,` ϕ
m
Jr,Ip

,
∂ϕm

Jr ,Ip

∂ζ`
= πKm,` ϕ

m
Jr,Ip

.(3.3)

Now we suppose ϕ is ∂-closed, that is, ∂ϕm = 0 for any m ∈ Z
n+q.

The compatiblity condition for ϕ to be ∂-closed is expressed by the Fourier

coefficients such that

p+1
∑

`=1

(−1)`Km,i`c
m
Jr,i1···î`···ip+1

= 0(3.4)
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for any Jr, Ip+1 = (i1, . . . , ip+1), and m ∈ Z
n+q. For m ∈ Z

n+q \ {0} we put

i(m) := min{i | |Km,i| = Km, 1 ≤ i ≤ q}. Replacing Ip+1 = (i1, . . . , ip+1)

of (3.4) by (i(m), i1, . . . , ip), then we have

Km,i(m)c
m
Jr,i1···ip

=

p
∑

`=1

(−1)`+1Km,i`c
m
Jr,i(m)i1···î`···ip

= 0.(3.5)

For m 6= 0 we have, by (2.2), Km,i(m) 6= 0 and then we can put

ψm :=
(−1)r

πr!(p− 1)!

∑

Jr,Ip−1

cm
Jr ,i(m)i1···ip−1

Km,i(m)
exp

(

−2π

n
∑

i=q+1

mitn+i

)

× exp(2π
√
−1 〈m, t′〉) dζJr ∧ dζIp−1

,

where Ip−1 := (i1, . . . , ip−1). Then by (3.3) and (3.5) we obtain

∂ψm = ϕm

for m 6= 0. This means that any ∂-closed form ϕ =
∑

m∈Zn+q ϕm has a

formal solution
∑

m6=0 ψ
m of the ∂-equation:

∂
∑

m6=0

ψm =
∑

m6=0

ϕm.

Hence it is determined by the behavior of the lower limit of the sequence of

positive numbers:

{Km | m ∈ Z
n+q}

whether the formal solution is a real solution or not.

The following theorem characterizes toroidal groups of cohomologically

finite type.

Theorem 3.2. ([5], [13]) Let C
n/Γ be a toroidal group. Then the fol-

lowing statements (1), (2), (3) and (4) are equivalent.

(1) C
n/Γ is of cohomologically finite type.

(2) There exists a > 0 such that

sup
m6=0

exp(−a‖m∗‖)/Km <∞,

where ‖m∗‖ = max{|mi| ; 1 ≤ i ≤ n}.
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(3)

dimHp(Cn/Γ,Ωr) =

{
(

n
r

)(

q
p

)

if 1 ≤ p ≤ q and 0 ≤ r ≤ n

0 if p > q or r > n.

(4) Every C∞ ∂-closed (r, p)-form on C
n/Γ is ∂-cohomologous to a con-

stant form
1

r!p!

∑

Jr,Ip

cJr,Ip dζJr ∧ dζIp
,

where cJr ,Ip’s are constants, r ≥ 0 and p ≥ 0.

Let r, p ≥ 1 and let ϕ be a d-exact C∞ (r, p)-form on C
n/Γ. Then there

exists (r + p− 1)-form ψ = ψ(r−1,p) + ψ(r,p−1) such that

ϕ = dψ = ∂ψ(r−1,p) + ∂ψ(r−1,p) + ∂ψ(r,p−1) + ∂ψ(r,p−1),

where ψ(i,j) denotes the component of type (i, j) of ψ. Since ϕ is (r, p)-form,

then ∂ψ(r,p−1) = 0 and ∂ψ(r−1,p) = 0. Then ψ(r,p−1) and ψ(r−1,p) are a ∂-

closed form of type (p−1, r) and a ∂-closed form of type (r−1, p) on C
n/Γ,

respectively. Now suppose that C
n/Γ is of cohomologically finite type. Then

by Theorem 3.2, ψ(r,p−1) and ψ(r−1,p) are ∂-cohomologue to some constant

forms, that is, there exist a (r− 1, p− 1)-form Ψ(1) and a (p− 1, r− 1)-form

Ψ(2) such that

ψ(r−1,p) =
1

(r − 1)!p!

∑

Jr−1,Ip

c
(1)
Jr−1,Ip

dζJr−1
∧ dζIp

+ ∂Ψ(1),

ψ(r,p−1) =
1

r!(p− 1)!

∑

Jp−1,Ir

c
(2)
Jp−1,Ir

dζJp−1
∧ dζIr

+ ∂Ψ(2).

Since the constant forms are ∂-, ∂-closed, we have

ϕ = ∂ψ(r−1,p) + ∂ψ(r,p−1)

= ∂∂Ψ(1) + ∂∂Ψ(2)

= ∂∂(Ψ(1) − Ψ(2)).

This shows ∂∂-Lemma holds on toroidal groups of cohomologically finite

type. We have the following theorem.
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Theorem 3.3. Let C
n/Γ be a toroidal group. Then

(1) If C
n/Γ is of cohomologically finite type and r, p ≥ 1, then for any

d-exact (r, p)-form ϕ there exists (r − 1, p − 1)-form Ψ such that

ϕ = ∂∂Ψ on C
n/Γ. Further if r = p and ϕ is a real form, one can

choose the above Ψ so that
√
−1Ψ is also real.

(2) If C
n/Γ is of non-Hausdorff type and 1 ≤ r, p ≤ q, for some d-

exact (r, p)-form ϕ there is no solution Ψ satisfying the ∂∂-equation

ϕ = ∂∂Ψ on C
n/Γ.

Proof. It remains only to prove the latter half of (1) and (2). Suppose

ϕ = ∂∂Ψ and ϕ is real. Then ϕ = ϕ = ∂∂Ψ = ∂∂(−Ψ). We obtain

ϕ = ∂∂

(

Ψ − Ψ

2

)

.

Since
√
−1 (Ψ − Ψ)/2 is real, we obtain the assertion of the latter half of

(1).

Next to prove (2) we assume that C
n/Γ is of non-Hausdorff type. By

Theorem 3.2 we have

sup
m6=0

exp(−a‖m∗‖)/Km = ∞(3.6)

for any a > 0. For m = (m1,m2, . . . ,mn+q) ∈ Z
n+q we put ‖m′‖ :=

max{|mi|, |mn+i| | 1 ≤ i ≤ q} and ‖m′′‖ := max{|mj | | q + 1 ≤ j ≤ n}. By

(3.6) there exists ε > 0 such that we can choose a sequence {mµ | µ ∈ N} ∈
Z

n+q \ {0} satisfying exp(−ε‖m′
µ‖ − µ‖m′′

µ‖)/Kmµ > µ for any µ ∈ N ([5,

Lemma 4.2]). Put

δm :=

{

exp(−ε‖m′
µ‖ − µ‖m′′

µ‖)/Kmµ m = mµ for some µ ≥ 1,

0 otherwise.

We can find i0 so that 1 ≤ i0 ≤ q and sup{µ | Km = |Kmµ,i0 |} = ∞. We

may assume i0 = q without loss of generality. We take a (r− 1, p− 1)-form

ψm := δm exp

(

−2π
n
∑

i=q+1

mitn+i

)

exp(2π
√
−1 〈m, t′〉)

× dζ1 ∧ · · · ∧ dζr−1 ∧ dζ1 ∧ · · · ∧ dζp−1.
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By the choice of the sequence {mµ | µ ∈ N} the formal series
∑

m ψm cannot

converge to any form. On the other hand

∂ψm =

q
∑

`=1

Km,`δ
m exp

(

−2π

n
∑

i=q+1

mitn+i

)

exp(2π
√
−1 〈m, t′〉)

× dζ` ∧ dζ1 ∧ · · · ∧ dζr−1 ∧ dζ1 ∧ · · · ∧ dζp−1.

Since

Kmµ,` δ
mµ =

Kmµ,`

Kmµ

exp(−ε‖m′
µ‖ − µ‖m′′

µ‖)

and |Kmµ,`/Kmµ | ≤ 1,
∑

m ∂ψm converges to a ∂-closed (r − 1, p)-form η

([5, Lemma 4.1]). We put ϕ = dη = ∂η. We suppose that there exists a

C∞(r − 1, p − 1)-form λ satisfying

∂∂λ = ϕ.

We can write

λm :=
1

π(r − 1)!(p− 1)!

∑

Jr−1,Ip−1

bmJr−1,Ip−1
(t′′)

× exp(2π
√
−1 〈m, t′〉) dζJr−1

∧ dζIp−1
,

where bmJr−1,Ip−1
(t′′)’s are C∞ functions in t′′ ∈ R

n−q and λ =
∑

m λm. Then

we have ∂∂λm = ∂∂ψm. Comparing the term of the left form to the right

form of this equation involving only the differential dζ1 ∧ · · · ∧ dζr−1 ∧ dζq ∧
dζ1 ∧ · · · ∧ dζp−1 ∧ dζq. We can obtain the same formula as (3.3) for C∞

forms λm. Then we obtain

(−1)r+p|Kmµ,q|2δmµ exp

(

−2π

n
∑

i=q+1

mitn+i

)

= (−1)r+p|Kmµ,q|2 bmµ

1···r−1,1···p−1(t
′′)

+

p−1
∑

k=1

r−1
∑

`=1

(−1)r+k+`Kmµ,`Kmµ,kb
mµ

1···ˆ̀···r−1 q,1···k̂···p−1 q
(t′′)

+
r−1
∑

`=1

(−1)r+p+`Kmµ,`Kmµ,qb
mµ

1···ˆ̀···r−1 q,1···p−1
(t′′)

+

p−1
∑

k=1

(−1)k+1Kmµ,qKmµ,kb
mµ

1···r−1,1···k̂···p−1 q
(t′′).
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Since we can choose a subsequence {mµs} so that

|Kmµs ,q| = Km,

we have, for t′′ = 0,

α|δmµs | ≤ |bmµs

1···r−1,1···p−1(0)| + |bmµs

1···ˆ̀···r−1 q,1···k̂···p−1 q
(0)|

+|bmµs

1···ˆ̀···r−1 q,1···p−1
(0)| + |bmµs

1···r−1,1···k̂···p−1 q
(0)|,

for some positive constant α. Since the coefficients bmIr−1,Ip−1
(t′′) of Fourier

series converge to 0 ([2, Proposition 6]), this contradicts that limµ→∞ δmµ

= ∞.

Remark. In the statement (2) of Theorem 3.3 if r = p and 1 ≤ p ≤ q,

one can choose ϕ as a real form. Under the assumption of Theorem 3.3, take

any (p, p)-form ϕ satisfying (2) of Theorem 3.3 and put ϕ1 := (ϕ + ϕ)/2,

ϕ2 := (ϕ − ϕ)/(2
√
−1). ϕ1 and ϕ2 are also d-exact and real (p, p)-forms.

Suppose ϕi = ∂∂Ψi for some (p − 1, p − 1)-form Ψi (i = 1, 2). Then ϕ =

∂∂(Ψ1 +
√
−1Ψ2). This is a contradiction. Hence at least one of ϕ1 and ϕ2

satisfies the statement (2) of Theorem 3.3.

§4. Examples and related problems

We can show a very easy counter-example to the problem of the intro-

duction of this paper.

Example 4.1. Let TC := C/Z{1,
√
−1} be a complex torus of com-

plex dimension 1. We put X := TC × C. Trivially X is weakly 1-complete

and complete Kähler. Let z be a holomorphic local coordinate induced by

the projection: C → TC := C/Z{1,
√
−1} and w be a global coordinate of

C. We consider a (0, 1)-form ψ := w dz and ϕ := dψ. Suppose there exists

a C∞ function Ψ on X such that

∂∂Ψ = ϕ.(4.1)

Then ∂(∂Ψ−ψ) = 0. This means ∂Ψ−ψ = (∂Ψ/∂z−w) dz+ (∂Ψ/∂w) dw

is ∂-closed and then a holomorphic 1-form. Then ∂Ψ/∂z − w and ∂Ψ/∂w

are holomorphic on X. We have an entire holomorphic function G(w) :=

∂Ψ/∂z−w. We put x := Re z, y := Im z, u := Rew and v := Imw. We can

expand Ψ to Fourier series:

Ψ :=
∑

m∈Z2

am(u, v) exp(2π
√
−1 (m1x+m2y)).
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∂Ψ/∂z = π
∑

m(m1

√
−1 − m2)a

m(u, v) exp(2π
√
−1 (m1x + m2y)). Since

∂Ψ/∂z = w+G(w) is constant on variables x and y, am = 0 if m 6= 0. Then

Ψ = a0(u, v) and ∂Ψ/∂z = 0. This contradicts (4.1). By the same reason

of Remark in §3 we can select a real (1, 1)-form that has no solution of the

∂∂-equation on X.

Considering the fact that H1(X,O) is an infinite-dimensional Fréchet

space and ∂∂-Lemma holds for toroidal groups of cohomologically finite

type, we can give the following

Problem 4.2. Can one show ∂∂-Lemma on a weakly 1-complete

Kähler manifold X with dimH1(X,O) <∞ ?

If X is strongly 1-convex in the sense of Andreotti and Grauert [2], then

dimH1(X,O) <∞. Miyajima [7] considers another type of the ∂∂-equation

on strongly pseudoconvex Kähler manifolds. In general case of strongly 1-

convex Kähler manifolds the above problem still remains unsolved.

Further a weakly reformed problem of Problem 1.1 is posed in [10].

Problem 4.3. Let L be a holomorphic line bundle on a weakly 1-

complete manifold X. We assume that the first Chern class c1(L) has a

positive form. Then does L have a Hermitian metric with a positive curva-

ture form ?

We remark here that if ∂∂-Lemma holds on X, then Problem 4.3 can

be solved affirmatively for X. The following example shows that ∂∂-Lemma

does not hold even if C
n/Γ is a quasi-abelian variety.

Example 4.4. We consider a toroidal group of §2 in the case of n = 2

and q = 1.

Let Γ be the discrete subgroup generated by {e1, e2, v1 := (
√
−1, β)}

over Z, where β is an irrational real number. From (2.1) we have Km =
√

(βm2 −m3)2 +m2
1 and Km > 0 for m 6= 0. Then C

2/Γ is toroidal. We

put v2 := (β,
√
−1) and consider a complex torus C

2/Z{e1, e2, v1, v2}. Any

such torus is an abelian variety ([3, §2.6 The Riemann Conditions]). We

have the covering projection:

C
2/Γ −→ C

2/Z{e1, e2, v1, v2}.

This means every C
2/Γ is a quasi-abelian variety for any β ([1, Theo-

rem 4.6]). We obtain the following (1) and (2).
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(1) If β is an algebraic number, then by Liouville’s criterion there exists a

positive number M and a positive integer ` such that |β−m3/m2| >
M/|m2|` for any integer m3 and m2 6= 0. Since Km ≥ |βm2 −m3| >
M/|m2|`−1 (m2 6= 0),

sup

{

exp(−
√

m2
1 +m2

2 )

Km

∣

∣

∣
m ∈ Z

3 \ {0}
}

<∞.

By Theorem 3.2 C
2/Γ is of cohomologically finite type and then ∂∂-

Lemma holds on it.

(2) If β is approximated by rational numbers very well, namely, satisfying

for any a > 0

sup

{

exp(−a|m|)
|β − n/m|

∣

∣

∣
m,n ∈ Z, m 6= 0

}

= ∞,

(We find examples of such β in [6] and [12]), by Liouville’s crite-

rion such β must be a transcendental number and C
2/Γ is of non-

Hausdorff type. Then ∂∂-Lemma does not hold on it.

Added in proof. After this paper was submitted, we obtained an answer

to Problem 4.2 in the following form: There eixsts a 1-convex Kähler man-

ifold on which the ∂∂-Lemma does not hold. This result will appear in our

forthcoming paper.
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