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LOCAL EXISTENCE AND BLOW-UP CRITERION
OF HOLDER CONTINUOUS SOLUTIONS
OF THE BOUSSINESQ EQUATIONS

DONGHO CHAE, SUNG-KI KIM anp HEE-SEOK NAM

Abstract. In this paper we prove the local existence and uniqueness of C**7
solutions of the Boussinesq equations with initial data vo, 6o € C*17, wo, Vo €
L% for 0 < v < 1and 1 < g < 2. We also obtain a blow-up criterion for this
local solutions. More precisely we show that the gradient of the passive scalar
6 controls the breakdown of C**” solutions of the Boussinesq equations.

§1. Introduction

The interactive motion of a passive scalar (e.g. temperature) and atmo-
sphere with an external potential force is modeled by the following Boussi-
nesq equations:

(1) v+ (v V)v=-Vp+0f, curl f =0

(2) 0; +v-VO= 0 (z,t) € R* x Ry
divvo= 0
V=0 = vo, Oli=0 = 0o, z € R%.

In (1) p denotes the scalar pressure of the fluid flow.

It is suggested that these equations have strong resemblance with the
3-D Euler equations in many aspects (see e.g.[7]). In particular the problem
of finite time blow-up of smooth solutions of the Boussinesq equations is
outstanding as in the case of 3-D Euler equations.

In [4], authors proved local existence of solutions of the Boussinesq
equations in the Sobolev spaces H™(R?), m > 2, and obtained a blow-up
criterion of the smooth solutions. The proofs are similar to Kato’s [6] and
Beale-Kato-Majda’s [2] respectively for the 3-D Euler equations.

In this paper we extend the previous results to the case of Holder contin-
uous initial data. We first prove the unique local existence of the solutions of
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the Boussinesq equations (Theorem 3.1), and then establish a link between
the maximum norm of the gradient of the passive scalar # and the formation
of singularities for the Boussinesq equations. That is, if the solutions of the
Boussinesq equations with Hoélder initial data lose their regularity at some
later time, then the maximum norm of the gradient of the passive scalar 6
necessarily grows without bound as the critical time approaches (Theorem
4.1).

In the section 2 we transform the Boussinesq equations to the equivalent
integro-differential equation for particle trajectories of flow.

In the section 3 we apply the Picard type iteration to the integro-
differential equation to construct a local solution. The key step here is
the Lipschitz estimate in a properly chosen Banach space. The uniqueness
follows easily.

We found that in [5] the author used other type of iteration than Pi-
cards’ in proving local existence of Hélder continuous solutions of the par-
ticle trajectories equations associated with the 3-D Euler equations. This
method may be applied to the Boussinesq equations also.

In the section 4 we prove the theorem on the blow-up criterion in
the Holder space. We used some ideas in [1]. We found that similarly
to the Sobolev space case [4] fg IVO(-,s)||Le ds controls the blow-up of
[oCs Ol 10¢D)llcrer, [lw(s 1)l Le and [[VO(-,1)]|a-

Although we assumed curl f = 0 (potential force) throughout this paper,
this condition on the external force could be relaxed without any technical
difficulties.

§2. Preliminaries

In this section we firstly formulate the Boussinesq equations as an
integro-differential equation for particle trajectories following the ideas used
in the case of Euler equations [7]. After that we list some facts and lemmas
needed in the sequel.

We can regard R? as the subspace of R? with the zero third component.
Then from equation (1) we take curl operator to get, for w = a%lvg — 8%2”1
and w’ = (0,0,w)?,

(3) w; + (v V) =V x f.

Integrating from ¢ = 0 to time ¢, we obtain

(4) w(Wi(a), 1) = wpla) + / (V6 x [)3(Ta(a),s) ds
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where ()3 means the third component, and ¥;(«) is defined by the following
ordinary differential equations

d

Lule) = (a0
()

Uy () = «.

t=0
By the Biot-Savart law we have
(6) v=FKyxw
with the kernel | my w \t
K(z) = %(Wa W) :
On the other hand, from the equation (2), we get
(7) O0(V(a),t) = p(a) V¥t > 0.

Thus
VO(Uy(a),t) - VU () = VOy(a).

If det VU, () # 0, then we have
(8) V(U (a),t) = Vo(a) - (VT(a)) ™t

Combining (5) with (4) and (8), we obtain the following integro-differential
equation formulation of the Boussinesq equations:

(9) %‘I’t(a) = /R2K2 (‘I’t(a) _‘I’t(a/)>w(\11t(o/)7t) de/
\Pt(a)‘tzo - a,

with
¢
(10) w(¥y (), t) = wo(a') —l—/ (V@o(a')(v\lls(o/))_l X f(\IJs(o/),s)>3 ds.
0
Now, we show that the above formulation is equivalent to original

Boussinesq equations for sufficiently smooth solutions with vorticity rapidly
decreasing near infinity.
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The integro-differential equation formulation (9)-(10) from the Boussi-
nesq equations is derived above. Below we verify the derivation in the con-
verse direction.

We firstly observe that the Boussinesq equations is equivalent to the
following vorticity-stream formulation:

wi+ (V' =Vl x f

/
w

=w) = curl v,
=0

where the velocity v’ is determined by v' = (v,0)! and
(11) ’U(ﬂ?,t) = 2 Kg(ﬂf - y)w(yat) dy .

Thus it suffices to show that there exists w’(z,t) such that curl v = &/,
div v' = 0 and
wp + (v - V)w' =V x f.

Let W,(-) be the smooth solution to integro-differential equation (9) for
particle trajectories so that ¥;(-) is 1-1, onto and has the inverse ¥; ().
We define the function w'(z,t) for z = ¥y(a) by w'(z,t) = (0,0,w)" and

w(z,t) = w(P(a),t)
— wola) + /O (VO0(@) (V)™ x f(u(a).5)) ds.

3

Then this function solves the equation
—w' =w+ (W V)W =V x f.

From (11), direct computation shows that the velocity field v'(z,t) is diver-
gence free.
It remains to show that w’ = curl v’. Since

div ' = %w = %(VG x f)3 =0,

using the vector identity

—curl curl ¢ + Vdiv ¢ = A,
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v' is determined constructively by v/ = curl v where v is the vector stream
function which solves the Poisson equation —Aw = w'. In fact, since w € L?
is smooth and vanishes rapidly as |z| / 0o, we can take L?—inner product
in the above vector identity with V div ¢ and get

|V div 9|2 = —/ W' - Vdiv ¢ dr +/ curl(curl ¢) - Vdiv ¢ dx =0,
R2 R2

where we used the orthogonality [ g2 U Vq =0 for u,q sufficiently rapidly
vanishing as |z| /" oo with div u = 0.

It is easy to see that the explicit form of v’ is given by computing the
curl of the convolution with the Newtonian potential i.e. v = (v,0) and
v = Ko % w. This gives the desired results.

We will use the Banach space B defined as
B={V:R*— R |[¥, < oo},
where || - ||y is the norm defined by
Il = O + Vo[, 0<y<1

and || - ||y = || - |z + | - |- Here | - |, denotes the Holder seminorm.
The following lemmas can be established without difficulty (see e.g.

[7)-

LEMMA 2.1. Let U : R?2 — R? be a smooth, invertible transformation
with
|det V¥ (a)| > ¢; > 0.

Then for 0 < vy < 1, there exists C' > 0 such that

Ive)=, < clivel,
e, < Clel,.

LEMMA 2.2. Let ¥ : R?> — R? be given as above and let f : R> — R™
be a smooth function. Then for 0 < v < 1, the superposition f o ¥ and
foU~l satisfies

Fo Ul < £l VU]
1f 0wl < 1 (1+ 1913)
1f o < £1k (1+ CRIY).
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We define

. 1
O = {\p €B: inf [det VI(a)| > 5. 0], < M}.

Let U:(-) € Op be a solution to our problem. Since the velocity field v is
divergence free, det V¥;(a) = 1, V¢t > 0. If ¥ € Oy, then by the inverse
function theorem, W is locally 1-1 (i.e. local homeomorphism). In fact, Oys
consists of functions ¥ : R? — R? which are 1-1 and onto.

The following is an immediate corollary of the Hadamard’s criterion
(Theorem 5.15 p.222 [3]) and Lemma 2.1.

ProOPOSITION 2.1. Forany M > 0,0 <y<1, the set Oy is nonempty,
open and it consists of 1 — 1 mappings of R? onto R?.

We set,

Iy =z + 1D by e llyze =11 lly + 1 e

From (6) we have
(12) Vo=Pyxw+ Cw,

where P, is a kernel defining singular integral operator with |Py(z)| <
Clz|=2 (see e.g.[T]).

We will use the following well-known singular integral operator type
inequalities.

LEMMA 2.3. Let v = Ky * w with w € CY(R?) N LY(R) for some
q € (1,00), then we have

() [90lz0 < Cyllwlzs,
(i) Vel < (ol (1 +og" flolly) + wlzs )
(i) Vlly < Cygllwlhnes:

§3. Local existence in the Hoélder space

‘We now state our main local existence theorem in the form:

THEOREM 3.1.  Let the initial data vy, 6y € C*T7(R?) with wy, Vb €
LA(R?) satisfy div vg = 0 for some 1 < ¢ <2 and 0 <~ < 1. Suppose that
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f € L52.([0,00); WH(R?)). Then for any M > 1, there exists T(M) > 0
such that there exists a unique solution

(13) v e CH([0,T(M)); On)
to the integro-differential equation for particle trajectories.

Remark. The above theorem combined with (4), (5), (7) and (8) im-
plies that for solutions (v,6) we have

v e C([0,T(M)); C*(R?) n L*(R?)),

9 € C([0,T(M)); C'(R?) N LY(R?)),
w e L®([0,T(M)); LY(R?)),
VO € L ([0, T(M)); L(R?)).

Here, for v, L?(R?)-norm control is obtained easily by taking L?-norm of
(1) with v and, using the L®-bound for 0(-,t), and L>°(R?)-norm control
is obtained by the interpolation inequality

1 1
[0l oo < Cllol| 22 IVl foo -

The control of ||0(-,%)||re, |VO(-,t)|le and |w(:,t)||Le follow immediately
by using (7), (8) and (4) respectively.

To prove Theorem 3.1 we rewrite the integro-differential equation (9)
in the equivalent integral equation form as follows.

t
a)—a—l—/FT( dT+/G a) dr,
0

where
FAW)(@) = [ KalWo(0) = W n(a) d,
Go(W)() 1= [ Ko(Wr(a) ~ W (a))

We first establish:
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LEMMA 3.1. Let vy, 0y and f be given as in Theorem 3.1, and let F
and G, be defined as above. Suppose that W, &, € Opr for all T > 0. Then
we get

@ (@)l < CM*(|lvoll144 + lwoll o)

(i) |G-(D)ly < € sup 1£ ¢ 8)llwroe M7 (100l 14 + | Vbo| o)

(iii) 7 (0) - [ly < CMO(Jlvoll14y + llwollza) 1@< [l
(iv) G- (®) 2|, < C sup 1£C. 8)llwoe M7 (|00l 145+ V Ol L) | @~ [l -
Proof. Let’s estimate F (V). Setting © = ¥, («a) and 2/ = ¥ (d),
F.(V)(a) = Ko (U, (o) — ¥, (a))wo(a) do/

R2

= Ko(x — ') wo(¥-(2") det V() da’
R2
= Ky * g1(z,7),
where g1 (2/,7) = wo(¥;1(2')) det VU (2).
Using the potential theory estimates, we get

[K2# g1(0,7)] < [|[K2 % g1(-, 7)o < C(llgr (5 7)o + lga (e, 7))l na),

and
IVE2 * g1(-,7)[ly < Cllgr (-, 7)llynLa-

Applying Lemmas 2.1, 2.2, we can estimate ||g1(-,7)||, as

lg1 (- T)lly < Cllwo 0 U2y || det VI,
< Cllwolly 1+ CIEZHIDIVEZS
< Cllwolly (1 +CIE DN,
< OMP|[v|1-4+-

Moreover, we can control the L%-norm as follows.
1
o llr = ([ Jen(W7 @) det VO do')”
R2

1

< [l det V7 / len(e7 @) da)?
R
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1 1
< CITE ) det VO ( [ foo(e)it de’)”
R

1

2+% "1q 1\ ¢
<O ([ lwo(a')|” do)
R2
< CM*||wol| La-
Hence we obtain
IE- s, < CMA([[voll1+ + llwol| o)

and this proves (i).
We write G- (¥) as

G (0)(z) = /R {KQ(:E — o) det VUZ(2)
/0 ' (Vo007 @) (VO (7 @) 7! x F(W, (071 @')), 5)), ds} da’
= KQ * gg(l’),
where

oula) = [ (V0¥ (@) (VO (7 )

xf(\I/S(\I/_l(x)),s))gdet VUIl(z) ds.

T

Similarly, it suffices to estimate ||g2||ynrs. Using lemmas 2.1 , 2.2 again, we
estimate

1(VO6(27 @) (VL (07 @) 7! % (07 @), 5) ) s
< CIIV (U7 (@) (T, (¥ (@)

(14) x (I8 lee + 1D () e Il (1 4+ 19-17))
< CM2| (-, 8) e V0007 @)l | (V07 @) 7
< CIFC, ) lwnos M6 14

This gives
lo2ll, < Clldet TU [y sup |75 . M0 [Vhi]

<C sup [|£(-8) Iy MF7]|00]| 14
0<s<Tt
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For L9-norm, using the generalized Minkowski’s inequality,

g2 (- 7)ll e

_ [/R {/0 (V60(w7 () (V0 (W7 (1))

X f WV (@)),5)) det VU (@) ds}qu/]%

T

1

< C”WT”ﬁ/OTm(V‘IJS(\IJT_I(f)))_lmv”f('aS)HL‘X’(/RQ|V90(\If;1(x))|qd9:')E ds

2
< C sup [[f(,8)|lwroo MP 0T V|| o
0<s<t

Hence we get

NGAWWWSCQTQ\U(ﬁﬂM&wNﬂTW%WHv+HV&Mm)

and this proves (ii).
Setting o = U-!(x) and o/ = U_1(2’), we can write F.(¥)®, as

T

F(9)2, = %FT(‘P + ed) Y
= % Ko(U,(a) — U (a) + e(®r(a) — () wole) da’ .
R? —
= |, VE2(Tr(0) = o()(@r(0) = () n(@) def

= | VEKo(z -2 (@T(\I/_l(x)) . @T(\I/_l(:c'))> a(z') dr'.

- T T
We observe that |VKs(z)| < C|z|~2 and
0, (U5 (2) — (7 (@)] < [V, 0 Wt VU1 [2 — o],
Using Holder inequality, we estimate
|F{(0)®,] < C| VP, 0 W V|
<ol [ Jo=a| 7 d' + Cllalua}
|z—a/|<1

< C Ve o UL VU g1 lyrze
< OM* [Verly 1+ 1223 197y (lvolliy + llwoll o)
< CM7(J[vo |14+ + llwoll o) 1@< Il
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It remains to estimate the Holder norm of VE, (¥)®..
Let’s compute the distributional derivative of 0, ; Ka(x) (q)TJ(\I/;l(ﬂS)) -

D, 5(W71(0))).
(= 90 0, Kon() (@ (07 () = 27 (071(0))) )

= —lim [ 90 aijg(x)(@,j(qJ;l(x)) - @Tyj(\p;l(o») dx

e—0 |z|>e

= lim | . O(2){ 02,0, Ko () (07,507 (@) = 7 (071(0)))
+ Oy, Ko () VO, - axkq:;l(x)} d
] 0@ Ka(w)(@ri(W7 ! (@) = ry(071(0)) % d.

|z|=e

The last term can be estimated as follows. Set # = ew with |w| = 1. Then
using the mean value theorem, we get

liy | 0@)0s;Kala) (s (¥71 @) = @y (01 (O)) 1

= liH(l) ¢(ew)%8ij2(ew)V<I>T7j( Y(sew)) VUL (sew)eww)?ke2 dw
e~V Jw|=1

= hH(l) P(ew)0,,; Ko (w)V O, ; (VT Y(sew)) VU (sew)wwy, dw
e~V Jw|=1

= ¢(0)VO, ;(T;1(0)) VT (0) lim 0oy Ko (w)wwy dw

=0 Jiw|=1
= Vo, ;(¥71(0) VI (0) Cii(6,0).
Thus we obtain, for all ¢ € C§°,
(= 026, B, Ko@) (@1 (97 (@) — @1y (07(0)))
(01 a0, Ka () (@13 (7 () = @7 5(971(0))

+3xvK2($)V‘I’Tj8xk\Iﬁl(x)>
+V O, (V1(0)VEH(0)Chi(6,6).

Using this formula, we know that the distributional derivative of F/(¥)®,
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is given by
00, FUW)B = § 0, V(o =) (0,971 @) = 0,971 @) on (0"

+ VEy(z — 2" \VO, (0, (2))0:, U5t (2) g1 (2”) da’
R2

+V O, (U (2)) VI () Crgr ()
=1L+ 1+ Is.
Applying componentwise the mean value theorem with the parameter 0 <

s < 1 depending on z, ' and the component, we rewrite the first term Iy
as

I = 7{ Oy 0z, Koz — 2" ) VP, ; <\IJ;1(5L’ + sz’ — :c))
R2
VU Nz 4 s(2’ — 2))(z — 2)g1(a)) da’ .
Recall that for || = |3| + 1, the function 2°9%Ks(x) is homogeneous of

degree —2 and it has the mean value zero on the unit sphere. Thus by the
singular integral operator type estimate similar to Lemma 2.3 we have

111lly < CIVer 0 U2 VU lg1llynLs
< CIVe |y 1+ 19ZHE) IVl (lvolliy + llewollzo)
< CMO(|lvoll1+5 + llwoll o) 12+ 1-

We estimate Iy and I3 as we did in the previous estimates to obtain

122]ly < CMO([[voll144 + llwollza) |12~ [l
1Zs]ly < ClIVE, 0 W, V1| lga I,
< CM|lvoll 1@<l

and
IE (%))l < CMO([lvofliy + llwollza) | @[l -

It remains to estimate G.(¥)®P,.

GL(0)®,(z) = % /R {Kg (\Iff(a) — U () + e(Pr(a) — @T(a’)))

/OT (V@O(@/)(V(\I}S(a/) 4 GCI)S(O/)»fl



< F(Uy() + €dy(d), s))3 ds} do/
— [ {Katwete) - v (@)
<[ (OO0 (V@) ¢ p). ), s} e
- [ {ralwrta) - w@)
<[ (T (V) T @) (V)
<V f(\I/S(a'),s)@S(a’))B ds} do/
+ [ {TERa @) = )@ (0) — 2 (0)
x /OT (veo( NV ()L x f(\Ils(a’),s)>3 ds} do/
/R 2 ) det VUl(a)
<[ (vo (W7 @) % FU (U () 5)) s ot
/RQ{KQ( ) det VU ()

« / ’ (V00w (@) (V0 (9, ()
0
xVO,(U; (2)) (VI (T (a')) 7!
! )3 ds} da’
1

e=0

XV (W (07 (7)), 5)@s (W7 (2))

| (woutw @ v @)
xf(ws(w;l(x’)),s)) ds} da’
/ Ko(x — 2")go1 (") da’ —l—/ Koz — 2")gao(2") da’

/ VEy(r — ) (@) — @, (07 (2") ) gala) i’

=0+ 1+ 13,
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where we set

on(a’) = [ (V0007 @) (7 )

xf(ws(qu(x')),s))g ds det VUZ1(2)),

T

(e} = [ (V0007 @) (V007 )

XV (U(2) (VI (W5 ()7

T

x Vf(qzs(qu(x’)),s)cbs(\p;l(x’)))g ds det VUZ1(2)),

T

For I and I, it suffices to estimate ||g21]|ynre and ||g22|/ynre. Comparing
g21 with go we observe that, as we did in (14),

IV (U7 (2) (Vs (U7 (2))) ™ > f(Us(WF (7)), 5)l,
< OV (W (@) IV (R @)y 1 f (2 (7 (7)), 8)]I5
< CIfC ) lwree MO0l 144 1< Il

This gives
lg21llvnze < C sup [, 8)llwroe MOT([160]114+ + [[ V0ol o) 1@l
0<s<t
Thus

1111l < C sup [[£(8)llwree MOT((|60]l14 + V0] o) | @7l
0<s<7

Similarly we have

12lly < llg22llynze < ¢ sup 1F o 8) w100 MIOT (100 1405+ [V ol o) [ @7 -
SSST

We estimate I3 similarly to the case of F.(¥)®, to obtain

I3]ly < C sup [[£( ) lwroe MOT([[60ll14 + V00| La) | D[l
0<s<T

Hence we have

IG7 ()|, < ¢ sup 1o 8) w00 MIOT (00114 + V00l 20) 191

This completes the proof.
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We are now ready to prove our main theorem in this section.
Proof of Theorem 3.1. Since v(z,t) = Ko * w is divergence free, we ob-
serve from Liouville’s Theorem that
d
7 det VU, (a) =div v(Vi(a),t) det VT (a) =0.

Hence det VU, (a) = 1.
We define an operator F which transforms Banach space-valued func-
tion ¥ to Banach space-valued function ¥ by the identity

t ¢

U(a) = F(U)(a) = « —|—/ F.(9)(«) dr —I—/ G- (V) () dr.
0 0

Now, we can start the successive approximation as follows.

(o) =«
15 t t
( )\Il?ﬂ(a) = a+/ F(9")(«) dT—I—/ G (V") («a) dr, n=0,1,2,....
0 0

Let’s check that the above approximation is well defined on Oy for suffi-
ciently small 0 <t < T.
Clearly, ¥9(a) € Oy Vt > 0. Using Lemma 3.1 , we estimate

o7+, < 1+CMT(L+ sup [1£(8) lwree)
0<s<t
X([lvolliy + l00ll14+~ + llwollza + [[VOollLa)E(1 +2)
such that, for M > 1, there exists T' > 0 and
Jop ), <M, 0<t<T.

Above T can be evaluated roughly as

Wl

T<( M-l )

20M7(1 4 supo<ier, 1/ 8)llwroe)

wln

1
g )
(lvoll+y + 10014~ + [lwollza + Vo]l za)
Moreover, from the above observation,

1
det V\Ifg+1(a)z1>§, 0<t<T.
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Hence the above approximation is well defined.
We now set

N UEE) sy + IG(PO)) < o0

= sup
0<t<T
and
L= C(M°(|lvoll14~ + llwollza)
+ sup [ ) llwroe MIOT (|60 l144 + V60| £a))-
0<t<T
From the successive approximation,
1 0 ! 0 0
19} =90, < [ IR @O, + 16, (W)l dr < Nt
Again, by the approximation and Lemma 3.1,

t
v — vyl < /0 |77 (9h) + G (W) = Fr(8°%) = G (W), dr

t
<[ pwl-wll, ar

42
<LN—.
- 2

By induction we obtain

N(Lt)n+1
1w - ey, < 7

A St A —0.1.---.
(n+1)!7 " Y

Note that the infinite series

N X (Lt)"t!
L T;) (n+1)!

is convergent to N/L(el* — 1) and uniformly convergent for 0 <t < T. So
the sequence {¥}} is uniformly convergent to ¥; in B for each ¢ € [0,7].
Using Lipschitz continuity of F. and G, we can pass to the limit in (15) to
obtain

Uy (a) =« —i—/o F.(9) () dT—l—/O G, (¥)(a) dr.
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It is easy to check that ¥ € Oy, and we can conclude that the solution to
(9) exists locally in time.

We now prove the uniqueness.
Let ¥ and ® be two solutions with the same initial conditions. Then we
have

W) - @y(a) = /0 FA()(0) - Fr(®)(a) dr

+/0 G:(¥)(a) — G- (P) () dr.

By Lemma 3.1,
M%—@%SAWW%@—R@WMMﬁ
+ [16:(0)(@) - G @)@l dr
0

<t [ he ey ar
Then Gronwall’s inequality gives
Jw— @, =0 viteo.1)
This concludes the proof. 0

§4. Blow-up criterion

In this section we will prove the following blow-up criterion of the local
C'7 solutions constructed in the previous section:

THEOREM 4.1.  Let vg,0g € CY(R?) with wy, Vly € Li(R?) for
0<y<1, andl < q<oo. Suppose that

f e L2([0, T WH(R?).
Let (v,80) be the local solution constructed via Theorem 3.1. Then we have

lirtnfsgp(!\v(»t)\\m H0C Ol + llwl Dllza + [[VO()[La) = 00

T
if and only if / IVO(-,7)||Loe dT = 0.
0
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We begin with some lemmas.

LEMMA 4.1.  Let Wy(x) denotes the particle trajectories defined by

%\Ilt(:c) = v(x,t)
Uo(z) = =
Then .
16) (U Ol < e [ [TeC) e dr <
In particular, )
(1) 19 Ol < e [ 190l dr

Proof. We integrate the first equation over [t,s] and get
Uy(z) = Uy(z) + /ts v(¥r(z),T) dr.
Setting y = W4(x) we have
V. ) =yt [ o (7)) dr
so that
VL) =+ [ Vol (8 ) ) - (5 ) dr
where [ is the 2 X 2 unit matrix. This integral equation is solved as
V(U ) = T o [ To (87 (). 7) drl

Taking L*°-norm(in y variable) on both sides we obtain (16). (17) follows
immediately from (16) by setting s = 0. b

LEMMA 4.2. Let vy, 0y and f be given as in Theorem 4.1. Then
t
lw( D)y < llvolliy exp/o IVo(, 7)l[Lee dr

(18) + c/ot (Hve(-,s)uV exp/:uvv(-,T)HLoo dT) ds,

where C' = C(vg, 0o, f).
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Proof. We rewrite (4) as
t
(19) w(z,t) = wo(¥; ' (z)) +/ (VO x f)z(Ws (¥, ! (2)),s) ds
0
= Il + IQ.
Simple calculation gives

‘WO(IE) B wO(y)| ||\I,;1()||’Y

||11H'Y < ||w0||L°° + sup |ﬂ§ — y|»y Lip

T#yY

t
< oo 1 exp / 1Yo, e dr,
0

where we used Lemma 4.1 in the last inequality.
On the other hand, from

1096 % £)aC )l < (1708100, 8) s + 17 e V6( )]l ),

and, observing

lu(Ws (T ()), )l < Cllut, )l 12 (W5 (D)IEs,

t
< Ollu(-8)]|, exp / V(e )l dr
for u(-,s) € C7, we obtain

1V x £)a(W (7)), )]
< (I IVOC ) o 17 5= 198 ) Jexp [ [F0(e 7)o dr

t
< sup [I£(9)|LIVOC, 3)]ly exp / IVo(-, )|z dr.
0<s<T s
Since || f|ly < 3||fllw1.<, we have for Iy,

t ¢
2l < ¢ [ (198C.9)1 exp [ 190l dr) ds.

and this completes the proof. 0
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LEMMA 4.3. Let vy, 09, f and q be given as in Theorem 4.1. Suppose
that

T
/ IV0(-,1)|| o dt < oo,

0

Then we have
lw( O)l[Le +IVO(C D)]a <C, 0<t<T
where C = C(wo, Vo, f, T, [ VO(- )|z dt).
Proof. Take V to (2) so that we have
(20) (VO): + (v-V)VO = -VouVi.
Integrating both sides of (20) over [0, ¢] we get
t
(21)  Vé(x,t) = VO(¥; (z)) — / (VoVe)( (¥, (2)),s) ds.
0

Integrating (21) with respect to x, we obtain

t
(22)  [IVOC,8)llLe < [IVOol|La +/ IVOC, )L Vo, 7)l|za dr
0

t
< [IVbol| s +Cq/ IVO(, 7)o llw (-, 7)l e dr,
0

where we used (12) and Lemma 2.3 in the last inequality.
On the other hand, integrating (19) with respect to x, we obtain

t
(23)  lw(B)llLe < llwollze + sup [If(:,7)][zeo / VO, 7)l|za dr.
0<7<T 0
Combining (23) with (23), we obtain
lw(-, O)l[La + VO, 1)l La
¢
< Clon, Vb0, 1) (14 [ (1 V0, )l Dl +I8C, 7)) ).
0
Then Gronwall’s inequality gives

t
lw(Dllee + VO )l|a < Cexp/ (L +[[VO( 7)||L~) dT < C,
0

where C' = C(wo, Vb0, f,T, [} |IVO(-,t)||z= dt) and this completes the
proof. O
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LEMMA 4.4. Under the same assumptions in Lemma 4.3, we have

(24) Vo, 1),
< Cexp/o Vo 7|z dr
o [ (It s)l + 1900 501 ) (190 5) 1 + [90(- 5) o)
x exp/ Vo, 7)o dr ds,

where C = C(vo, Vo, f, T, [ VO(-,1)|| 1 dt).
Proof. From (21) we obtain

1960 DIl < V66 (W ()l + / |(VoT0) (L (L), )1 ds
EIl+IQ.

As in the proof of Lemma 4.2 we have

t
10l < [6oll s exp /0 V0,7l dr.

Using similar argument as in the proof of Lemma 4.2, and by Lemma 2.3
we estimate

L1
< [ (1906190 3) = + 190 )90 5)1-)

X exp /t [Vo(-, 7)|[Lee dr ds
<€ [ {0t o)an o) V00 )l HIT el ) 1965l
X exp /t [Vo(-, )| dr ds
<c/ IVO(, 7)o dr exp/ [Vo(-, 7)l[e dT
+0 [ (b IV0C e [ IVl dr) s

t t
+C [ (1906l exp [ 906 dr) ds,
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where C' = C(vy, Vb, f, T, f(;f IVO(-,t)|| Lo dt). Combining above two esti-
mates on [; and I, we get the desired result (24).

We now introduce some notations as follows :
A(7) = [IVu(, 7)o +[[VOC, 7)o + 1,
0 :=(w,V0) with norm |[|@|, := [|w|y + |VO].
Combining (18) with (24) we have
(25) fl@( )l <

t
Cexp/ A(r dT+C/ s) |4 A( )exp/ A(r) dT) ds,

where C = C(v, 8, wo, Vo, £, T, [ [IVO(,7)|| 1o dr).

We are now ready to prove our main theorem in this section.
Proof of the Theorem 4.1. It is obvious that the condition

lirtnfsgp(!\v(»t)\\m H0C Ol + llwls Ollza + [[VO(, D)[La) < 00

implies
T
/ IVOC, )|~ dr < oo.
0

Now, we prove the sufficiency part. We assume

T
/ VO, 7)|| Lo dT < 00.
0

From the representation of w in (19) we observe that

(26) [lw(- )L < flwollze +/0 (VO > f)3(-8)l| e ds

t
< [lvolli44 + € sup Hf(-,t)HLoo/ [VO(:, s)||Lee ds
0<t<T 0

T
Clvo, f. / IV6(,7) |~ dr).
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First, we claim that
T
(27) 50l < ¢ = (b, [ IVOC )i dr).
0
If we set m(t) = supp<s<; h(s), where
(s) = 2(s)exp (=2 [ A(r) ar).
0
then the inequality (25) gives for A > 1,
t t
mwgc+cm@/ﬂugmp«<»wu/fmqm)m
0 s
1
<C+Cm(t)—.

A—1
Similarly,

h(s) SC’—I—Cm(s))\_l.

Thus

sup h(s) <C+ Cm(t)L.
0<s<t A—1

This implies that

m@§C+Cm@réi

If we set A > 14 2C, then m(t) <2C,0<¢<T, and
t
28) 100l < 2Cexp (A [ Vol 7l + 1986, + 1) dr)
t
< Cexp AT exp ()\/ IVu(-, )| oo dT)
0

t
< Cexp ()\/ |Vo(-, 7)o dT).
0
Applying (28) and Lemma 4.3 to Lemma 2.3, we get
IVe(, )l < Ol Dllze (1 +10g™ [, )ly) + (-, )10 )

t
< Cllot 0l (1+ [ 19067 dr) +C

< (Dl + D (1+ [ 1907l dr).

7
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Then Gronwall’s inequality and (26) gives

t t
@) [ Vot Dl dr < e (€ [ (ot )= +1) dr) <,

0 0
Hence we can see that our claim is really true, and obtain

160G, Ol = 100, Dz~ + IVOC, D)l < C
where
T
€ = C (Il 10z [ IVOC 7)o dr).

It remains to estimate ||v(-,t)|[14. Applying the divergence operator
to (1), we get
Ap = —tr(Vv)2 + VOf + 60 div f,

and
p= Afl(—tr(Vv)Q +Vof+0 divf).

Thus the equation (1) becomes
v+ (v- Vv = VA™! (tr(Vv)2 —VOf — 6 div f) +of.
Integrating both sides over [0, ], we obtain
v(,t) = vo(¥; ()
_ /t (vxltr(wﬁ — VAN VO + 0 div f) + ef) (\IIS(\I/t_l(x)),s) ds
= If—l— Ir + Is.

If we set
P = VA L (tr(Vv)?),

then we have

2 2
LT R % a P R A0
lz—y|<1 |*5C - y| |lze—y|>1 |ﬂ§ - y|

< (Ve 1) + Ve, 1))
2
< € (e, )= (1 +log" (1)) + (1) 1

+ Cllw ()l
<C,
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where we used Lemma 2.3, 4.3, (26), (28), (29) and the interpolation in-
equality
1-4 A
[wllze < [lwllzee” ([l Za-
This gives
(30) 1|z < Ct.
For I, let
Q:= VA HVOf +6 div f).

Using [, |[VO(,7)||r= dr < oo and f € L=([0,T]; WH(R?)), similar

argument gives

1Q(z,7)|
< lwereo s punl,
le—y|<1 |*5C - y|
P e dv punl,
lze—y|>1 |ﬂ§ - y|

< c(nve(-,T>||Loouf<-m>||m

H00llz=1DF ¢ Pl + 1(Vf +0 div £)(,7)1e)
< O+ V0, 7)),

where C' = C(f, 00, w0, T, fOT IVO(-,T)||Lee d7). Thus we obtain

t

(31) Il < Ot + / IV6(,7)|z dr) < C.
0

It is easy to see that

(32) 3]l < sup [[f(, D)L [0l Lot < C.
0<t<T

Combining (30)—(32), we obtain

sup [[o(, )|z < [lvollz~ + C.
0<t<T

Moreover, combining (27) with Lemma 4.3, we get
Vol D)lly < Cllw(t)llnLe < C,

and by Lemma 4.3 the proof of the theorem ends. 0
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