MODULI SPACES OF VECTOR BUNDLES OVER RULED SURFACES

MARIAN APRODU and VASILE BRÎNZǍNESCU

Abstract

We study moduli spaces $M\left(c_{1}, c_{2}, d, r\right)$ of isomorphism classes of algebraic 2 -vector bundles with fixed numerical invariants c_{1}, c_{2}, d, r over a ruled surface. These moduli spaces are independent of any ample line bundle on the surface. The main result gives necessary and sufficient conditions for the nonemptiness of the space $M\left(c_{1}, c_{2}, d, r\right)$ and we apply this result to the moduli spaces $\mathcal{M}_{L}\left(c_{1}, c_{2}\right)$ of stable bundles, where L is an ample line bundle on the ruled surface.

Introduction

Let $\pi: X \rightarrow C$ be a ruled surface over a smooth algebraic curve C, defined over the complex number field \mathbb{C}. Let f be a fibre of π. Let $c_{1} \in \operatorname{Num}(X)$ and $c_{2} \in H^{4}(X, \mathbb{Z}) \cong \mathbb{Z}$ be fixed. For any polarization L, denote the moduli space of rank-2 vector bundles stable with respect to L in the sense of Mumford-Takemoto by $\mathcal{M}_{L}\left(c_{1}, c_{2}\right)$. Stable 2-vector bundles over a ruled surface have been investigated by many authors; see, for example [T1], [T2], [H-S], [Q1]. Let us mention that Takemoto [T1] showed that there is no rank-2 vector bundle (having $c_{1} . f$ even) stable with respect to every polarization L. In this paper we shall study algebraic 2 -vector bundles over ruled surfaces, but we adopt another point of view: we shall study moduli spaces of (algebraic) 2-vector bundles over a ruled surface X, which are defined independent of any ample divisor (line bundle) on X, by taking into account the special geometry of a ruled surface (see [B], [B-St1], [B-St2] and also [Br1], [Br2], [W]).

In Section 1 (put for the convenience of the reader) we present (see [B]) two numerical invariants d and r for a 2 -vector bundle with fixed Chern classes c_{1} and c_{2} and we define the set $M\left(c_{1}, c_{2}, d, r\right)$ of isomorphism classes of bundles with fixed invariants c_{1}, c_{2}, d, r. The integer d is given by the splitting of the bundle on the general fibre and the integer r is given by some normalization of the bundle. Recall that the set $M\left(c_{1}, c_{2}, d, r\right)$ carries
a natural structure of an algebraic variety (see [B], [B-St1], [B-St2]). In Section 2 we study uniform vector bundles and we prove the existence of algebraic vector bundles given by extensions of line bundles and which are not uniform. In Section 3 the main result gives necessary and sufficient conditions for the non-emptiness of the space $M\left(c_{1}, c_{2}, d, r\right)$ and we apply this result to the moduli space of stable bundles $\mathcal{M}_{L}\left(c_{1}, c_{2}\right)$.

§1. Moduli spaces of rank-2 vector bundles

In this section we shall recall from ([B], [B-St1], [B-St2]) some basic notions and facts.

The notations and the terminology are those of Hartshorne's book [Ha]. Let C be a nonsingular curve of genus g over the complex number field and let $\pi: X \rightarrow C$ be a ruled surface over C. We shall write $X \cong \mathbb{P}(\mathcal{E})$ where \mathcal{E} is normalized. Let us denote by e the divisor on C corresponding to $\bigwedge^{2} \mathcal{E}$ and by $e=-\operatorname{deg}(\mathbf{e})$. We fix a point $p_{0} \in C$ and a fibre $f_{0}=\pi^{-1}\left(p_{0}\right)$ of X. Let C_{0} be a section of π such that $\mathcal{O}_{X}\left(C_{0}\right) \cong \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$.

Any element of $\operatorname{Num}(X) \cong H^{2}(X, \mathbb{Z})$ can be written $a C_{0}+b f_{0}$ with $a, b \in \mathbb{Z}$. We shall denote by $\mathcal{O}_{C}(1)$ the invertible sheaf associated to the divisor p_{0} on C. If L is an element of $\operatorname{Pic}(C)$ we shall write $L=\mathcal{O}_{C}(k) \otimes L_{0}$, where $L_{0} \in \operatorname{Pic}_{0}(C)$ and $k=\operatorname{deg}(L)$. We also denote by $F\left(a C_{0}+b f_{0}\right)=$ $F \otimes \mathcal{O}_{X}(a) \otimes \pi^{*} \mathcal{O}_{C}(b)$ for any sheaf F on X and any $a, b \in \mathbb{Z}$.

Let E be an algebraic rank-2 vector bundle on X with fixed numerical Chern classes $c_{1}=(\alpha, \beta) \in H^{2}(X, \mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z}, c_{2}=\gamma \in H^{4}(X, \mathbb{Z}) \cong \mathbb{Z}$, where $\alpha, \beta, \gamma \in \mathbb{Z}$.

Since the fibres of π are isomorphic to \mathbb{P}^{1} we can speak about the generic splitting type of E and we have $\left.E\right|_{f} \cong \mathcal{O}_{f}(d) \oplus \mathcal{O}_{f}\left(d^{\prime}\right)$ for a general fibre f, where $d^{\prime} \leq d, d+d^{\prime}=\alpha$. The integer d is the first numerical invariant of E.

The second numerical invariant is obtained by the following normalization:

$$
-r=\inf \left\{l \mid \exists L \in \operatorname{Pic}(C), \operatorname{deg}(L)=l, \text { s.t. } H^{0}\left(X, E\left(-d C_{0}\right) \otimes \pi^{*} L\right) \neq 0\right\}
$$

We shall denote by $M(\alpha, \beta, \gamma, d, r)$ or $M\left(c_{1}, c_{2}, d, r\right)$ or M the set of isomorphism classes of algebraic rank-2 vector bundles on X with fixed Chern classes c_{1}, c_{2} and invariants d and r.

With these notations we have the following result (see [B]):

Theorem 1. For every vector bundle $E \in M\left(c_{1}, c_{2}, d, r\right)$ there exist $L_{1}, L_{2} \in \operatorname{Pic}_{0}(C)$ and $Y \subset X$ a locally complete intersection of codimension 2 in X, or the empty set, such that E is given by an extension

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}\left(d C_{0}+r f_{0}\right) \otimes \pi^{*} L_{2} \rightarrow E \rightarrow \mathcal{O}_{X}\left(d^{\prime} C_{0}+s f_{0}\right) \otimes \pi^{*} L_{1} \otimes I_{Y} \rightarrow 0 \tag{1}
\end{equation*}
$$

where $c_{1}=(\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z}, c_{2}=\gamma \in \mathbb{Z}, d+d^{\prime}=\alpha, d \geq d^{\prime}, r+s=\beta$, $l\left(c_{1}, c_{2}, d, r\right):=\gamma+\alpha(d e-r)-\beta d+2 d r-d^{2} e=\operatorname{deg}(Y) \geq 0$.

Remark. By applying Theorem 1 we can obtain the canonical extensions used in [Br 1$]$, $[\mathrm{Br} 2]$.
Indeed, let us suppose first that $d>d^{\prime}$. From the exact sequence (1) it follows that

$$
\mathcal{O}_{C}(r) \otimes L_{2} \cong \pi_{*} E\left(-d C_{0}\right)
$$

so

$$
\mathcal{O}_{X}\left(r f_{0}\right) \otimes \pi^{*} L_{2} \cong \pi^{*} \pi_{*} E\left(-d C_{0}\right)
$$

and

$$
\mathcal{O}_{X}\left(d C_{0}+r f_{0}\right) \otimes \pi^{*} L_{2} \cong\left(\pi^{*} \pi_{*} E\left(-d C_{0}\right)\right)\left(d C_{0}\right)
$$

If $d=d^{\prime}$ then, by applying π_{*} to the short exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(r f_{0}\right) \otimes \pi^{*} L_{2} \rightarrow E\left(-d C_{0}\right) \rightarrow \mathcal{O}_{X}\left(s f_{0}\right) \otimes \pi^{*} L_{1} \otimes I_{Y} \rightarrow 0
$$

it follows the exact sequence

$$
0 \rightarrow \mathcal{O}_{C}(r) \otimes L_{2} \rightarrow \pi_{*} E\left(-d C_{0}\right) \rightarrow \mathcal{O}_{C}(s) \otimes L_{1} \otimes \mathcal{O}_{C}\left(-Z_{1}\right) \rightarrow 0
$$

where Z_{1} is an effective divisor on C with the support $\pi(Y)$. With the notation $Z=\pi^{-1}\left(Z_{1}\right)$, by applying π^{*} (π is a flat morphism) we obtain the following commutative diagram with exact rows

$$
\begin{gathered}
0 \rightarrow \mathcal{O}_{X}\left(r f_{0}\right) \otimes \pi^{*} L_{2} \longrightarrow E\left(-d C_{0}\right) \longrightarrow \mathcal{O}_{X}\left(s f_{0}\right) \otimes \pi^{*} L_{1} \otimes I_{Y} \rightarrow 0 \\
\text { थ id } \uparrow \psi \\
0 \rightarrow \mathcal{O}_{X}\left(r f_{0}\right) \otimes \pi^{*} L_{2} \longrightarrow \pi^{*} \pi_{*} E\left(-d C_{0}\right) \longrightarrow \mathcal{O}_{X}\left(s f_{0}\right) \otimes \pi^{*} L_{1} \otimes I_{Z} \rightarrow 0
\end{gathered}
$$

From the injectivity of ψ we obtain the injectivity of φ. Because of

$$
\mathcal{O}_{X}\left(s f_{0}\right) \otimes \pi^{*} L_{1} \otimes I_{Y \subset Z} \cong \text { Coker } \psi \cong \operatorname{Coker} \varphi
$$

we conclude.
Recall that a set M of vector bundles on a \mathbb{C}-scheme X is called bounded if there exists an algebraic \mathbb{C}-scheme T and a vector bundle V on $T \times X$ such that every $E \in M$ is isomorphic with $V_{t}=\left.V\right|_{t \times X}$ for some closed point $t \in T$ (see $[\mathrm{K}])$.

For the next result see $[B]$:
Theorem 2. The set $M\left(c_{1}, c_{2}, d, r\right)$ is bounded.

§2. Uniform bundles

In what follows, we keep the notations from Section 1.
Definition 3. A 2-vector bundle E is called an uniform bundle if the splitting type is preserved on all fibres of X.

Theorem 1 allows us to give a criterion for uniformness.
Lemma 4. Let f be a fibre of X and let us suppose that $I_{Y \cap f \subset f} \cong$ $\mathcal{O}_{f}(-n)$. Then $\left.E\right|_{f} \cong \mathcal{O}_{f}(d+n) \oplus \mathcal{O}_{f}\left(d^{\prime}-n\right)$.

Proof. We suppose that $\left.E\right|_{f} \cong \mathcal{O}_{f}(a) \oplus \mathcal{O}_{f}\left(a^{\prime}\right)$, where $a \geq a^{\prime}$. Then we have a surjective morphism

$$
\left.E\right|_{f} \rightarrow \mathcal{O}_{f}\left(d^{\prime}\right) \otimes I_{Y} \otimes \mathcal{O}_{f}
$$

in virtue of Theorem 1. On the other hand, the restriction of the sequence

$$
0 \rightarrow I_{Y} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y} \rightarrow 0
$$

to f gives a surjective morphism

$$
I_{Y} \otimes \mathcal{O}_{f} \rightarrow I_{Y \cap f \subset f} \cong \mathcal{O}_{f}(-n)
$$

So, we obtain another surjective morphism

$$
\mathcal{O}_{f}(a) \oplus \mathcal{O}_{f}\left(a^{\prime}\right) \rightarrow \mathcal{O}_{f}\left(d^{\prime}-n\right)
$$

By using the inequalities $a \geq a^{\prime}, d \geq d^{\prime} \geq d^{\prime}-n$ and the equality $a+a^{\prime}=$ $d+d^{\prime}=\alpha$ it follows that $a^{\prime}=d^{\prime}-n$ and $a=d+n$.

Corollary 5. E is an uniform bundle if and only if $l\left(c_{1}, c_{2}, d, r\right)=0$.
By means of Corollary 5 the uniform bundles are given by extensions of line bundles. It is naturally to ask if the converse is true. Unfortunately, this question has a negative answer, as proved by the following

Proposition 6. On the rational ruled surface \mathbb{F}_{e} with $e \geq 1$ there exist non-uniform bundles given by extensions of line bundles.

For the proof we need some preparations.
Let E be a 2-vector bundle given by an extension

$$
\begin{equation*}
0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0 \tag{2}
\end{equation*}
$$

where $F=\mathcal{O}_{X}\left(a C_{0}+r^{\prime} f_{0}\right) \otimes \pi^{*} L_{2}^{\prime}, G=\mathcal{O}_{X}\left(a^{\prime} C_{0}+s^{\prime} f_{0}\right) \otimes \pi^{*} L_{1}^{\prime}\left(L_{1}^{\prime}, L_{2}^{\prime} \in\right.$ $\left.\operatorname{Pic}_{0}(C)\right)$ are line bundles on X. By means of Theorem $1, E$ sits also in a canonical extension (1). If $a \geq a^{\prime}$ then E is obviously uniform. Then, we shall suppose that $a<a^{\prime}$.

Lemma 7. With the above notations we have $d \leq a^{\prime}$.
Proof. Indeed, by the restriction of the sequence (2) to a general fibre f we obtain a surjective morphism

$$
\mathcal{O}_{f}(d) \oplus \mathcal{O}_{f}\left(d^{\prime}\right) \rightarrow \mathcal{O}_{f}\left(a^{\prime}\right)
$$

If $d>a^{\prime}$, then it follows that $d^{\prime}=a^{\prime}$ which contradicts the inequalities $a<a^{\prime}, d \geq d^{\prime} \quad\left(a+a^{\prime}=d+d^{\prime}\right)$.

Lemma 8. If $d=a^{\prime}$ then E is uniform.
Proof. Let f be a fibre of X such that the splitting type of $\left.E\right|_{f}$ is different from the generic splitting type of E. According to Lemma 4

$$
\left.E\right|_{f} \cong \mathcal{O}_{f}(d+n) \oplus \mathcal{O}_{f}\left(d^{\prime}-n\right)
$$

where $n>0$.
By the restriction of (2) to f we obtain a surjective morphism

$$
\mathcal{O}_{f}(d+n) \oplus \mathcal{O}_{f}\left(d^{\prime}-n\right) \rightarrow \mathcal{O}_{f}(d)
$$

Because of $d+n>d$ it follows $d^{\prime}-n=d$, contradiction.

Lemma 9. In the above hypotheses, if $d=a^{\prime}$, then $E \cong F \oplus G$.
Proof. Let us observe that we can suppose, without loss of generality, that $a=0$ and $r^{\prime}=0$ (by twisting the sequences (1) and (2) with $\left.\mathcal{O}_{X}\left(-a C_{0}-r^{\prime} f_{0}\right)\right)$. Then, it follows that $d=a^{\prime}=\alpha>0, s^{\prime}=\beta$ and $d^{\prime}=0$.

Therefore, the sequences (1) and (2) become:

The computation of $c_{2}(E)$ in $\left(1^{\prime}\right)$ gives $\operatorname{deg}(Y)=-\alpha s$. Moreover, by means of Lemma $8, \operatorname{deg}(Y)=0$, so $s=0$ (we supposed $\alpha>0$).

The homomorphism $\chi=\varphi \psi$ is non-zero, otherwise $\mathcal{O}_{X}\left(\alpha C_{0}+\beta f_{0}\right) \subset$ $\pi^{*}\left(L_{2}^{\prime}\right)$ (which would contradict the condition $\alpha>0$), so $L_{2}=L_{1}^{\prime}$ and χ is the multiplication by a $\lambda \in \mathbb{C}^{*}$, and the assertion follows.

In this moment, we are able to give the counter-example announced in Proposition 6.

Proof of Proposition 6. Let G be $\mathcal{O}_{X}\left(2 C_{0}\right)$ and let F be \mathcal{O}_{X}. Then:

$$
\operatorname{dim} H^{1}\left(G^{-1}\right)=e+1 \neq 0
$$

For E given by an extension $\xi \in \operatorname{Ext}^{1}\left(G, \mathcal{O}_{X}\right)$, keeping the notations from Section 1, we have $d \leq 2$ (Lemma 7), $d \geq d^{\prime}, d+d^{\prime}=2$ and $r+s=0$.

There are only two possibilities:
(a) $d=2, d^{\prime}=0$, which implies $E \cong \mathcal{O}_{X} \oplus \mathcal{O}_{X}\left(2 C_{0}\right)$ (Lemma 9).
(b) $d=d^{\prime}=1$ and, in this case, in the canonical extension (1) of E, we have

$$
\operatorname{deg}(Y)=d d^{\prime} e-d s-d^{\prime} r=e \geq 1
$$

By applying Corollary 5, all vector bundles given by non-zero extensions from $\operatorname{Ext}^{1}\left(G, \mathcal{O}_{X}\right)$ are non-uniform.

§3. Non-emptiness of moduli spaces

For a rank-2 vector bundle E, we shall denote by d_{E} and r_{E} the invariants of E, when confusions may appear.

ThEOREM 10. $M\left(c_{1}, c_{2}, d, r\right)$ is non-empty if and only if $l:=l\left(c_{1}, c_{2}\right.$, $d, r) \geq 0$ and one of the following conditions holds:
(I) $2 d>\alpha$ or,
(II) $2 d=\alpha, \beta-2 r \leq g+l$.

Proof. We observe that if $M \neq \emptyset$ then, by means of Theorem 1 , the elements of M lie among 2 -vector bundles given by extensions of type (1). Therefore, we conclude that $M \neq \emptyset$ if and only if in the extensions of type (1) there are 2 -vector bundles with $d_{E}=d$ and $r_{E}=r$.

It is clear that all the vector bundles given by an extension of type (1) have $d_{E}=d$ so we shall look for bundles with $r_{E}=r$.

We fix $L_{1}, L_{2} \in \operatorname{Pic}_{0}(C)$ and $Y \subset X$ a locally complete intersection (or the empty set) and we denote

$$
\begin{aligned}
& N_{1}=\mathcal{O}_{X}\left(d^{\prime} C_{0}+s f_{0}\right) \otimes \pi^{*} L_{1} \\
& N_{2}=\mathcal{O}_{X}\left(d C_{0}+r f_{0}\right) \otimes \pi^{*} L_{2}
\end{aligned}
$$

and $l=\operatorname{deg}(Y)$.
Consider the spectral sequence of terms

$$
E_{2}^{p, q}=H^{p}\left(X, \mathcal{E} x t^{q}\left(I_{Y} \otimes N_{1}, N_{2}\right)\right)
$$

which converges to

$$
\operatorname{Ext}^{p+q}\left(I_{Y} \otimes N_{1}, N_{2}\right)
$$

We have

$$
\mathcal{E} x t^{0}\left(I_{Y} \otimes N_{1}, N_{2}\right) \cong N_{2} \otimes N_{1}^{-1} \text { and } \mathcal{E} x t^{1}\left(I_{Y} \otimes N_{1}, N_{2}\right) \cong \mathcal{O}_{Y}
$$

But $H^{2}\left(X, N_{2} \otimes N_{1}^{-1}\right)=0$ so the exact sequence of lower terms becomes

$$
0 \rightarrow H^{1}\left(X, N_{2} \otimes N_{1}^{-1}\right) \rightarrow \operatorname{Ext}^{1}\left(I_{Y} \otimes N_{1}, N_{2}\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}\right) \rightarrow 0
$$

Now, by a result due to Serre (see [O-S-S], Chap.I, 5, [Se]), any element in the group $\operatorname{Ext}^{1}\left(I_{Y} \otimes N_{1}, N_{2}\right)$ which has an invertible image in $H^{0}\left(Y, \mathcal{O}_{Y}\right)$ defines an extension of the desired form with E a 2 -vector bundle.

We write the sequence (1) under the equivalent form

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X} \rightarrow E\left(-d C_{0}\right) \otimes \pi^{*} L^{\prime \prime} \rightarrow \mathcal{O}_{X}\left(\left(d^{\prime}-d\right) C_{0}+(s-r) f_{0}\right) \otimes \pi^{*}(\tilde{L}) \otimes I_{Y} \rightarrow 0 \tag{3}
\end{equation*}
$$

where $\tilde{L}=L_{1} \otimes L_{2}^{-1}, \quad L^{\prime \prime}=\mathcal{O}_{C}(-r) \otimes L_{2}^{-1}$ and $\operatorname{deg}\left(L^{\prime \prime}\right)=-r$.
From the definition, it follows $r \leq r_{E}$ for every bundle E given by an extension (1). We distinguish three cases:
(I) $d>d^{\prime}$. In this case we shall prove that M is non-empty if and only if $l \geq 0$. To do this we prove that all vector bundles from extension (1) have $r_{E}=r$.

We verify that for all $L^{\prime} \in \operatorname{Pic}(C)$ with $\operatorname{deg}\left(L^{\prime}\right)<0$ we have

$$
H^{0}\left(E\left(-d C_{0}\right) \otimes \pi^{*}\left(L^{\prime \prime} \otimes L^{\prime}\right)\right)=0
$$

which is true because $H^{0}\left(L^{\prime}\right)=0$ and

$$
H^{0}\left(\mathcal{O}_{X}\left(\left(d^{\prime}-d\right) C_{0}+(s-r) f_{0}\right) \otimes \pi^{*}\left(L_{1} \otimes L_{2}^{-1} \otimes L^{\prime}\right) \otimes I_{Y}\right)=0
$$

(II) a°. $d=d^{\prime}, r \geq s$. Then M is non-empty if and only if $l \geq 0$. The proof runs like in the first case with the remark $\operatorname{deg}\left(\mathcal{O}_{C}(s-r) \otimes L_{1} \otimes L_{2}^{-1} \otimes L^{\prime}\right)<0$. (II) b°. $d=d^{\prime}, r<s$. Then M is non-empty if and only if $l \geq 0$ and $\beta-2 r \leq g+l$.

Let us see first that the natural isomorphism

$$
\begin{gathered}
M(2 d, \beta, \gamma, d, r) \longrightarrow M(0, \beta, l, 0, r) \\
E \longrightarrow E\left(-d C_{0}\right)
\end{gathered}
$$

allows us to suppose $d=d^{\prime}=0$.
In this case, the sequence (3) becomes $0 \rightarrow \mathcal{O}_{X} \rightarrow E \otimes \mathcal{O}_{X}\left(-r f_{0}\right) \otimes \pi^{*} L_{2}^{-1} \rightarrow \mathcal{O}_{X}\left((s-r) f_{0}\right) \otimes \pi^{*}\left(L_{1} \otimes L_{2}^{-1}\right) \otimes I_{Y} \rightarrow 0$.

The definition of the second invariant implies that $r_{E}=r$ if and only if $E^{\prime}:=\pi_{*} E \otimes \mathcal{O}_{C}\left(-r p_{0}\right) \otimes L_{2}^{-1}$ is normalised. E^{\prime} belong to an extension

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{C} \rightarrow E^{\prime} \rightarrow L \rightarrow 0 \tag{4}
\end{equation*}
$$

where $L=\mathcal{O}_{C}\left((s-r) p_{0}\right) \otimes L_{1} \otimes L_{2}^{-1} \otimes \mathcal{O}_{C}\left(-Z_{1}\right)$ with Z_{1} an effective divisor on C with support $\pi(Y)$ and $\operatorname{card}(Y) \leq \operatorname{deg}\left(Z_{1}\right) \leq l=\operatorname{deg}(Y)$.

According to a result of Nagata ([N] or [Ha] Ex.V.2.5), if E^{\prime} is normalised, then

$$
-\operatorname{deg}\left(E^{\prime}\right)=r-s+\operatorname{deg}\left(Z_{1}\right) \geq-g
$$

which proves "only if" part of (II) b ${ }^{\circ}$.
For "if" part we choose Y reduced, obtained by intersection between C_{0} and l distinct fibres of X. In this case, we have the following short exact sequence

$$
\begin{equation*}
0 \rightarrow I_{Z} \rightarrow I_{Y} \rightarrow I_{Y \subset Z} \rightarrow 0 \tag{5}
\end{equation*}
$$

where $Z_{1}=\pi(Y)=p_{1}+\cdots+p_{l}, Y \subset Z=\pi^{-1}\left(Z_{1}\right)=f_{1}+\cdots+f_{l}$ with f_{i} distinct fibres, $\mathcal{O}_{Z}=\mathcal{O}_{f_{1}} \oplus \cdots \oplus \mathcal{O}_{f_{l}}, I_{Y \subset Z}=\mathcal{O}_{f_{1}}(-1) \oplus \cdots \oplus \mathcal{O}_{f_{l}}(-1)$.

So, the sequence (5) becomes

$$
0 \rightarrow I_{Z} \rightarrow I_{Y} \rightarrow \mathcal{O}_{f_{1}}(-1) \oplus \cdots \oplus \mathcal{O}_{f_{l}}(-1) \rightarrow 0
$$

Tensoring by $K_{X} \otimes N_{2}^{-1} \otimes N_{1}$ and taking the long cohomology sequence we obtain an injective map:

$$
H^{1}\left(K_{X} \otimes N_{2}^{-1} \otimes N_{1} \otimes I_{Z}\right) \longrightarrow H^{1}\left(K_{X} \otimes N_{2}^{-1} \otimes N_{1} \otimes I_{Y}\right)
$$

By dualizing, it follows that the natural map

$$
\operatorname{Ext}^{1}\left(I_{Y} \otimes N_{1}, N_{2}\right) \xrightarrow{\varphi} \operatorname{Ext}^{1}\left(I_{Z} \otimes N_{1}, N_{2}\right) \cong \operatorname{Ext}^{1}\left(L, \mathcal{O}_{C}\right)
$$

is surjective, which shows that all bundles in (4) are coming from (1) by applying π_{*}.

According to [Ha] (Ex. V.2.5), there is a non-empty open set $V \subset$ $\operatorname{Ext}^{1}\left(L, \mathcal{O}_{C}\right)$ (don't forget the condition $s-r \leq g+l!$) such that all $\xi \in V$ define normalised vector bundles on C.

Now, in $\operatorname{Ext}^{1}\left(I_{Y} \otimes N_{1}, N_{2}\right)$ the set of vector bundles is a non-empty open set U. It is clear that $\varphi^{-1}(V) \cap U \neq \emptyset$ (being open sets in Zariski topology), so we conclude.

$\S 4$. Moduli of stable bundles

There is an interesting relation between the moduli spaces $M\left(c_{1}, c_{2}, d, r\right)$ and the Qin's sets $E_{\zeta}\left(c_{1}, c_{2}\right)$ (see [Q1], [Q2] for precised definitions).

As in the proof of Theorem 10, case (I) we conclude that if ζ is a normalized class reprezenting a non-empty wall of type $\left(c_{1}, c_{2}\right)$ such that $l_{\zeta}\left(c_{1}, c_{2}\right)>0$ then, for $(2 d-\alpha, 2 r-\beta)=\zeta, E_{\zeta}\left(c_{1}, c_{2}\right)$ and $M\left(c_{1}, c_{2}, d, r\right)$ are coincident modulo a factor of $\mathrm{Pic}_{0}(C)$ (Qin workes with first Chern class c_{1} as an element in $\operatorname{Pic}(X)$).

This is a consequence of the following facts:
(a) $l_{\zeta}\left(c_{1}, c_{2}\right)=l\left(c_{1}, c_{2}, d, r\right)$
(b) condition $\zeta^{2}<0$ implies $2 d>\alpha$
(c) in the case $2 d>\alpha$ the bundles L_{1}, L_{2} and the set Y from the sequence (1) are uniquely determined by E.
(d) if $l\left(c_{1}, c_{2}, d, r\right)>0$ then in the sequence (1) the bundles are given only by non-trivial extensions.

In fact it is not hard to see that $M\left(c_{1}, c_{2}, d, r\right) \neq \emptyset$ iff $E_{\zeta}\left(c_{1}, c_{2}\right) \neq \emptyset$ so, by means of Theorem $10, E_{\zeta}\left(c_{1}, c_{2}\right) \neq \emptyset$ if $l_{\zeta}\left(c_{1}, c_{2}\right)>0$. But we have even more:

Corollary 11. Let X be a ruled surface different from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and let \mathcal{C} be a chamber of type $\left(c_{1}, c_{2}\right)$ different from $\mathcal{C}_{f_{0}}$. Then the moduli space $\mathcal{M}_{\mathcal{C}}\left(c_{1}, c_{2}\right) \neq \emptyset$.

Proof. From Theorem 1.3.3 in [Q2] it follows that

$$
\mathcal{M}_{\mathcal{C}}\left(c_{1}, c_{2}\right)=\left(\mathcal{M}_{\mathcal{C}_{1}}\left(c_{1}, c_{2}\right)-\bigsqcup_{\zeta} E_{(-\zeta)}\left(c_{1}, c_{2}\right)\right) \bigsqcup_{\zeta} E_{\zeta}\left(c_{1}, c_{2}\right)
$$

where \mathcal{C}_{1} is the chamber lying above \mathcal{C} and sharing with \mathcal{C} a non-empty common wall W and ζ runs over all normalised classes representing W. By the above considerations, it follows that $E_{\zeta}\left(c_{1}, c_{2}\right) \neq \emptyset$ if $l\left(c_{1}, c_{2}, d, r\right)>0$. It remains the case $l\left(c_{1}, c_{2}, d, r\right)=0$ and it will be sufficient to prove that

$$
h^{1}\left(X, N_{2} \otimes N_{1}^{-1}\right):=\operatorname{dim} H^{1}\left(X, N_{2} \otimes N_{1}^{-1}\right)>0
$$

(see the proof of Theorem 10).
We have

$$
N_{2} \otimes N_{1}^{-1}=\mathcal{O}_{X}\left(\left(d-d^{\prime}\right) C_{0}+(r-s) f_{0}\right) \otimes \pi^{*}\left(L_{2} \otimes L_{1}^{-1}\right)
$$

where $d-d^{\prime}=2 d-\alpha=u$ and $r-s=2 r-\beta=v$. But $\zeta=u C_{0}+v f_{0}$ is a normalized class and this implies that $u>0$ and $v<0$ (see [Q1]).

Because $H^{2}\left(X, N_{2} \otimes N_{1}^{-1}\right)=0$, the Riemann-Roch Theorem gives the equality:
$\chi=h^{0}\left(X, N_{2} \otimes N_{1}^{-1}\right)-h^{1}\left(X, N_{2} \otimes N_{1}^{-1}\right)=1-g+(1 / 2)((u+1)(2 v-u e)+u(2-2 g))$.
But $\zeta^{2}<0$ gives $u(2 v-u e)<0$; it follows $2 v-u e<0$.
If $g \geq 1$, then obviously $\chi<0$. If $g=0$, then $e \geq 0$ and

$$
\chi=1+v+(u / 2)(2(v+1)-e(u+1))
$$

If $e \geq 1$, then $\chi<0$. For $e=0$ we get $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, which we excluded. Thus, in all cases $\chi<0$; it follows $h^{1}\left(X, N_{2} \otimes N_{1}^{-1}\right)>0$ and the proof is over.

Remark. Let us suppose that $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and that \mathcal{C} is a chamber of type (c_{1}, c_{2}) lying below a non-empty wall defined by a normalized class $\zeta=u C_{0}+v f_{0}$ with $v \leq-2$. Then the same conclusion as in the above corollary holds.

Indeed, in this case we have $\chi=(1+v)(1+u)$. Since $v<-1$, then again $\chi<0$.

Acknowledgements. The second named author expresses his gratitude to the Max-Planck-Institut für Mathematik Bonn for its hospitality during the final stage of this work.

References

[B] V. Brînzănescu, Algebraic 2-vector bundles on ruled surfaces, Ann. Univ. Fer-rara-Sez VII, Sc. Mat., XXXVII (1991), 55-64.
[B-St1] V. Brînzănescu and M. Stoia, Topologically trivial algebraic 2-vector bundles on ruled surfaces I, Rev. Roumaine Math. Pures Appl., 29 (1984), 661-673.
[B-St2] Topologically trivial algebraic 2-vector bundles on ruled surfaces II, In : Lect. Notes Math., 1056, Springer (1984).
[Br1] J. E. Brossius, Rank-2 vector bundles on a ruled surface I, Math. Ann., 265 (1983), 155-168.
[Br2] \longrightarrow, Rank-2 vector bundles on a ruled surface II, Math. Ann., 266 (1984), 199-214.
[Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 49, Springer, Berlin-Heidelberg, 1977.
[H-S] H. J. Hoppe and H. Spindler, Modulräume stabiler 2-Bündel auf Regelfächen, Math. Ann., 249 (1980), 127-140.
[K] S. Kleiman, Les théorèmes de finitude pour les Founcteurs de Picard, In : Théories des intersections et théorème de Riemann-Roch, SGA VI, Exp. XIII, Lect. Notes in Math., 225, Springer (1971), 616-666.
[N] M. Nagata, On self-intersection Number of a section on ruled surface, Nagoya Math. J., 37 (1970), 191-196.
[O-S-S] C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces, Birkhäuser, Basel Boston Stuttgart, 1980.
[Q1] Z. Qin, Moduli spaces of stable rank-2 bundles on ruled surfaces, Invent. Math., 110 (1992), 615-626.
[Q2] \longrightarrow Equivalence classes of polarizations and moduli spaces of sheaves, J. Diff. Geom., 37 (1993), 397-415.
[Se] J. P. Serre, Sur les modules projectifs, Sém. Dubreil-Pisot 1960/1961 Exp. 2, Fac. Sci. Paris, 1963.
[T1] F. Takemoto, Stable vector bundles on algebraic surfaces I, Nagoya Math. J., 47 (1972), 29-48.
[T2] —— Stable vector bundles on algebraic surfaces II, Nagoya Math. J., 52 (1973), 173-195.
[W] C. H. Walter, Components of the stack of torsion-free sheaves of rank-2 on ruled surfaces, Math. Ann., 301 (1995), 699-716.

Marian Aprodu
Institute of Mathematics of the Romanian Academy P.O. BOX 1-764, RO-70700 Bucharest

Romania
aprodu@stoilow.imar.ro
Vasile Brînzănescu
Institute of Mathematics of the Romanian Academy P.O. BOX 1-764, RO-70700 Bucharest

Romania
brinzane@stoilow.imar.ro

