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DENSITY MEASURE OF RATIONAL POINTS ON

ABELIAN VARIETIES

MICHEL WALDSCHMIDT1

Abstract. Let A be a simple Abelian variety of dimension g over
�
, and let

` be the rank of the Mordell-Weil group A(
�
). Assume ` ≥ 1. A conjecture of

Mazur asserts that the closure of A(
�
) into A(� ) for the real topology contains

the neutral component A(� )0 of the origin. This is known only under the extra
hypothesis ` ≥ g2 − g + 1. We investigate here a quantitative refinement of this
question: for each given positive h, the set of points in A(

�
) of Néron-Tate

height ≤ h is finite, and we study how these points are distributed into the
connected component A( � )0 . More generally we consider an Abelian variety A

over a number field K embedded in � , and a subgroup Γ of A(K) of sufficiently
large rank. The effective result of density we obtain relies on an estimate of
Diophantine approximation, namely a lower bound for linear combinations of
determinants involving Abelian logarithms.

§1. Introduction

Let K be a number field with a given real embedding. Let V be a

smooth variety over K. Denote by Z the closure, for the real topology, of

V (K) in V (R). In his paper [9] on the topology of rational points, Mazur

assumes that K = Q and that V (Q) is Zariski dense; he asks whether Z is a

union of connected components of V (R). However an example is given in [2]

of a smooth surface V over Q, whose Q-rational points are Zariski-dense,

but such that the closure Z in V (R) of the set of Q-points is not a union

of connected components.

We consider here a quantitative refinement. Assume that V is embed-

ded, as a quasi-projective variety, into a projective space PN over K. Denote

by h the absolute logarithmic height (Weil height) on PN(K) (see [4], [5,

Chap. IV, §1], [6, Chap. III], [7, Chap. II], or [12, Chap. II]):

h(γ0 : · · · : γN ) =
∑

v∈MK

[Kv : Qv]

[K : Q]
log max

{

|γ0|v, . . . , |γN |v
}

,
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where MK denotes the set of places of K normalized so that the product

formula reads
∑

v∈MK

[Kv : Qv] log |γ|v = 0 for any γ ∈ K×.

Further, for ζ = (ζ0 : · · · : ζN ) and ξ = (ξ0 : · · · : ξN ) in PN (R), write

dist(ζ, ξ) =

max
0≤i,j≤N

|ζiξj − ζjξi|

max
0≤i≤N

|ζi| · max
0≤j≤N

|ξj|
.

For each sufficiently large real number H, define ηV (H) as follows:

ηV (H) = inf

{

ε > 0 ;
for any ζ ∈ Z, there exists γ ∈ V (K)

with h(γ) ≤ logH and dist(ζ, γ) ≤ ε

}

.

Since V (K) is dense in Z,

lim
H→∞

ηV (H) = 0.

An upper bound for ηV (H) can be considered as a measure of the density

in Z of the rational points V (K).

A lower bound for ηV (H) is easily achieved as follows: denote by ψV (H)

the number of points γ in V (K) of height h(γ) ≤ logH. Then

lim inf
H→∞

ψV (H) ηV (H)dim V > 0.

Since the estimate ψV (H) ≤ CHκ always holds, with a constant C which

depends only on V and K, but not on H, and with κ = (dimV +1)[K : Q],

we deduce

lim inf
H→∞

ηV (H) ·Hκ′

> 0 with κ′ =
κ

dimV
.

In certain cases a sharper lower bound for ηV (H) is available. For instance

when V is an Abelian variety A, if ` is the rank over Z of the Mordell-Weil

group A(K), then

lim inf
H→∞

ηA(H) · (logH)`/2g > 0.

Indeed there exists a positive constant C such that, for all H ≥ e,

ψA(H) ≤ C(logH)`/2.
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This follows easily from the properties of the Néron-Tate height ĥ associated

with the given embedding of A into PN , which is defined for γ ∈ A(K) by

ĥ(γ) = lim
n→∞

1

n2
h(nγ).

For elliptic curve, see [5, Chap. IV], or [13, Chap. VIII, §6 and §9]. For

Abelian varieties, see [6, Chap. V], [12, §3.3], [7, Chap. III, §1], or [4, §3].

Since |h − ĥ| is bounded on A(K), it does not make a difference for us

to replace h by ĥ. Accordingly we define

η̂A(h) = inf

{

ε > 0 ;
for any ζ ∈ A(R)0, there exists γ ∈ A(K)

with ĥ(γ) ≤ h and dist(ζ, γ) ≤ ε

}

,

where A(R)0 denotes the connected component of the origin in A(R).

Conjecture 1.1. Let A be a simple Abelian variety of dimension

g over a number field K embedded in R. Denote by ` the rank over Z of

the Mordell-Weil group A(K). For any ε > 0, there exists h0 > 0 (which

depends only on the Abelian variety A, the real number field K and ε) such

that, for any h ≥ h0,

η̂A(h) ≤ h−(`/2g)+ε.

This means that for sufficiently large h, any point in A(R)0 should be

at distance ≤ h−(`/2g)+ε of a point of A(K) of Néron-Tate height ≤ h. We

shall see that this Conjecture 1.1 can be stated in an equivalent way as an

estimate of Diophantine approximation, for which we shall produce partial

results.

We start with the special case of an elliptic curve. Here is a measure of

density for the set of rational points.

Theorem 1.2. Let E be an elliptic curve over a real number field K.

There exist two positive constants C1 and C2, which depend only on E and

K, such that for any h ≥ ee,

η̂E(h) ≤ C1 exp
{

−C2(log h)(log log h)−1−(2/`)
}

.

According to Conjecture 1.1, it should be possible to replace the factor

C2(log log h)−1−(2/`) by (`/2) − ε for h > h0(ε).
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The proof of Theorem 1.2 (see §3) rests on an estimate, due to N.

Hirata-Kohno, on the simultaneous approximation of quotients of elliptic

logarithms (namely Theorem 3.2).

As we shall see, the case of an elliptic curve is the only one where the

problem is reduced to a lower bound for a linear form in logarithms.

Let A be a simple Abelian variety of dimension g over a number field

K ⊂ R, with Mordell-Weil group A(K) of rank `. If ` ≥ g2−g+1, then the

closure of A(K) in A(R) contains A(R)0. Moreover, if ` ≥ g2, then there

exists γ ∈ A(K)∩A(R)0 such that Zγ is dense in A(R)0 (see Corollary 4.6).

Our aim is to provide quantitative refinements to these density results.

We assume that A is embedded into a projective space PN over K.

Theorem 1.3. Assume ` ≥ 2g2. Then there exist two positive con-

stants C1 and C2 such that, for any h ≥ e,

η̂A(h) ≤ C1 exp
{

−C2(log h)θ
}

where θ = 1 −
2g2

`+ 1
.

The constants C1 and C2 depend on A and K, as well as on the em-

bedding of A into PN .

Here is the plan of this paper. The purpose of section 2 is twofold:

firstly we state a consequence of Kronecker’s Theorem which reduces the

density problem to a question of irrationality; secondly we give a transfer-

ence lemma which reduces the question of density measure to a problem of

Diophantine approximation on Abelian varieties. Next in §3 we discuss the

case of elliptic curves. Section 4 is devoted to the qualitative problem on

Abelian varieties, and sections 5 and 6 to the quantitative one. The main

results of Diophantine approximation (namely Theorems 5.2 and 6.1) are

deduced from [19].

Acknowledgements. It is a pleasure for the author to thank Noriko

Hirata Kohno for her helpful comments on this paper.

§2. Kronecker and Khinchine

Let E be a vector space of dimension n ≥ 1 over the field R of real

numbers and let Y be a finitely generated subgroup of E. From a result of

Kronecker one deduces (see [18, Chap. II, Prop. 4.3]):
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Lemma 2.1. The following conditions are equivalent.

(i) Y is dense in E.

(ii) For any vector subspace V of E distinct from E, we have

rankZ(Y/Y ∩ V ) > dimR(E/V ).

(iii) For any hyperplane H of E, we have rankZ(Y/Y ∩H) ≥ 2.

(iv) For any nonzero linear form ϕ ∈ HomR(E,R), we have ϕ(Y ) 6⊂ Z.

(v) For any non-trivial character χ of E, we have χ(Y ) 6= {1}.

(vi) Let y1, . . . , y` be a set of elements of Y which span a subgroup

of finite index in Y ; let (e1, . . . , en) be a basis of E over R; consider the

coordinates uij of yj in this basis:

yj = u1je1 + · · · + unjen, (1 ≤ j ≤ `);

then for any nonzero s = (s1, . . . , s`) in Z`, the matrix

Ms =









u11 · · · u1`
...

. . .
...

un1 · · · un`

s1 · · · s`









has rank n+ 1.

Let Ω be a lattice in E (which means a discrete Z-subgroup of maximal

rank n). Denote by E∗ = HomR(E,R) the dual vector space of E, and by

Ω∗ the dual lattice of Ω:

Ω∗ =
{

ϕ ∈ E∗ ; ϕ(Ω) ⊂ Z
}

.

From the equivalence (i) ⇔ (iv) in Lemma 2.1, it follows that a finitely

generated subgroup Y of E which contains Ω is dense in E if and only if,

for any nonzero ϕ ∈ Ω∗, we have ϕ(Y ) 6⊂ Z. We now give a quantitative

version of this statement. For x ∈ R we denote by ‖x‖ the distance to the

nearest integer:

‖x‖ = min
n∈Z

|x− n|.

Lemma 2.2. Let ω1, . . . , ωn be a basis of the lattice Ω and let y1, . . . , ym

be elements in E. Let F and G be two monotonically increasing and un-

bounded real valued functions of a real variable which are inverse of each

other :

G ◦ F (S) = S for all sufficiently large S
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and

F ◦G(T ) = T for all sufficiently large T .

Then the two following conditions are equivalent.

(i) There exist three positive constants c1, c2 and S0 such that, for any

nonzero ϕ ∈ Ω∗, if we set

S = max{|ϕ(ω1)|, . . . , |ϕ(ωn)| ; S0},

then we have

max
1≤i≤m

‖ϕ(yi)‖ ≥ c1/F (c2S).

(ii) There exist three positive constants c′1, c
′
2 and T0 such that, for any

x ∈ E and any integer T ≥ T0, there exist ω ∈ Ω and (t1, . . . , tm) ∈ Zm

which satisfy

max{|t1|, . . . , |tm|} ≤ T and
∣

∣x− ω − t1y1 − · · · − tmym

∣

∣ ≤ c′1/G(c′2T ).

Proof. The proof is given in [20, Lemme 3.1], and relies on Khinchine

transference Theorem (see also [18, Chap. V, Lemme 4.1]). More precisely,

one gets the following explicit estimates.

• If (i) holds, then (ii) is true with

c′1 = ηc2|ω|+, c′2 = c1/η and T0 = (1/c′2)F (c2S0),

where

|ω|+ = |ω1| + · · · + |ωn| and η = 2−n−m
(

(n+m)!
)2
.

• In the other direction, if (ii) holds, then (i) is true with

c1 = c′2/2(n+m), c2 = 2(n+m)c′1|ω|− and S0 = (1/c2)G(c′2T0),

where

|ω|− = sup
{

|ω1z1 + · · · + ωnzn|
−1 ; |z1| = · · · = |zn| = 1

}

.

Remark. Lemma 2.2 deals with the equivalence (i) ⇔ (iv) of Lem-

ma 2.1. One could also state the result in terms of (vi): the problem is then

to produce lower bounds for at least one of the (n+ 1) × (n+ 1) minors of

Ms in terms of max |sj|.
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§3. Diophantine approximation on elliptic curves

In this section we deal only with elliptic curves.

Let E ⊂ P2 be an elliptic curve over a subfield K of C given with a

Weierstraß model:

E(K) =
{

(x : y : t) ∈ P2(K) ; y2t = 4x3 − g2xt
2 − g3t

3
}

,

where g2 and g3 are elements of K satisfying g3
2 6= 27g2

3 .

To begin with, assume K ⊂ R. Then the exponential map of the Lie

group E(R) is the restriction to R of a Weierstraß ℘-function:

expE,R : R −→ E(R)

z 7−→
(

℘(z) : ℘′(z) : 1
)

The image E(R)0 of this map is the connected component of the origin in

E(R), while its kernel is of the form Zω for some nonzero period ω ∈ R. The

induced isomorphism of topological groups between E(R)0 and R/Z shows

that any finitely generated subgroup of E(R)0 of positive rank is dense. In

this case no arithmetic assumption is needed.

We now consider the quantitative density problem. Let Γ be a finitely

generated subgroup of E(R)0 of rank `. Let γ1, . . . , γ` be Z-linearly inde-

pendent elements in Γ. For 1 ≤ j ≤ `, let yj ∈ R be an elliptic logarithm

of γj , viz. a real number such that expE,R(yj) = γj. From Lemma 2.2, we

shall deduce:

Lemma 3.1. The following properties are equivalent.

(i) For any ε > 0, there exists a constant T0 > 0, with the following

property. For any integer T ≥ T0 and any ζ ∈ E(R)0, there exist rational

integers t1, . . . , t` satisfying

max
1≤j≤`

|tj | ≤ T and dist
(

ζ, t1γ1 + · · · + t`γ`

)

≤ T−`+ε.

(ii) For any ε > 0 there exists a constant T0 > 0, with the following

property. For any integer T ≥ T0 and any ξ ∈ R, there exist rational integers

t0, t1, . . . , t` satisfying

max
1≤j≤`

|tj | ≤ T and
∣

∣ξ − t0ω − t1y1 − · · · − t`y`

∣

∣ ≤ T−`+ε.
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(iii) For any ε > 0 there exists a constant Q > 0, with the following

property : for any rational integers q, p1, . . . , p` with q ≥ Q,

max
1≤j≤`

∣

∣

∣

∣

yj

ω
−
pj

q

∣

∣

∣

∣

> q−(1/`)−1−ε.

Moreover, if the field K is an algebraic extension of Q and if Γ is contained

in E(K), then these properties are also equivalent to the next one:

(iv) For any ε > 0 there exists a constant h0 > 0 such that, for any

h ≥ h0 and any ζ ∈ E(R)0, there exists γ ∈ Γ with ĥ(γ) ≤ h and

dist(ζ, γ) ≤ h−(`/2)+ε.

In each of these properties, the “constants” are supposed to depend only

on ε, g2, g3, K and y1, . . . , y` — notice that the real number ω depends only

on g2 and g3.

Proof. There is no loss (apart from the constants, which we do not

compute explicitly here) to replace if necessary Γ by a subgroup of finite

index. Hence one may assume Γ = Zγ1 + · · · + Zγ`.

For the proof of (i) ⇔ (ii), write any ζ ∈ E(R)0 as expE,R(ξ) for some

ξ ∈ R. Also write any γ ∈ Γ as expE,R(t1y1+· · ·+t`y`) for some (t1, . . . , t`) ∈

Z`. Up to a (multiplicative) constant, dist(ζ, γ) is nothing else than

min
t0∈Z

∣

∣ξ − t0ω − t1y1 − · · · − t`y`

∣

∣.

For the proof of the equivalence between (ii) and (iii), use Lemma 2.2

with

E = R, n = 1, Ω = Zω, F (S) = S(1/`)+ε1 and G(T ) = T `−ε2,

where ε1 and ε2 are related by ε1`− ε2/` = ε1ε2.

Finally, the correspondence between h in (iv) and T in (i) is h = T 2.

It seems reasonable to conjecture that the equivalent properties stated

in Lemma 3.1 always hold when the field K is a (real) number field. This

would imply Conjecture 1.1 for g = 1 (just take for γ1, . . . , γ` a basis of the

Mordell-Weil group E(K)). Moreover, as far as assertion (iii) is concerned,

one expects that such an estimate should hold for any number field K,

not only real ones. In this direction, the best known estimate for the si-

multaneous approximation of the numbers yj/ω is due to N. Hirata-Kohno

(cf. [3]):
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Theorem 3.2. (Hirata-Kohno) Let E be an elliptic curve over a num-

ber field K. Let ω ∈ C be a non-zero period of expE . Let y1, . . . , y` be complex

numbers such that expE(yj) ∈ E(K) for 1 ≤ j ≤ `. Assume the numbers

ω, y1, . . . , y` are linearly independent over Q. Then there exists a constant

c, which depends only on g2, g3, ω, K and y1, . . . , y`, such that, for any

(q, p1, . . . , p`) ∈ Z`+1 with q > ee,

max
1≤j≤`

∣

∣

∣

∣

yj

ω
−
pj

q

∣

∣

∣

∣

≥ exp
{

−c(log q)(log log q)1+(2/`)
}

.

We now deduce from Theorem 3.2 a stronger statement than Theo-

rem 1.2 (we do not restrict the discussion to the full Mordell-Weil group

here).

Corollary 3.3. Let E be an elliptic curve over a real number field K

and let Γ be a subgroup of E(K) of positive rank `. There exists a constant

C > 0 such that, for any h ≥ ee and any ζ ∈ E(R)0, there exists γ ∈ Γ with

ĥ(γ) ≤ h and

dist(ζ, γ) ≤ exp
{

−C(logh)(log log h)−1−(2/`)
}

.

Proof. We use the implication (i) ⇒ (ii) of Lemma 2.2 with

F (S) = exp
{

(logS)(log logS)1+(2/`)
}

for S ≥ ee.

Then the inverse function G is bounded from below by

G(T ) ≥ exp
{

(log T )(log log T )−1−(2/`)
}

for T ≥ ee.

§4. Irrationality, transcendence and density

Let A be an Abelian variety of dimension g defined over a subfield K

of C. We denote by TA(C) the tangent space at the origin of A, by

expA : TA(C) −→ A(C)

the exponential map of A(C), and by ΩA its kernel, which is a discrete

subgroup of TA(C) of rank 2g over Z. If K is a subfield of R, then the

exponential map of the real Lie group A(R) is the restriction

expA,R : TA(R) −→ A(R)
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of expA to TA(R). Its image is A(R)0 and its kernel

ΩA,R = ΩA ∩ TA(R)

is a discrete subgroup of TA(R) of rank g over Z.

We denote by

LA(K) = exp−1
A

(

A(K)
)

the Z-module of Abelian logarithms of rational points in A(K). If K is

algebraically closed, then the group A(K) is divisible, hence LA(K) is a

Q-vector space.

The following result is a consequence of Lemma 2.1.

Lemma 4.1. Let A be an Abelian variety defined over R. Let Γ be

a finitely generated subgroup of A(R)0. Then the following properties are

equivalent.

(i) The subgroup Γ is dense in A(R)0.

(ii) Define Y = exp−1
A,R(Γ). Then for any nonzero linear form ϕ ∈

HomR(TA(R),R), we have ϕ(Y ) 6⊂ Q.

(iii) Let ω1, . . . , ωg be linearly independent elements of ΩA,R.Let y1, . . . ,

y` be elements in TA(R) whose exponentials expA,R(yj), (1 ≤ j ≤ `) span a

subgroup of finite index of Γ. Further, consider the coordinates of yj in the

basis ω1, . . . , ωg of TA(R):

yj = u1jω1 + · · · + ugjωg, (1 ≤ j ≤ `).

Then for any (σ1, . . . , σg, s1, . . . , s`) in Zg+` with (σ1, . . . , σg) 6= (0, . . . , 0),

the matrix








u11 · · · u1`

Ig
...

. . .
...

ug1 · · · ug`

σ1 · · · σg s1 · · · s`









has rank g + 1.

For instance a subgroup Zγ of A(R)0 is dense if and only if γ =

expA,R(y) with y = ϑ1ω1 + · · ·+ϑgωg and 1, ϑ1, . . . , ϑg linearly independent

over Q.

It seems reasonable to hope that these properties are true when A

is simple and K is a (real) number field. This would imply the following
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stronger version of Mazur’s conjecture for Abelian varieties: for a simple

Abelian variety A over a real number field K, the closure in A(R) of any

subgroup of positive rank of A(K) contains A(R)0.

Condition (iii) suggests a problem of irrationality: for any finitely gen-

erated subgroup Y of LA(K) of positive rank and any nonzero linear form

ϕ ∈ HomR(TA(R),R), prove that one at least of the numbers ϕ(y), (y ∈ Y )

is irrational. It is natural to extend this question to a transcendence prob-

lem: prove that one at least of the numbers ϕ(y), (y ∈ Y ) is transcendental.

In this later case it is also natural to consider a nonzero linear form ϕ on the

complex vector space TA(C) (the number field K need not be real). More

generally we produce a lower bound for the dimension of the Q-vector space

spanned by ϕ(Y ) in C.

Theorem 4.2. Let A be a simple Abelian variety over a number

field K, Y be a finitely generated subgroup of LA(Q) of rank m and ϕ ∈

HomC(TA(C),C) a nonzero linear form. Define

κ = rankZ

(

ΩA ∩ Kerϕ
)

.

Let r be the dimension of the Q-vector space spanned by ϕ(Y ). Then

m ≤ (2g − κ)(g + r − 1).

The number κ lies in the range 0 ≤ κ ≤ g − 1. If there exist k periods

ω1, . . . , ωk in ΩA which are linearly independent and such that ϕ(ωi) ∈ Q

for 1 ≤ i ≤ k, then κ ≥ k − 1. In other words

κ+ 1 ≥ rankZ

(

ΩA ∩ ϕ−1(Q)
)

.(4.3)

From Theorem 4.2 (with r = 0) one deduces:

if m > (2g − κ)(g − 1), then ϕ(Y ) 6= {0}.(4.4)

This means that ϕ(Y ) has rank ≥ m − (2g − κ)(g − 1). Hence from (4.4)

we derive

if m > (2g − κ)(g − 1) + 1, then ϕ(Y ) 6⊂ Q.(4.5)

This statement includes the following density result (see [17, Cor. 4.1]; see

also [18, Chap. IV, §4]):
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Corollary 4.6. Let A be a simple Abelian variety over a real number

field K and let Γ be a subgroup of A(K) of rank `. If ` ≥ g2−g+1, then the

closure of Γ in A(R) contains A(R)0. Further, if ` ≥ g2, then there exists

a subgroup of Γ of rank 1 which is dense in A(R)0.

Proof. Using Lemma 4.1, we deduce the first part from (4.3) and (4.5)

with Y = exp−1
A,R(Γ), m = ` + g and κ = g − 1. The second part is a

consequence of the first one by means of Lemma 3.2 of [10].

We also deduce from Theorem 4.2 (now with r = 1):

If m > (2g − κ)g, then ϕ(Y ) 6⊂ Q.(4.7)

In case g = 1, κ = 1, the statement (4.7) just means that u/ω is transcen-

dental if u ∈ LE(Q) is a logarithm of a point of infinite order. This is a

result of Schneider’s [11]. For g = 1 again, but κ = 0, the condition m ≥ 3

cannot be improved when E is a CM elliptic curve: in this case the result

(again due to Schneider) states that the quotient of two elliptic logarithms

of points of infinite order is either in the field of endomorphisms, or else is

transcendental. These are the only cases where (4.7) is know to be optimal.

For instance in case g = 1, κ = 0 and E without complex multiplication,

Schneider’s result shows that the assumption m ≥ 2 is sufficient to imply

ϕ(Y ) 6⊂ Q.

Finally, Theorem 4.2 (in case g = 1) contains the following result due

to D. W. Masser [8]: if E is an elliptic curve defined over the field Q with

complex multiplication, and if y1, . . . , y` are in LE(Q) and linearly inde-

pendent over the field of endomorphisms of E, then y1, . . . , y` are linearly

independent over Q.

The similar result (due to Bertrand and Masser [1]) in the non-CM case

does not seem to follow from Theorem 4.2, nor do the inhomogeneous linear

independence results.

We now prove Theorem 4.2. We shall use the following special case of

the Theorem of the algebraic subgroup (see [15] and [16]).

Theorem 4.8. Let A be a simple Abelian variety of dimension g over

a subfield K of Q, let d0 be a nonnegative integer, and let V be a vector

subspace of Cd0 × TA(C). Assume

V ∩
(

Q
d0 × {0}

)

= {0} and V 6⊃ {0} × TA(C).
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Define

κ = rankZ

(

V ∩
(

{0} × ΩA

)

)

.

Then

dimQ

(

V ∩
(

Q
d0 × LA(Q)

)

)

≤ (2g − κ)(d0 + g − 1).

Proof of Theorem 4.2. Let (ξ1, . . . , ξr) be a basis over Q of the vector

field spanned by ϕ(Y ) in C. For y ∈ Y , denote by ψ(y) ∈ Q
r

the vector

whose components are the coordinates of ϕ(y) in this basis. This defines a

homomorphism of additive groups ψ : Y → Q
r
.

Let V be the hyperplane of Cr × TA(C) of equation

ξ1z1 + · · · + ξrzr = ϕ(z), (z1, . . . , zr, z) ∈ Cr × TA(C).

Since ξ1, . . . , ξr are linearly independent over Q, we have

V ∩
(

Q
r
× {0}

)

= {0}.

Since the form ϕ is not zero, we have

V 6⊃ {0} × TA(C).

The number κ in Theorem 4.2 is the same as in Theorem 4.8, because

V ∩
(

{0} × ΩA

)

=
(

{0} × Kerϕ
)

∩
(

{0} × ΩA

)

.

Moreover, for each y ∈ Y , we have

(

ψ(y), y
)

∈ V ∩
(

Q
r
× LA(Q)

)

.

Finally, we use Theorem 4.8 with d0 = r and conclude

rankZ(Y ) ≤ dimQ

(

V ∩
(

Q
r
× LA(Q)

)

)

≤ (2g − κ)(g + r − 1).

Remark. There is a corresponding multiplicative story which relies on

a variant of Theorem 4.8, where the algebraic group Gd0

a ×A is replaced by

Gd1

m ×A.
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§5. Rational Diophantine approximation on Abelian varieties

Let A an Abelian variety of dimension g over a subfield K of R. Fix

an embedding of A in a projective space over K as well as a norm | · | on

the tangent space at the origin TA(R). Let ω1, . . . , ωg be a basis of ΩA,R.

Further, let γ1, . . . , γ` be Z-linearly independent elements in A(R)0. For

1 ≤ j ≤ `, let yj ∈ TA(R) be an Abelian logarithm of γj , viz. an element of

TA(R) such that expA,R(yj) = γj.

The proof of Lemma 3.1 extends to the case g ≥ 1 and yields the

following.

Lemma 5.1. Let θ be a positive real number. The following properties

are equivalent.

(i) There exists a constant C > 0, with the following property. For any

positive integer T and any ζ ∈ A(R)0, there exist rational integers t1, . . . , t`
satisfying

max
1≤j≤`

|tj | ≤ T and dist
(

ζ, t1γ1 + · · · + t`γ`

)

≤ CT−θ.

(ii) There exists a constant C > 0, with the following property. For any

positive integer T and any ξ ∈ TA(R), there exist rational integers τ1, . . . , τg,

t1, . . . , t` satisfying

max
1≤j≤`

|tj| ≤ T and
∣

∣ξ − τ1ω1 − · · · − τgωg − t1y1 − · · · − t`y`

∣

∣ ≤ CT−θ.

(iii) There exists a constant C > 0 with the following property. If ϕ ∈

HomR(TA(R),R) is a nonzero linear form such that ϕ(ωi) ∈ Z for 1 ≤ i ≤ g,

then

max
1≤j≤`

‖ϕ(yj)‖ ≥ CS−1/θ where S = max
1≤i≤g

|ϕ(ωi)|.

Moreover, if the field K is an algebraic extension of Q and if the group

Γ = Zγ1 + · · · + Zγ` is contained in A(K), then these properties are also

equivalent to the next one:

(iv) There exists a constant C > 0 such that, for any h ≥ 1 and any

ζ ∈ A(R)0, there exists γ ∈ Γ with ĥ(γ) ≤ h and

dist(ζ, γ) ≤ Ch−θ/2.
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In each of these properties, the “constants” depend only on θ, A, K,

ω1, . . . , ωg, y1, . . . , y`, as well as the norm on TA(R) for property (iii) and

the embedding of A into PN for properties (i) and (iv).

The best possible value (i.e., the largest one) of θ for which the prop-

erties of Lemma 5.1 can hold is θ = `/g: this is the “Dirichlet exponent” of

[14, p. 36].

It seems reasonable to expect that the equivalent properties stated in

Lemma 5.1 hold for any θ < `/g when the variety A is simple and K is a

(real) number field. This would clearly imply Conjecture 1.1.

In order to check condition (iii) of Lemma 5.1, one needs to produce

lower bounds for numbers of the form

s0 + s1ϑ1 + · · · + s`ϑ`,

where ϑ1, . . . , ϑ` are certain determinants of matrices; the entries of these

matrices are coordinates of Abelian logarithms of algebraic points on the

variety. In this direction we shall prove two estimates of simultaneous Dio-

phantine approximation. The first one (Corollary 5.3) yields lower bounds

for homogeneous linear forms. The second one (Theorem 6.1) is an inho-

mogeneous estimate of approximation by algebraic numbers.

In the next statements, the Abelian varieties are defined over a number

field which is embedded in C. For such an Abelian variety A, we fix a basis

(e1, . . . , eg) of the tangent space at the origin TA(C), as well as a norm | · |

on the same, namely

|z| = max{|z1|, . . . , |zg|} for z = z1e1 + · · · + zgeg ∈ TA(C).

Further, for a linear form ϕ ∈ HomC

(

TA(C),C
)

, we define

N(ϕ) = max
{

|ϕ(e1)|, . . . , |ϕ(eg)|
}

.

Theorem 5.2. Let A be a simple Abelian variety over a number field

K0 of dimension g and let m be a positive integer. For any sufficiently large

real number c0 the following property holds. Let K be a finite extension of

K0, with [K : Q] = D. Let y1, . . . , ym be elements of LA(K). For 1 ≤ j ≤ m

define γj = expA yj ∈ A(K). Define a real number A ≥ e by

logA = max
1≤j≤m

max
{

1,h(γj), (e/D)|yj |
2
}

.
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Let S be a positive integer and ϕ ∈ HomC(TA(C),C) a nonzero linear form.

Define

V = c0(c
2
0S

2D logA)g

and

S =

{

s = (s1, . . . , sm) ∈ Zm ;
|sj| < S, (1 ≤ j ≤ m) ;

|ϕ(s1y1 + · · · + smym)| ≤ N(ϕ)e−V

}

.

Then the number of elements of the set

Σ =
{

s1γ1 + · · · + smγm ; s ∈ S
}

⊂ A(K)

is bounded by

CardΣ ≤ c20V
g−1.

Proof. The basic tool for the proof of Theorem 5.2 will be the effective

version of the algebraic subgroup Theorem given in [19].

We assume that the hypotheses of Theorem 5.2 are satisfied. There is

no loss of generality to assume N(ϕ) = 1 and ϕ(eg) = −1:

ϕ(z1e1 + · · · + zgeg) = ϑ1z1 + · · · + ϑg−1zg−1 − zg,

with max{|ϑ1|, . . . , |ϑg−1|} ≤ 1.

We denote by c0 a sufficiently large number, which depends on m, on

the Abelian variety A, on the chosen basis of TA(C) and on the number

field K0, but not on K, y1, . . . , ym, nor on ϑ1, . . . , ϑg−1. In particular c0
does not depend on the parameters D, A and S.

We use the notation of Theorem 2.1 of [19] with

G = A, d0 = d1 = 0, d2 = d = g,

W = W ′ = {0}, `0 = 0, r = r3 = g − 1, r1 = r2 = 0,

while V ′ is the hyperplane Kerϕ of TA(C). Further we define

U = V/c0, logA1 = c0S
2 logA, E = e, M = CardS

and

T1 =
[

U/D logA1

]

=
[

U/c0S
2D logA

]

.

Since

(U/c0S
2D logA)g = c0V

g−1,
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one deduces

T g
1 ≤ c0V

g−1 ≤ (T1 + 1)g.

For 1 ≤ j ≤ m define y′j ∈ Kerϕ by

y′j = yj + ϕ(yj)eg.

For each s ∈ S, define two elements of TA(C):

ηs = s1y1 + · · · + smym, η′s = s1y
′
1 + · · · + smy

′
m,

so that, for any s ∈ S,

|ηs − η′s| = |ϕ(s1y1 + · · · + smym)| ≤ e−V .

Since the only connected algebraic subgroup of A, distinct from A, is {0},

one deduces from Theorem 2.1 in [19]:

CardΣ ≤ c0T
g
1 ≤ c20V

g−1.

Theorem 5.2 is the Abelian counterpart to Theorem 4.3 of [20], which

deals with Gd
m. We now deduce from Theorem 5.2 Abelian analogues of

Theorem 1.2 and Corollary 1.3 of [20]. Theorem 6.1 in the next section is

an Abelian analogue of Theorem 1.4 of [20].

Corollary 5.3. Let A be a simple Abelian variety of dimension g

over a number field K0 and let ` be a positive integer with ` > 2g(g − 1).

There exists a constant c > 0 with the following property. Let K be a finite

extension of K0, with [K : Q] = D. Let y1, . . . , y` be elements in LA(K).

For 1 ≤ j ≤ ` define γj = expA yj and assume that γ1, . . . , γ` are Z-linearly

independent in A(K). Define a real number A ≥ e by

logA = max
1≤j≤`

max
{

1,h(γj), (e/D)|yj |
2
}

.

Let ϕ ∈ HomC(TA(C),C) be a nonzero linear form. Then

max
1≤j≤`

|ϕ(yj)| ≥ N(ϕ) exp
{

−c(D logA)%0
}

,

with

%0 =
`g

`− 2g(g − 1)
.
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Proof. To begin with, consider the case g = 1. We may write A =

E , using the notation of section 3. Then ϕ(z) = λz with λ = N(ϕ). By

assumption we have ` ≥ 1. For simplicity we write y for y1 and γ for γ1.

The number y is not a pole of the Weierstraß ℘-function, and ℘(y) is an

algebraic number of height h
(

℘(y)
)

≤ h(γ). Hence |℘(y)| ≤ eDh(γ) ≤ AD.

Since ℘ has a double pole at 0, we deduce

|y| ≥ c1A
−D/2

for some positive constant c1 < 1 (which depends only on E , that is of g2
and g3). This provides the desired result with c = (1/2)− log c1 and %0 = 1.

We now assume g ≥ 2. Apply Theorem 5.2 with S the smallest positive

integer which satisfies

S`−2g(g−1) ≥ c2g2

0 (D logA)g(g−1).

Since S > 2, we deduce

(S/2)`−2g(g−1) < c2g2

0 (D logA)g(g−1).

Therefore the parameter V of Theorem 5.2 satisfies the following estimate:

V `−2g(g−1) ≤ c
2(g+1)(`+g)
0 (D logA)`g .

The choice of S is done in such a way that

c20V
g−1 ≤ S`.

Consequently, according to Theorem 5.2, the set Σ has less than (2S − 1)`

elements. Since γ1, . . . , γ` are Z-linearly independent, equality CardS =

Card Σ holds, and we deduce that there exists s0 ∈ Z` satisfying

max
1≤j≤`

|s0j | < S and |ϕ(s01y1 + · · · + s0`y`)| > N(ϕ)e−V .

On the other hand the upper bound

|ϕ(s01y1 + · · · + s0`y`)| ≤ `S max
1≤j≤`

|ϕ(yj)|

plainly holds. Since V + log(`S) < c(D logA)%0 , the conclusion of Corol-

lary 5.3 follows.
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Corollary 5.4. Let A be a simple Abelian variety over a number

field K, of dimension g. Let γ1, . . . , γ` be Z-linearly independent elements

of A(K), with ` > 2g(g−1). For 1 ≤ j ≤ `, let yj ∈ LA(K) satisfy expA yj =

γj . Further let ω ∈ ΩA be a period of expA. There exists a constant c′ > 0

such that, for any linear form ϕ ∈ HomC(TA(C),C) satisfying 0 6= ϕ(ω) ∈

Z, we have

max
1≤j≤`

‖ϕ(yj)‖ ≥ N(ϕ) exp
(

−c′N2%0

)

,

with

N = max{1,N(ϕ)} and %0 =
`g

`− 2g(g − 1)
.

Proof. Define s0 = ϕ(ω). For 1 ≤ j ≤ `, let sj ∈ Z be an integer at

minimal distance of ϕ(yj), and let

ỹj = s0yj − sjω,

so that ϕ(ỹj) = s0
(

ϕ(yj) − sj

)

and |ϕ(ỹj)| = |s0| · ‖ϕ(yj)‖. The points

γ̃j = expA yj, (1 ≤ j ≤ `) are linearly independent in A(K).

Since the final constant c′ depends on ω, y1, . . . , y`, we may bound

max0≤j≤` |sj| by c′′N , with some suitable constant c′′, and apply Corol-

lary 5.3 with D = c′′, logA = c′′N2. Corollary 5.4 easily follows.

We now deduce from Corollary 5.4 a density measure for rational points

on an Abelian variety. We need only the condition ` > 2g(g − 1). The

estimate is weak compared with Theorem 1.3, but it is non trivial for g > 1.

Corollary 5.5. Let A be a simple Abelian variety of dimension g

over a real number field K ⊂ R. Let Γ be a subset of A(K) of rank ` ≥

2g2 − 2g + 1. Define

θ0 =
1

2%0
=

1

2g
−
g − 1

`
.

Then there exists a positive constant C such that, for any h ≥ e and any

ζ ∈ A(R)0, the system of inequalities

dist(ζ, γ) ≤ C(log h)−θ0 , ĥ(γ) ≤ h

has a solution γ ∈ A(K).
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Proof. Since the subgroup Γ of A(K) is finitely generated of rank `, the

subgroup Y = exp−1
A,R(Γ) of TA(R) is of rank `+ g. Let ω1, . . . , ωg, y1, . . . , y`

be a basis of Y over Z, with ωi ∈ ΩA,R for 1 ≤ i ≤ g. For each nonzero ϕ ∈

Ω∗
A,R, one at least of the integers ϕ(ωi), (1 ≤ i ≤ g) does not vanish. There-

fore we may apply Corollary 5.4. On the lattice Ω∗
A,R in HomR

(

TA(R),R
)

,

the two norms

max
{

|ϕ(ω1)|, . . . , |ϕ(ωg)|
}

and N(ϕ)

are equivalent. We deduce that condition (i) of Lemma 2.2 is satisfied with

E = TA(R), Ω = ΩA,R, n = g, m = `

and with

F (S) = exp(C1S
2%0)

for some positive constant C1. The inverse function G of F is bounded from

below by

G(T ) ≥ C2(log log T )1/2%0 .

§6. Algebraic Diophantine approximation on Abelian varieties

In this section we prove a non-homogeneous estimate of Diophantine

approximation which will enable us to complete the proof of Theorem 1.3.

Theorem 6.1. Let A be a simple Abelian variety over a number field

K0. Let g be the dimension of A, and let λ be a positive integer with λ >

2g2. There exists a constant c > 0 with the following property. Let K be a

finite extension of K0, with [K : Q] = D. Let m be a positive integer and

y1, . . . , ym be Z-linearly independent elements in LA(K). For 1 ≤ j ≤ m

define γj = expA yj. Put Y = Zy1 + · · ·+ Zym. Define a real number A ≥ e

by

logA = max
1≤j≤m

max
{

1, ĥ(γj), (e/D)|yj |
2
}

.

Let β1, . . . , βm be elements in K, not all of which are zero. Define a real

number B ≥ e by

logB = max
1≤j≤m

max
{

1,h(βj)
}

.

Let ϕ ∈ HomC(TA(C),C) be a nonzero linear form such that

ϕ(Y ∩ ΩA) ⊂ Z and rankZ

(

Y/Y ∩ ΩA ∩ Kerϕ
)

= λ.
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Then

max
1≤j≤m

|ϕ(yj) − βj | ≥ exp
(

−c(D logA)%g(D logB)%
)

,

with

% =
λ

λ− 2g2
.

Proof. We assume that the hypotheses of Theorem 6.1 are satisfied.

We denote by c1 a sufficiently large number, which depends on the Abelian

variety A, on the number field K0, and also on λ, but not on K, y1, . . . , ym,

ϕ, nor on β1, . . . , βm. In particular c1 does not depend on D, A and B. The

parameter m is bounded in terms of λ and g:

0 ≤ m− λ ≤ 2g − 2,

because Y ∩ ΩA ∩ Kerϕ is a discrete subgroup of the hyperplane Kerϕ.

Let S be the smallest positive integer which satisfies

Sλ−2g2

> (c81D logA)g
2

(D logB)g.(6.2)

Next we define

U1 = (c41S
2D logA)g(D logB) and V1 = c1U1.(6.3)

It easily follows that

(S/2)λ−2g2

≤ (c81D logA)g
2

(D logB)g

and

U1 ≤ (c81D logA)g%(D logB)%.

Assume

max
1≤j≤m

|ϕ(yj) − βj | < e−c1V1 .

We shall deduce a contradiction, which will complete the proof of Theo-

rem 6.1 with c = c8%g+2
1 .

We use the notation of Theorem 2.1 of [19] with

G = Ga ×A, d0 = 1, d1 = 0, d2 = g, d = g + 1, n = 1,

W = W ′ = {0}, `0 = 0, r = r3 = g, r1 = r2 = 0,
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while V ′ is the hyperplane of C × TA(C) of equation z0 = ϕ(z). Further we

define

B1 = B, logA1 = c1S
2 logA, E = e, M = Sm,

T0 =
[

U1/D logB
]

and T1 =
[

U1/D logA1

]

=
[

U1/c1S
2D logA

]

.

One deduces

(T0 + 1)(T1 + 1)g ≥ c1V
g
1 .

Define η1, . . . , ηm in K × LA(K) ⊂ C × TA(C) and η′1, . . . , η
′
m in V ′ ⊂

C × TA(C) as follows

ηj = (βj , yj) and η′j =
(

ϕ(yj), yj

)

, (1 ≤ j ≤ m).

Next define 2M elements of C × TA(C), which are indexed by s =

(s1, . . . , sm) ∈ Zm with 0 ≤ sj < S, (1 ≤ j ≤ m):

ηs = s1η1 + · · · + smηm, η′s = s1η
′
1 + · · · + smη

′
m.

Hence

max
s

|ηs − η′s| ≤ e−V1 .

We consider the following subset of K ×A(K):

Σ =
{

(s1β1 + · · · + smβm, s1γ1 + · · · + smγm) ; 0 ≤ sj < S, (1 ≤ j ≤ m)
}

,

and its two projections

Σ0 =
{

s1β1 + · · · + smβm ; 0 ≤ sj < S, (1 ≤ j ≤ m)
}

⊂ K

and

Σ1 =
{

s1γ1 + · · · + smγm ; 0 ≤ sj < S, (1 ≤ j ≤ m)
}

⊂ A(K).

The assumption ϕ(Y ∩ ΩA) ⊂ Z will be used as follows:

If s = (s1, . . . , sm) ∈ Zm satisfies the three properties

max
1≤j≤m

|sj | < S, s1β1 + · · · + smβm = 0 and s1γ1 + · · · + smγm = 0,

then

|ϕ(s1y1 + · · · + smym)| ≤ mSmax
s

|ηs − η′s| ≤ mSe−V1 < 1,
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hence

s1y1 + · · · + smym ∈ Y ∩ ΩA ∩ Kerϕ.

Given the definition of λ, the number of such s ∈ Zm is at most (2S)m−λ.

The algebraic subgroups G∗ of G = Ga ×A, distinct from G, are {0},

{0} × A and Ga × {0}. We give accordingly three lower bounds for the

cardinality of the projection of Σ on G(K)/G∗(K).

a) The case G∗ = {0}.

We claim

Card Σ ≥ 2−gc1T0T
g
1 .

Indeed, from the choice of parameters and conditions (6.2) and (6.3) we

deduce

Sλ ≥ 2gc1T0T
g
1 .(6.4)

Using the assumption ϕ(Y ∩ ΩA) ⊂ Z as shown above, we deduce

Card Σ ≥ Sm/(2S)m−λ ≥ 2−gc1T0T
g
1 .

b) The case G∗ = {0} × A.

We want to check

CardΣ0 ≥ c1T0.

The set

S1 =
{

s = (s1, . . . , sm) ∈ Zm ; max
1≤j≤m

|sj| < S, s1β1 + · · · + smβm = 0
}

satisfies

(CardS1)(Card Σ0) ≥ Sm.

For s ∈ S1, we have |ϕ(s1y1 + · · ·+ smym)| ≤ mSe−V1 . Since (β1, . . . , βm) 6=

(0, . . . , 0), we deduce from Liouville’s inequality

B−D ≤ max
1≤j≤m

|βj | ≤ max
1≤j≤m

|ϕ(yj) − βj | + N(ϕ)
(

(1/e)D logA
)1/2

.

Therefore the parameter V of Theorem 5.2 satisfies

mSe−V1 ≤ N(ϕ)e−V ,

and we deduce from that theorem

Card
{

s1γ1 + · · · + smγm ; s ∈ S1

}

≤ cg+1
1 (c21S

2D logA)g(g−1).
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From the assumption ϕ(Y ∩ ΩA) ⊂ Z we deduce

CardS1 ≤ (4S)m−λcg+1
1 (c21S

2D logA)g(g−1),

which yields

CardΣ0 ≥ c−g−2
1 Sλ−2g2+2g(c21D logA)−g(g−1).

Our claimed lower bound for CardΣ0 follows from the estimate

Sλ−2g2+2g > cg+3
1 T0(c

2
1D logA)g(g−1).

c) The case G∗ = Ga × {0}.

Now we are going to check

CardΣ1 ≥ c1T
g
1 .

Put Γ = expA(Y ). If ` is the rank of Γ, then Card Σ1 ≥ S`. Now from the

definition of λ follows

λ− ` = rankZ

(

Y ∩ ΩA/Y ∩ ΩA ∩ Kerϕ
)

≤ rankZ ΩA = 2g.

Since (6.3) implies

U1 > c1(D logB)S2g,

we deduce T0 ≥ S2g and (using (6.4))

CardΣ1 ≥ S` ≥ Sλ−2g ≥ c1T0T
g
1 S

−2g ≥ c1T
g
1 .

These estimates show that the conclusion of Theorem 2.1 of [19] does

not hold. This completes the proof of Theorem 6.1.

We now deduce from Theorem 6.1 the following corollary, which obvi-

ously implies Theorem 1.3 (just take Γ = A(K)):

Corollary 6.5. Let A be a simple Abelian variety of dimension g

over a real number field K ⊂ R. Let Γ be a subset of A(K) of rank ` ≥ 2g2.

Then there exist two positive constants C1 and C2 such that, for any h ≥ e

and any ζ ∈ A(R)0, there exists γ ∈ A(K) of height ĥ(γ) ≤ h satisfying

dist(ζ, γ) ≤ C1 exp{−C2(log h)θ} with θ = 1 −
2g2

`+ 1
.
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Proof. When ` is the rank of Γ, the subgroup exp−1
A,R(Γ) of TA(R) is

of rank m = ` + g. Let ω1, . . . , ωg be a basis of ΩA,R and let y1, . . . , y` be

elements in exp−1
A,R(Γ) such that ω1, . . . , ωg, y1, . . . , y` are Z-linearly inde-

pendent. Define a subgroup Y of finite index in exp−1
A,R(Γ) by

Y = Zω1 + · · · + Zωg + Zy1 + · · · + Zy`.

Let ϕ ∈ HomR(TA(R),R) be a nonzero linear form on TA(R) such that

ϕ(ΩA,R) ⊂ Z. Define rational integers β1, . . . , βm as follows: for 1 ≤ i ≤ g,

let βi = ϕ(ωi); for g < j ≤ m, we choose for βj a rational integer at minimal

distance of ϕ(yj−g). From our assumption ϕ 6= 0, we deduce that one at

least of the numbers β1, . . . , βg does not vanish. Since

rankZ

(

Y ∩ ΩA ∩ Kerϕ
)

= g − 1,

we may apply the estimate of Theorem 6.1 with λ = `+ 1. We deduce that

there exist positive constants S0 and C ′ such that, for any nonzero ϕ ∈ Ω∗
A,R

for which the number S = max{|ϕ(ω1)|, . . . , |ϕ(ωg)|} satisfies S ≥ S0, the

inequality

max
1≤j≤m

‖ϕ(yj)‖ ≥ 1/F (S)

holds with

F (S) = exp{C ′(logS)%} and % =
`+ 1

`+ 1 − 2g2
,

Applying Lemma 2.2 to the R-vector space TA(R) yields the conclusion

with θ = 1/%.
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493 (1997), 61–113.

[20] , Approximation simultanée par des produits de puissances de nombres
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