ON PROPER HOLOMORPHIC MAPPINGS FROM DOMAINS WITH T-ACTION

BERNARD COUPET, YIFEI PAN and ALEXANDRE SUKHOV

Abstract

We describe the branch locus of a proper holomorphic mapping between two smoothly bounded pseudoconvex domains of finite type in \mathbb{C}^{2} under the assumption that the first domain admits a transversal holomorphic action of the unit circle. As an application we show that any proper holomorphic self-mapping of a smoothly bounded pseudoconvex complete circular domain of finite type in \mathbb{C}^{2} is biholomorphic.

§1. Introduction

In the present paper we study proper holomorphic mappings between smoothly bounded pseudoconvex domains of finite type in \mathbb{C}^{2}. We begin with the description of the branch locus of a proper holomorphic mapping. Let Ω be a smoothly bounded pseudoconvex domain of finite type in \mathbb{C}^{2}. It follows by $[3,7]$ that the automorphism group action $\operatorname{Aut}(\Omega) \times \Omega \longrightarrow \Omega$, $(f, z) \mapsto f(z)$ extends smoothly to $\bar{\Omega}$. Thus we can assume that $\operatorname{Aut}(\Omega)$ acts smoothly on $\bar{\Omega}$ and in particular on $\partial \Omega$. We say (see [3, 4, 27]) that a subgroup G of $\operatorname{Aut}(\Omega)$ acts transversally on $\partial \Omega$ if for every point $p \in \partial \Omega$ the image of the tangent mapping $\left(\Psi_{p}\right)^{*}: T_{e} G \longrightarrow T_{p}(\partial \Omega)$ associated to the mapping $\Psi_{p}: G \longrightarrow \partial \Omega, f \mapsto f(p)$ is not contained in the holomorphic tangent space $H_{p}(\partial \Omega)$. We will denote by \mathbf{T} the Lie group of the unite circle. If \mathbf{T} is a subgroup of $\operatorname{Aut}(\Omega)$ and acts transversally on $\partial \Omega$, we will simply say that Ω admits a transversal \mathbf{T}-action.

Let $f: \Omega \longrightarrow D$ be a proper holomorphic mapping between two domains Ω and D. We will denote by $J_{f}(z)$ the Jacobian determinant of f and by $V_{f}=\left\{z \in \Omega: J_{f}(z)=0\right\}$ the branch locus of f.

Our first main result is the following

Theorem 1.1. Let $f: \Omega \longrightarrow D$ be a proper holomorphic mapping between two smoothly bounded pseudoconvex domains of finite type in \mathbb{C}^{2}.

Suppose that Ω admits a transversal \mathbf{T}-action. Then for any irreducible component V of the branch locus V_{f} the following holds:
(i) $(V, \partial V)$ is a smooth manifold with boundary in a neighborhood of every point in $\bar{V} \cap \partial \Omega$.
(ii) $\partial V:=\bar{V} \backslash V$ is a finite disjoint union of \mathbf{T}-orbits.

It is well-known [1] that any proper holomorphic self-mapping of the unit ball is biholomorphic. This important result was extended to larger classes of domains by several authors $[6,8,10,13,22,26]$. One of the natural conjectures here is to show that any proper holomorphic self-mapping of a pseudoconvex domain with smooth finite type boundary is biholomorphic (this question still remains open even in dimension 2). In our paper we establish a result confirming this general conjecture.

Theorem 1.2. Let Ω be a smoothly bounded pseudoconvex complete circular domain of finite type in \mathbb{C}^{2}. Then every proper holomorphic selfmapping of Ω is a biholomorphism.

In contrast with the \mathbf{T}^{2} action case a regularity of the boundary is essential here. Indeed, a basin of attraction of a polynomial homogeneous complex dynamic system in \mathbb{C}^{2} is a complete circular domain [23]; this gives a large class of examples of circular domains with proper holomorphic self-mappings which are not automorphisms. For instance, there exists a complete circular domain D in \mathbb{C}^{2} with real analytic strictly pseudoconvex boundary outside of the union of three circles (where the boundary is not smooth) such that there is a proper holomorphic self-mapping of D which is not biholomorphic [14].

The basic idea in proof of Theorem 1.1 given in Section 2 and 3 is a special version of the scaling method developed in [17, 18]. One can consider this method as a quantitative version of deformation of a complex structure which reduces the determination of the branch locus to a very special class of domains with algebraic boundaries. Theorem 1.2 then follows by elementary complex dynamics arguments in Section 4.

$\S 2$. Branching of holomorphic mappings between algebraic domains

This section is devoted to the study of holomorphic mappings between algebraic domains in \mathbb{C}^{2}. The general situation will be reduced to this case in the next section.

We recall certain general facts about boundary behavior of proper holomorphic mappings. Let $f: D_{1} \longrightarrow D_{2}$ be a proper holomorphic mapping between two pseudoconvex smoothly bounded domains in \mathbb{C}^{2}. We suppose that f is smooth up to the boundary. Let r_{j} be the defining function of D_{j}. Following $[6,8]$, we consider the Levi-determinant of D_{j} defined as follows:

$$
\Lambda_{\partial D_{j}}(p)=-\operatorname{det}\left(\begin{array}{ccc}
0 & \frac{\partial r_{j}}{\partial z} & \frac{\partial r_{j}}{\partial w} \\
\frac{\partial r_{j}}{\partial \bar{z}} & \frac{\partial^{2} r_{j}}{\partial z \partial \bar{z}} & \frac{\partial^{2} r_{j}}{\partial z \partial \bar{w}} \\
\frac{\partial r_{j}}{\partial \bar{w}} & \frac{\partial^{2} r_{j}}{\partial w \partial \bar{z}} & \frac{\partial^{2} r_{j}}{\partial w \partial \bar{w}}
\end{array}\right)
$$

Obviously $\Lambda_{\partial D_{2}}(f(p))\left|J_{f}(z)\right|^{2}=\Lambda_{\partial D_{1}}(p)$ for any $p \in \partial D_{1}$.
For any boundary point $p \in \partial D_{j}$ we consider also the order of vanishing of $\Lambda_{D_{j}}$ at p denoted by $\tau_{\partial D_{j}}(p)$, which is defined as follows: we choose smooth real coordinates $x=\left(x_{1}, x_{2}, x_{3}\right)$ on ∂D_{j} such that p corresponds to $x=0$, and the formal power series $\Lambda_{D_{j}}(x)=\sum_{j=0}^{\infty} \sum_{|\alpha|=j} a_{\alpha} x^{\alpha}$, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a multi-index and $|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}$. We set $\tau_{\partial D_{j}}(p)=$ $\min \left\{|\alpha|: a_{\alpha} \neq 0\right\}$ (of course, this definition does not depend on the choice of coordinates). The following properties of τ are well known (see $[6,10]$):
(1) $\tau_{\partial D_{j}}(p)$ is an upper-semicontinuous function on ∂D_{j}.
(2) $\tau_{\partial D_{2}}(f(p)) \leq \tau_{\partial D_{1}}(p)$ and the equality holds if and only if $\overline{V_{f}}$ does not contain p i.e. f is a diffeomorphism on the boundary near p.

The main purpose of this section is to study the structure of the branch locus of a proper holomorphic mapping f between rigid algebraic domains $\Omega=\left\{(z, w) \in \mathbb{C}^{2}: \rho(z, w)=\operatorname{Im} w+P(z)<0\right\}$ and $D=\{(z, w) \in$ $\left.\mathbb{C}^{2}: \phi(z, w)=\operatorname{Im} w+Q(z)<0\right\}$, where P, Q are non identically zero subharmonic polynomials without purely harmonic terms.

The set of weakly pseudoconvex points of $\partial \Omega$ will be denoted by $w(\partial \Omega)$. One has $w(\partial \Omega)=\{z \in \mathbb{C}:(\Delta P)(z)=0\} \times \mathbb{R}$.

Let us consider the set $\Sigma_{\Omega} \in \mathbb{C}$ of singular points of the set $S=\{z \in$ $\mathbb{C}:(\Delta P)(z)=0\}$, i.e. the set of points in \mathbb{C} such that S is not a smooth curve in any neighborhood of such a point. Note that Σ_{Ω} is finite (as an algebraic set of dimension 0).

Proposition 2.1. Let U be a neighborhood of the origin and $f: \Omega \cap$ $U \longrightarrow D$ be a holomorphic mapping verifying the following property: for every point $p \in U \cap \partial \Omega$ and any sequence of points $\left(p^{j}\right)_{j}$ in Ω converging
to p the sequence of images $\left(f\left(p^{j}\right)\right)_{j}$ has no cluster points in D. Then for every open $U^{\prime} \subset U$ the branch locus $U^{\prime} \cap V_{f}$ in U^{\prime} is contained in the union of complex lines $\cup_{z_{j} \in \Sigma_{\Omega}}\left\{\left(z_{j}, w\right) \in \mathbb{C}^{2}: \operatorname{Im} w<-P\left(z_{j}\right)\right\}$.

The following corollary considers the case useful for the proof of our main results:

Corollary 2.2. If P is homogeneous, then V_{f} is contained in the half-plane $\{(0, w): \operatorname{Im} w<0\}$.

Proof of Proposition 2.1.

We have $S=S_{1} \cup \ldots \cup S_{k} \cup \Sigma_{\Omega}$, where S_{j} are smooth connected real algebraic curves. We note that the order of vanishing of the laplacian ΔP is constant on every S_{j} by the connectivity.

Hence, we have $w(\partial \Omega)=\cup_{j=1}^{N}\left(S_{j} \times \mathbb{R}\right) \cup\left(\Sigma_{\Omega} \times \mathbb{R}\right)$ and $\tau(p)$ is constant on every totally real manifold $S_{j} \times \mathbb{R}$.

Let us recall also the following property of the mapping f established in Proposition 2.2 and Lemma 4.1 of [17]: if p is a boundary point of Ω and there exists a sequence of points $\left(p^{j}\right)_{j}$ in Ω converging to p such that the sequence of images $\left(f\left(p^{j}\right)\right)_{j}$ converges to a finite boundary point of ∂D, then f extends continuously up to the boundary in a neighborhood of p; then it follows by Lemma 6.2 of [18] that f extends to \mathbb{C}^{2} as an algebraic mapping i.e. its graph is contained in a complex algebraic 2-dimensional variety X in $\mathbb{C}^{2} \times \mathbb{C}^{2}$. Moreover, it follows by Proposition 6.3 of [18] and [11] that f is smooth up to the boundary in a neighborhood of p and then by Lemma 2.1 of [18] the Jacobian determinant J_{f} of f does not vanishes identically. Thus, $U \cap \partial \Omega$ is a disjoint union of two subsets: the subset A of points where f extends smoothly up to the boundary and the subset B of points $b \in U \cap \partial \Omega$ such that $\lim _{(z, w) \longrightarrow b}|f((z, w))|=\infty$. It was shown in Lemma 4.1 of [17] that A is an (non-empty) open dense subset of $U \cap \partial \Omega$. We will call B the "pull-back of infinity" and will denote by $f^{-1}(\infty)$.

We denote by $\mathbb{C} P^{2}$ the complex 2 -dimensional projective space and by \hat{X} the projective closure of X in $\mathbb{C} P^{2} \times \mathbb{C} P^{2}$ which is an irreducible complex 2-dimensional projective variety. Let π_{Ω} (resp. π_{D}) be the natural projection of \hat{X} to the copy of $\mathbb{C} P^{2}$ containing Ω (resp. D) (or more precisely its image under the canonical embedding $i: \mathbb{C}^{2} \hookrightarrow \mathbb{C} P^{2}$). Since J_{f} does not vanishes identically, the composition $\pi_{D} \circ \pi_{\Omega}^{-1}: \mathbb{C} P^{2} \longrightarrow \mathbb{C} P^{2}$ is a proper holomorphic correspondence (see [24]) and in particular, surjective. Then
$\pi_{\Omega} \circ \pi_{D}^{-1}\left(\mathbb{C} P^{2} \backslash i\left(\mathbb{C}^{2}\right)\right)$ is an complex algebraic curve γ in $\mathbb{C} P^{2}$ containing $f^{-1}(\infty)$. Since $\partial \Omega$ is of finite type, the intersection $\gamma^{\prime}=\gamma \cap(U \cap \partial \Omega)$ is at most a real algebraic curve.

Lemma 2.3. The closure $\overline{V_{f}}$ does not intersect the set of strictly pseudoconvex points in $\partial \Omega$.

Proof. Let p be a strictly pseudoconvex point in $\overline{V_{f}} \cap U \cap \partial \Omega$ and W be its neighborhood which does not intersect $w(\partial \Omega)$. If there exists a point $p^{\prime} \in \overline{V_{f}} \cap W$ which is not in $f^{-1}(\infty)$, then it follows by [17] that $f\left(p^{\prime}\right)$ is a strictly pseudoconvex point in ∂D and f extends to a biholomorphism in a neighborhood of p^{\prime} : a contradiction.

Thus, it suffices to establish the following
Claim. For any open subset W of $\partial \Omega \cap U$ the intersection $\overline{V_{f}} \cap W \cap \partial \Omega$ is not contained in $f^{-1}(\infty)$.

For the proof assume by contradiction that $\overline{V_{f}} \cap W \cap \partial \Omega$ is contained in $f^{-1}(\infty)$. Since f extends to an algebraic mapping, V_{f} is a piece of an complex algebraic subset in \mathbb{C}^{2} and the set of its non-regular points Y is finite. It follows by the maximum principle applied to the restriction $\rho \mid V_{f}$ that the intersection $\overline{V_{f}} \cap \partial \Omega$ cannot contain only point from Y. Thus, one can assume that there exists a point p^{\prime} in $\overline{V_{f}} \cap W \cap \partial \Omega$ such that V_{f} extends to a neighborhood of p^{\prime} as a smooth complex manifold \tilde{V}_{f}. Now the wellknown argument of [5] using the Hopf lemma shows that (moving slightly p^{\prime}) one can assume that \tilde{V}_{f} intersects $\partial \Omega$ transversally at p^{\prime}.

Let $g(z, w)$ is a holomorphic function on $D,|g(z, w)|<1$ on D and $g(z, w) \longrightarrow 1$ as $|(z, w)| \longrightarrow \infty$ (see [17]). Let us consider the composition $g \circ f$. Since $\overline{V_{f}} \cap \partial \Omega$ is contained in $f^{-1}(\infty),(g \circ f)(z, w) \longrightarrow 1$ as (z, w) tends to $\overline{V_{f}} \cap \partial \Omega$; then it follows by the boundary uniqueness theorem that $(g \circ f) \mid V_{f}$ is equal to 1 identically : a contradiction, and we get the claim.
Q.E.D.

Thus, we have the inclusion $\overline{V_{f}} \cap U \cap \partial \Omega \subset w(\partial \Omega)$.
Lemma 2.4. The intersection $\bar{V}_{f} \cap\left(S_{j} \times \mathbb{R}\right)$ is empty for every j.
Proof. Suppose by contradiction that $\overline{V_{f}} \cap\left(S_{j} \times \mathbb{R}\right)$ contains a point p for some j. Then $\overline{V_{f}} \cap \partial \Omega$ is contained in $\left(S_{j} \times \mathbb{R}\right)$ near p; it follows by the Claim that there exists a point q in $\bar{V} \cap S_{j} \times \mathbb{R}$ such that $f(q)$ is
finite and f extends smoothly up to the boundary near q. Since J_{f} does not vanish identically on $S_{j} \times \mathbb{R}$ by the boundary uniqueness theorem, there exists a sequence $\left(q^{k}\right)$ in S_{j} converging to q such that $J_{f}\left(q^{k}\right) \neq 0$. Therefore, $\tau_{\partial \Omega}\left(q^{k}\right)=\tau_{\partial D}\left(f\left(q^{k}\right)\right)$. On the other hand, $\tau_{\partial D}(f(q))<\tau_{\partial \Omega}(q)$. Since $\tau_{\partial \Omega}$ is constant on S_{j}, we have $\tau_{\partial D}(f(q))<\tau_{\partial \Omega}\left(q^{k}\right)=\tau_{\partial D}\left(f\left(q^{k}\right)\right)$. This is a contradiction since the function $\tau_{\partial D}$ is upper semicontinuous.
Q.E.D.

Now the desired proposition follows by the uniqueness theorem.

§3. Scaling and branching

We begin with the following local version of Theorem 1.1:
Proposition 3.1. Let $D_{1}=\left\{(z, w) \in W: \operatorname{Im} w+P_{2 m}+\varphi(z)<0\right\}$ be a smooth pseudoconvex finite type domain in a neighborhood W of the origin, $\varphi(z)=o\left(|z|^{2 m}\right), P_{2 m}$ is a non-zero subharmonic polynomial without purely harmonic terms and D_{2} be a smoothly bounded pseudoconvex finite type domain. Let $f: D_{1} \longrightarrow D_{2}$ be a holomorphic mapping smooth up to the boundary, $f(0)=0$ and V is an irreducible component of the branch locus V_{f} such that $0 \in \bar{V}$. Then $V=D_{1} \cap\{(z, w) \in W: z=0\}$.

In what follows we denote by Γ_{j} the boundary of D_{j} near the origin. Recall that by the well-known argument [5] the set $E \subset \bar{V} \cap \Gamma_{1}$ of points where V is a C^{∞} smooth manifold with boundary transversal to Γ_{1} is open dense in $\bar{V} \cap \Gamma_{1}$ ([5] considers the strictly pseudoconvex case but the argument easily can be adapted for our case in view of the existence of holomorphic peak functions [9] and plurisubharmonic exhaustion functions [19], see also [6]).

First, we assume that $0 \in E$, i.e. V is a C^{∞} smooth variety with boundary near the origin and transversal to Γ_{1}; the general case will be reduced to this one. We proceed the proof by contradiction. Assume that the statement is false. Since V is an irreducible complex variety and a smooth manifold with boundary near 0 , there exists a sequence $\zeta^{\nu}=\left(a^{\nu}, b^{\nu}\right)$ in $\bar{V} \cap \Gamma_{1}$ converging to 0 and such that $a^{\nu} \neq 0$ for any ν. Since V is transversal to the boundary at 0 , it follows by the implicit function theorem that there exists a smoothly bounded domain X in $\mathbb{C}, 0 \in \partial X$ and a neighborhood U of the origin in \mathbb{C}^{2} such that

$$
\begin{equation*}
V \cap U=\{(z, w) \in U: z=h(w), w \in X\} \tag{1}
\end{equation*}
$$

where h is a holomorphic function on X smooth up to the boundary. We extend h smoothly past the boundary and assume that it is defined in a neighborhood Y of 0 .

Let $b^{\nu}=\alpha^{\nu}+i \beta^{\nu}$. Let us consider the translations $T^{\nu}:(z, w) \longrightarrow$ $\left(z, w+\alpha^{\nu}\right)$. Then the sequence $\left(T^{\nu}\right)$ converges uniformly to the identity on any compact subset of \mathbb{C}^{2} and $\eta^{\nu}=T^{\nu^{-1}}\left(\zeta^{\nu}\right)=\left(a^{\nu}, i \beta^{\nu}\right)$. Set $f^{\nu}=$ $f \circ T^{\nu}$ and $W^{\nu}=T^{\nu^{-1}}(W)$. Then the sequence $f^{\nu}: D_{1} \cap W^{\nu} \longrightarrow D_{2}$ is a sequence of proper holomorphic mappings ; the sequence (W^{ν}) converges in the Hausdorff distance sense to W and $\left(f^{\nu}\right)$ converges to f uniformly on any compact subset of $\bar{D}_{1} \cap W$. We denote by V^{ν} the pullback $T^{\nu^{-1}}(V)$ which is contained in the branch locus of f^{ν}. We have $\eta^{\nu} \in V^{\nu} \cap \Gamma_{1}$.

Lemma 3.2. There exists a constant $C>0$ such that for any ν and any $(z, w) \in D_{1} \cap W^{\nu}$ one has

$$
C^{-1} \operatorname{dist}\left((z, w), \Gamma_{1}\right) \leq \operatorname{dist}\left(f^{\nu}((z, w)), \Gamma_{2}\right) \leq C \operatorname{dist}\left((z, w), \Gamma_{1}\right)
$$

For the proof we observe that the statement holds for f by the Hopf Lemma (see [2]) and the linear mappings T^{ν} preserve the distance to Γ_{1} with a uniform constant independent of ν.

We note that $V^{\nu} \cap W^{\nu}$ is defined by $\left\{(z, w) \in W^{\nu}: z=h^{\nu}(w)=\right.$ $\left.h\left(w-\alpha^{\nu}\right)\right\}$, where h^{ν} is holomorphic on $X^{\nu}=X-\alpha^{\nu}$ and smooth up to the boundary ; evidently, h^{ν} converges together with all derivatives uniformly to h on any compact of X.

We set $\delta_{\nu}=\left|a^{\nu}\right|^{2 m}, p^{\nu}=\left(0,-\delta_{\nu} i\right)$. Considering the Taylor expansion of h^{ν} near η^{ν} we get $z-a^{\nu}=\lambda_{\nu}\left(w-i \beta^{\nu}\right)+\psi^{\nu}(w)$, where ψ^{ν} is smooth function in a fixed neighborhood of 0 and there exists a constant $M>0$ such that $\left|\psi^{\nu}(w)\right| \leq M\left|w-i \beta^{\nu}\right|^{2}$ for any ν. Note also that the sequence $\left(\lambda_{\nu}\right)$ is bounded by (1).

Fix $\alpha<0$. Let us slice V^{ν} by a complex line $w=i \alpha \delta_{\nu}+i \beta^{\nu}$. For ν large enough the intersection point is (by uniformity of neighborhoods) $\left(z^{\nu}, w^{\nu}\right)=\left(a^{\nu}+i \alpha \delta_{\nu} \lambda_{\nu}+o\left(\delta_{\nu}\right), i \alpha \delta_{\nu}+i \beta^{\nu}\right)$.

Set $r_{1}(z, w)=\operatorname{Im} w+P_{2 m}(z)+\varphi(z)$. Since $r_{1}\left(a^{\nu}, b^{\nu}\right)=0$, we have $r_{1}\left(z^{\nu}, w^{\nu}\right)=\delta_{\nu} \alpha+o\left(\delta_{\nu}\right)<0$ for ν large enough. Hence, $\left(z^{\nu}, w^{\nu}\right)$ is in $D_{1} \cap W^{\nu}$ for ν large enough.

Now we can apply a version of the scaling construction developed in $[17,18]$. We need the following well-known statement basic for analysis on pseudoconvex domains of finite type (see [16, 20]).

Let Ω be a domain in \mathbb{C}^{2} with C^{∞} smooth boundary near a point $p \in \partial \Omega$ of finite type $2 k$. Then there exists a neighborhood U of p with the following properties:
(a) there exists a local biholomorphic change of coordinates such that in the new coordinates we have

$$
\Omega \cap U=\left\{(z, w) \in \mathbb{C}^{2} \mid r(z)=\operatorname{Im} w+\theta(z, \text { Rew })<0\right\}
$$

where $\theta \in C^{\infty}$ and vanishes at the origin with the order of (at least) 2 ;
(b) there exists a mapping $\Phi: \mathbb{C}^{2} \times U \rightarrow \mathbb{C}^{2}$ of class C^{∞} such that
(b1) $\Phi(\bullet, \xi)$ is a polynomial and $\Phi(\xi, \xi)=0$;
(b2) there exists a neighborhood V of p and $V_{\xi} \ni \xi$ such that $V \subset$ $V_{\xi} \subset U, \Phi(\bullet, \xi)$ is a biholomorphism from V_{ξ} onto the unit ball $\mathbb{B} \subset \mathbb{C}^{2} ;$ the mapping $(t, \xi) \mapsto \Phi(\bullet, \xi)^{-1}(0, i t)$ is a diffeomorphism between $(-1,1) \times$ $(\partial \Omega \cap V)$ and V (this implies by continuity that there exists an open cone C_{0} with vertex at the origin in the direction of $\operatorname{Im} w$ and an open cone C_{ξ} with vertex on ξ in the direction of the inward normal at ξ and of the vertex angle independent of ξ such that $\left.\Phi\left(\left(C_{\xi}\right), \xi\right) \subset C_{0}\right)$.
(b3) one has

$$
\begin{aligned}
& r \circ \Phi(\bullet, \xi)^{-1}-r(\xi)=\operatorname{Im} w+\sum_{\ell=2}^{2 k} P_{\ell}(z, \xi)+(\operatorname{Re} w) \sum_{\ell=1}^{k} Q_{\ell}(z, \xi) \\
& +\sigma_{2 k+1}(z, \xi)+\sigma_{2}(\operatorname{Re} w, \xi)+\left(\operatorname{Im} z_{2}\right) \sigma_{k+1}(z, \xi)
\end{aligned}
$$

on $V \times \mathbb{B}$; here P_{ℓ} and Q_{ℓ} are homogeneous polynomials in z and \bar{z} of degree ℓ without purely harmonic terms ; $\sigma_{i}(v, \xi)$ vanishes of order i in v;
(c) one has $\inf _{\xi} \sup _{\ell}\left\|P_{\ell}(\bullet, \xi)\right\|>0$, where $\|\|$ is the norm of homogeneous polynomials.

For $\varepsilon>0$ we set $\tau(\xi, \varepsilon)=\min _{\ell=2, \cdots, 2 k}\left(\frac{\varepsilon}{\left\|P_{\ell}(\bullet, \xi)\right\|}\right)^{1 / \ell}$.
We suppose also that Γ_{2} is of type $2 k$ near the origin.
Set $q^{\nu}=f^{\nu}\left(p^{\nu}\right)$. We denote by ω^{ν} the point of Γ_{2} closest to q^{ν}; set also $\gamma_{\nu}=\operatorname{dist}\left(q^{\nu}, \Gamma_{2}\right)=\left|q^{\nu}-\omega^{\nu}\right|$. Let g^{ν} denote the polynomial biholomorphism $\Phi\left(\bullet, \omega^{\nu}\right)$ corresponding to Γ_{2}. Without loss of generality one can assume that $g^{\nu} \rightarrow$ id uniformly on compact subsets of \mathbb{C}^{2} as $\nu \rightarrow \infty$.

Let us consider the holomorphic mappings $\tilde{f}^{\nu}=g^{\nu} \circ f: D_{1} \rightarrow g^{\nu}\left(D_{2}\right)$ and the following dilations of coordinates : $A^{\nu}:(z, w) \mapsto\left(\delta_{\nu}^{-1 / 2 m} z, \delta_{\nu}^{-1} w\right)$ and $B^{\nu}:(z, w) \mapsto\left(\tau\left(\omega^{\nu}, \gamma_{\nu}\right)^{-1} z, \gamma_{\nu}^{-1} w\right)$. We set $D_{1}^{\nu}=A^{\nu}\left(D_{1}\right), D_{2}^{\nu}=$
$B^{\nu} \circ g^{\nu}\left(D_{2}\right)$ and consider the mappings

$$
F^{\nu}=B^{\nu} \circ g^{\nu} \circ f^{\nu} \circ\left(A^{\nu}\right)^{-1}=B^{\nu} \circ \tilde{f}^{\nu} \circ\left(A^{\nu}\right)^{-1}: D_{1}^{\nu} \rightarrow D_{2}^{\nu} .
$$

Let also $r_{1}^{\nu}(z, w)=\delta_{\nu}^{-1} r_{1} \circ\left(A^{\nu}\right)^{-1}=\delta_{\nu}^{-1} r_{1}\left(\delta_{\nu}^{1 / 2 m} z, \delta_{\nu} w\right)$ and $r_{2}^{\nu}=$ $\gamma_{\nu}^{-1} r_{2} \circ\left(g^{\nu}\right)^{-1} \circ\left(B^{\nu}\right)^{-1}=\gamma_{\nu}^{-1} r_{2}^{\nu}\left(\tau\left(\omega^{\nu}, \gamma_{\nu}\right) z, \gamma_{\nu} w\right)$.

Since Γ_{2} is of type $2 k$ at the origin, one has

$$
r_{2}^{\nu}=\operatorname{Im} w+\gamma_{\nu}^{-1}\left(\sum_{\ell=2}^{2 k}\left(\tau\left(\omega^{\nu}, \gamma_{\nu}\right)\right)^{\ell} P_{2, \ell}\left(\omega^{\nu}, z\right)\right)+R^{\nu}
$$

where the sequence $\left(R^{\nu}\right)_{\nu}$ converges to zero uniformly on compact subsets of \mathbb{C}^{2} as $\nu \rightarrow \infty$ (see $[17,18]$).

Passing to the subsequence, one can assume that the polynomials $\gamma_{\nu}^{-1} \sum_{\ell=2}^{2 k} P_{2, \ell}\left(\omega^{\nu}, \tau^{\ell}\left(\omega^{\nu}, \gamma_{\nu}\right) z\right)$ converge uniformly on compact subsets of \mathbb{C} to a nonzero real polynomial Q of degree $\leq 2 k$ that contains no purely harmonic terms. Let us consider the domain $\Omega_{2}=\left\{w \in \mathbb{C}^{2} \mid \psi(z, w)=\right.$ $\operatorname{Im} w+Q(z)<0\}$.

The sequence $\left(r_{2}^{\nu}\right)$ converges to the function ψ uniformly together with all derivatives of any order ; hence Ω_{2} is pseudoconvex as a smooth limit of pseudoconvex domains. In particular, Q is a subharmonic polynomial on \mathbb{C}.

Similarly, we have that the sequence (r_{1}^{ν}) converges uniformly on compact subsets of \mathbb{C}^{2} to the function $\phi=\operatorname{Im} w+P_{2 m}(z)$ (in what follows we write simply P). It is worth to note that P is a homogeneous polynomial. We define the domain $\Omega_{1}=\left\{(z, w) \in \mathbb{C}^{2} \mid \phi(z)<0\right\}$.

Now quite similarly to [17], it follows by [12] that there exists a subsequence of $\left(F^{\nu}\right)_{\nu}$ uniformly converging on compact subsets of Ω_{1}.Thus, without loss of generality one can assume that $\left(F^{\nu}\right)_{\nu}$ converges uniformly on compact subsets of Ω_{1} to a holomorphic mapping F. This was shown in $[17,18]$ that F takes its values in Ω_{2} and, moreover, one has $\psi(F(z, w)) \leq$ $C(R) \phi(z, w)$ for any $R>0$ and $z \in \Omega_{1} \cap R \mathbb{B}$ (here and below \mathbb{B} denotes the unit ball of $\left.\mathbb{C}^{2}\right)$.

We have $A^{\nu}\left(p^{\nu}\right)=(0,-i), A^{\nu}\left(\eta^{\nu}\right)=\left(e^{i \theta_{\nu}}, i \beta^{\nu} \delta_{\nu}^{-1}\right)$. But $\beta^{\nu}=P_{2 m}\left(a^{\nu}\right)$ $+o\left(\left|a^{\nu}\right|^{2 m}\right)$ and by the choice of δ_{ν} the sequence $\beta^{\nu} \delta_{\nu}^{-1}$ tends to a finite point τ. Therefore,

$$
A^{\nu}\left(z^{\nu}, w^{\nu}\right)=\left(e^{i \theta_{\nu}}+i \alpha \delta_{\nu}^{1-(1 / 2 m)}+o\left(\delta_{\nu}^{1-(1 / 2 m)}\right), i \alpha+i \beta^{\nu} / \delta_{\nu}\right)
$$

This sequence tends to the point $q=\left(e^{i \theta}, i \alpha+i \tau\right)$. Since $\left(e^{i \theta}, i \tau\right)$ is in the boundary of the limit model domain Ω_{1}, the point q is in Ω_{1}.

Since the limit mapping $F: \Omega_{1} \longrightarrow \Omega_{2}$ satisfies conditions of Proposition 2.1 and $P_{2 m}$ is a homogeneous polynomial, by the previous section we obtain that $V_{F}=\{z=0\}$. But by the construction q is in V_{F} : a contradiction. This proves the proposition 3.1 in the case where V is a smooth variety with boundary.

Suppose now that 0 is a point of $\left(\bar{V} \cap \Gamma_{1}\right) \backslash E$. Then we take a regular point $(a, b) \in E$ of type $2 s$ and consider the polynomial change of variables $T:\left(z^{\prime}, w^{\prime}\right) \longrightarrow(z, w)=\left(z^{\prime}+a, w^{\prime}+b+Q\left(z^{\prime}\right)\right)$, where the polynomial Q is chosen such that $r_{1} \circ T=\operatorname{Im} w^{\prime}+R_{2 s}\left(z^{\prime}\right)+\varphi^{\prime}\left(z^{\prime}\right)$, where $R_{2 s}$ is a homogeneous subharmonic polynomial of degree $2 s$ without purely harmonic terms and $\varphi^{\prime}\left(z^{\prime}\right)=o\left(\left|z^{\prime}\right|^{2 s}\right)$. Then 0 is the regular point for the branch locus of the mapping $f \circ T$ and as it was just shown $J_{f \circ T}=\left\{z^{\prime}=0\right\}$ near the origin. This implies that (in the old coordinates) V coincides with $\{(z, w): z=a\}$ near (a, b). Since V is irreducible, V coincides with this line everywhere in U, and hence necessarily $a=0$. This completes the proof of Proposition 3.1.
Q.E.D.

We can prove now our first main result.
Proof of Theorem 1.1.
By [4], f is smooth up to the boundary. Let V be an irreducible component of V_{f} and $p \in \partial V$ be a boundary point of V. It follows by [27] that there exists a neighborhood W of p in \mathbb{C}^{2}, a neighborhood U of 0 and a biholomorphic mapping $H: \Omega \cap W \longrightarrow \Omega^{\prime} \cap U$ smooth up to the boundary $\partial \Omega, H(p)=0$ such that $\Omega^{\prime} \cap U$ is rigid; \mathbf{T} acts on $\Omega^{\prime} \cap U$ by translations $(z, w) \mapsto(z, w+t), t \in \mathbb{R}$. In view of [2] we can assume that the mapping $f \circ H^{-1}: \Omega^{\prime} \cap U \longrightarrow f(\Omega \cap V)$ is proper. Then it follows by Proposition 3.1 that $H(V \cap W)=\{(z, w) \in U: z=0\}$. But then $V \cap W=H^{-1}(\{z=0\})$ is a smooth manifold with boundary near p. This proves part (i) of Theorem 1.1.

Since the circle \mathbf{T} acts (locally) by translation on Ω^{\prime}, we get that $(\partial V) \cap$ W coincides with the orbit $\mathbf{T}(p) \cap W$. By compactness of ∂V there exists a finite number of neighborhoods $W\left(p_{j}\right), j=1, \ldots, N, p_{j} \in \partial V$ such that $\partial V \subset \cup_{1}^{N} W\left(p_{j}\right)$ and for every j the intersection $(\partial V) \cap W\left(p_{j}\right)$ is equal to the orbit $\mathbf{T}\left(p_{j}\right) \cap W\left(p_{j}\right)$. Hence, ∂V is contained in a finite union of disjoint orbits.

In order to show the inverse inclusion, we note that for any point p in $\partial \Omega$ its orbit $\mathbf{T}(p)$ is a smooth connected compact curve; since after an one-sided biholomorphic change of coordinates the \mathbf{T} action is given by translations and therefore this curve can be transformed to a real line, we get that for any point a in $\mathbf{T}(p)$ there exists a neighborhood U such that $\mathbf{T}(p) \cap U$ is the boundary of a complex 1-dimensional manifold in $\Omega \cap U$. Since $\mathbf{T}(p)$ is compact, there exists a neighborhood W of $\mathbf{T}(p)$ such that $\mathbf{T}(p)$ is the boundary of a (connected) complex 1-dimensional manifold in $\Omega \cap W$ denoted by $\mathbf{T}(p)^{\mathbb{C}}$. If the intersection $\bar{V} \cap \mathbf{T}(p)$ contains a point a, then there exists a neighborhood U of a such that $V \cap U$ coincides with $\mathbf{T}(p)^{\mathbb{C}}$ on U. Since $\mathbf{T}(p)^{\mathbb{C}}$ is irreducible, it is contained in V by the uniqueness theorem. Hence, $\mathbf{T}(p)$ is contained in \bar{V}. This completes the proof of part (ii).

§4. Mappings from circular domains

Important special cases of domains with \mathbf{T}-action arise when the action is linear; classical examples are provided by circular domains. This section is devoted to the proof of our second main result Theorem 1.2. In what follows by a disc in \mathbb{C}^{2} we mean a linear disc, i.e. the image of the unit disc in \mathbb{C} under a linear mapping from \mathbb{C} to \mathbb{C}^{2}; in particular, such a disc contains the origin.

LEmma 4.1. Let $f: \Omega \longrightarrow D$ be a proper holomorphic mapping between two smoothly bounded pseudoconvex finite type domains in \mathbb{C}^{2}. Suppose that Ω is a complete circular domain. Then the branch locus V_{f} is a finite union of discs.

Proof. Since Ω is pseudoconvex, for every point $p \in \partial \Omega$ there exists a neighborhood U and a defining function ρ such that $-(-\rho)^{\alpha}$ is a plurisubharmonic function on $\Omega \cap U$ (shrinking U if necessarily, one can take $\alpha \in(0,1)$ arbitrarily close to 1$)$ [19]. Since Ω is a complete circular domain, every \mathbf{T}-orbit is a circle in the boundary which bounds a complex disc in Ω; it follows by the Hopf lemma that this disc is transversal to the boundary and hence the \mathbf{T}-action is transversal. Therefore, Theorem 1.1 implies that $\overline{V_{f}} \cap \partial \Omega$ is a finite union of circles. Then V_{f} coincides with the union of corresponding discs (say, by the maximum principle).
Q.E.D.

In the case of proper self-mappings the last proposition gives surprisingly strong corollaries which allow to prove our second main result.

Proof of Theorem 1.2.
Suppose that the branch locus V_{f} is not empty. The first step of the proof of Theorem 1.2 is the following

Lemma 4.2. The mapping f is polynomial homogeneous.
Proof. First, we show that f is a polynomial mapping. We denote by $f^{(n)}$ the n-th iteration of f. It follows by Lemma 4.1 that for every n the branch locus $V_{f^{(n)}}$ is a finite union of discs.

We claim that there exists a sequence $\left(L_{n}\right)$ of discs such that $L_{n} \subset$ $V_{f^{(n)}}, L_{n+1} \subset f^{-1}\left(L_{n}\right)$.

We will construct the family $\left(L_{n}\right)$ by induction. For every n we have $V_{f^{(n+1)}}=V_{f} \cup f^{-1}\left(V_{f^{(n)}}\right)$. Fix any disc L_{1} in V_{f}. Then $f^{-1}\left(L_{1}\right)$ is contained in $V_{f^{(2)}}$ and contains the disc L_{2}. Assume that the discs L_{1}, \ldots, L_{n} are defined. Then $f^{-1}\left(L_{n}\right)$ is contained in $f^{-1}\left(V_{f(n)}\right) \subset V_{f^{n+1}}$. So there exists a disc L_{n+1} such that $L_{n+1} \subset f^{-1}\left(L_{n}\right)$. Note that since every restriction $f: L_{n} \longrightarrow L_{n-1}$ is proper and $f\left(L_{n}\right) \subset L_{n-1}$, we have $f\left(L_{n}\right)=L_{n-1}$. We note that the discs $\left(L_{n}\right)$ are distinct. Indeed, suppose by contradiction that m is the first integer such that there exists p with $L_{m}=L_{m+p}$. If $m \geq 2$, we have $f\left(L_{m}\right)=f\left(L_{m+p}\right)$ and so $L_{m-1}=L_{m+p-1}$. This contradicts the definition of m. So $m=1$.

Let $\tau_{\partial \Omega}(p)$ be the order of vanishing of the Levi determinant introduced in section 2. Since τ is invariant with respect to the \mathbf{T}-action, τ is constant on every ∂L_{n}. We denote it by τ_{n}. Since L_{n+1} is contained in $f^{-1}\left(L_{n}\right)$, the sequence $\left(\tau_{n}\right)_{n}$ is increasing . The domain Ω is of finite type, therefore the sequence $\left(\tau_{n}\right)$ is bounded, so it is a constant for n sufficiently large. Let n_{0} be the first integer such that $\tau_{n}=\tau_{n_{0}}$ if $n \geq n_{0}$. Given $n \geq n_{0}$, for $z \in \partial L_{n+1}$ we have $\tau_{n+1}=\tau_{\partial \Omega}(z) \geq \tau_{\partial \Omega}(f(z))=\tau_{n}=\tau_{n+1}$. Hence f is locally biholomorphic at z and z is not in V_{f}; but then z cannot be in L_{1}. Thus $L_{2} \neq L_{n}$ for any n large enough. This is a contradiction. So the discs L_{n} are different. In particular, since $f\left(L_{n+1}\right)=L_{n}$ is proper for every n we obtain that $f(0)=0$. There exists a positive integer n_{0} such that for every $n \geq n_{0}$ the sequence $\left(\tau_{n}\right)_{n}$ is constant and $L_{n} \cap V_{f}=\{0\}$ (since V_{f} is a finite union of discs). Consider a sequence of points $\left(p_{n}\right)_{n}$ in $\partial \Omega$ such that p_{n} is in L_{n} for every n. The restriction $f: L_{n+1} \rightarrow L_{n}$ is proper, $f(0)=0$ and, since f is locally biholomorphic at $L_{n+1} \backslash\{0\}$, the
derivative of the restriction $f_{\left.\right|_{L_{n+1}}}$ cannot vanish at a point different of the origin. Then we have $f\left(\lambda p_{n+1}\right)=c_{n} \lambda^{k_{n}} p_{n}$ where $\lambda \in \mathbb{C}:|\lambda|<1, c_{n}$ is a constant, an integer k_{n} is smaller than the order of vanishing $\operatorname{or}(f)$ of f at the origin. Fix $r>0$ such that the ball $r \mathbb{B}$ is contained in Ω and consider the decomposition of f in homogeneous polynomials $f=\Sigma f_{k}$ on $r \mathbb{B}$ with $f_{k}(\lambda z)=\lambda^{k} f_{k}(z)$ for any z. Since $f\left(\lambda p_{n+1}\right)=c_{n} \lambda^{k_{n}} p_{n}$, we have $\sum \lambda^{k} f_{k}\left(p_{n+1}\right)=c_{n} \lambda^{k_{n}} p_{n}$ for every λ in a neighborhood of the origin in \mathbb{C} independent of n; therefore $f_{k}\left(p_{n+1}\right)=0$ for $k \geq \operatorname{or}(f)+1$ for any $n \geq n_{0}$. Thus, f_{k} vanishes on every $L_{n}, n \geq n_{0}$ for $k \geq \operatorname{or}(f)+1$. Since the lines L_{n} are different, every homogeneous polynomial f_{k} is zero. Thus, f is a polynomial of degree $\leq \operatorname{or}(f)$.

Finally, let us show that f is homogeneous. For $k \leq \operatorname{or}(f)$, let N_{k} denote the set of positive integer n such that $f\left(\lambda p_{n+1}\right)=c_{n} \lambda^{k} p_{n}$. There exists k_{0} such that $N_{k_{0}}$ is infinite. For every j different from k_{0} we have $f_{j}\left(\lambda p_{n+1}\right)=0$ for any $n \in \mathbb{N}_{k_{0}}$ and since $N_{k_{0}}$ is infinite, we obtain that $f_{j}=0$; hence $f=f_{k_{0}}$ and f is homogeneous.
Q.E.D.

The second basic step in our proof of Theorem 1.2 is an application of complex dynamics arguments. We refer the reader to [15, 23, 21] for standard definitions.

Since $f: \Omega \longrightarrow \Omega$ is proper and homogeneous, it follows that f is nondegenerate, i.e. $f^{-1}(0)=0$. Let Ω_{f} denote the basin of attraction for f. Note that this is a complete circular domain (see also [23]).

Lemma 4.3. One has $\Omega=\Omega_{f}$.
Proof. One can assume that $\left(f^{(k)}\right)$ converges to F on Ω. For every $\lambda \in \mathbb{C},|\lambda|<1$ one has $f^{(k)}(\lambda z) \longrightarrow F(\lambda z)$ as $k \longrightarrow \infty$. But $f^{(k)}$ is homogeneous of degree d^{k} and $f^{(k)}(\lambda z)=\lambda^{d^{k}} f^{(k)}(z)$ which converges to 0 . Hence, $F=0$ on Ω and $\Omega \subset \Omega_{f}$. But f is proper and $f(\partial \Omega) \subset \partial \Omega$. Hence, Ω_{f} is contained in Ω.
Q.E.D.

In order to prove Theorem 1.2 , it suffices to prove that V_{f} is empty ([26]). Suppose by contradiction that it is not so. Then as it was just shown, f is a homogeneous polynomial, which is not linear.

We denote by $\pi: \mathbb{C}^{2} \backslash\{0\} \longrightarrow \mathbb{C} P$ the canonical projection. Since f is nondegenerate, it takes lines to lines in \mathbb{C}^{2} and naturally induces a rational
mapping $\varphi: \mathbb{C} P \longrightarrow \mathbb{C} P$ on the projective space. We claim that its Julia set J_{φ} does not coincide with $\mathbb{C} P$. For the proof we apply an argument of [14]. Suppose by contradiction it does. This is known (see [15], pp.56-58) that in this case for every point $a \in J_{\varphi}$ there exists a neighborhood U and a positive integer n such that $\cup_{k=1}^{n} \varphi^{(k)}(U)$ covers $\mathbb{C} P$. Take a such that $\pi^{-1}(a)$ contains a strictly pseudoconvex point p in $\partial \Omega$. Then there exists a neighborhood W of p in \mathbb{C}^{2} such that $\cup_{k=1}^{n} f^{(k)}(W)$ covers $\partial \Omega$. Since f takes any strictly pseudoconvex point to a strictly pseudoconvex one, we get that Ω is strictly pseudoconvex and by [26] V_{f} is empty: a contradiction.

Thus, J_{φ} is different from $\mathbb{C} P$. But then by the classical results J_{φ} is a closed subset of $\mathbb{C} P$ with empty interior ([15], Theorem 1.9). Therefore $\partial \Omega \backslash \pi^{-1}\left(J_{\varphi}\right)$ is a nonempty open subset of $\partial \Omega$ which in view of [23], Proposition 7.1, is foliated by Riemann surfaces: this is impossible since Ω is of finite type. This completes the proof of the theorem.

In conclusion we note that if Ω is a circular, but not complete circular domain, then the circled action in general is not transversal as shows the domain $D=\left(|z|^{2}-1\right)^{2}+\left(|w|^{2}-1\right)^{2}<\varepsilon$ for $\varepsilon>0$ small enough. But if the action is transversal, the former proof is still valid with slight modifications (one has consider proper holomorphic mappings of annuli in linear sections).

References

[1] H. Alexander, Proper holomorphic mappings in \mathbb{C}^{n}, Indiana Univ. Math. J., 26 (1977), 137-146.
[2] M. Baouendi, S. Bell and L.P. Rothschild, Mappings of three-dimensional CR manifolds and their holomorphic extension, Duke Math. J., 56 (1988), 503-530.
[3] D. Barrett, Regularity of the Bergman projection on domains with transverse symmetries, Math. Ann., 258 (1982), 441-446.
[4] , Boundary analyticity of proper holomorphic maps of domains with nonanalytic boundaries, Math. Ann., 263 (1983), 474-482.
[5] E. Bedford, Proper holomorphic mappings from strongly pseudoconvex domains, Duke Math. J., 49 (1982), 477-484.
[6] _, Proper holomorphic mappings from domains with real analytic boundary, Amer. J. Math., 106 (1984), 745-760.
$[7]$, Action of the automorphisms of a smooth domain in \mathbb{C}^{n}, Proc. Amer. Math. Soc., 93 (1985), 365-400.
[8] E. Bedford and S. Bell, Proper self-maps of weakly pseudoconvex domains, Math. Ann., 261 (1982), 505-518.
[9] E. Bedford and J.E. Fornaess, A construction of peak functions on weakly pseudoconvex domains, Ann. Math., 270 (1978), 555-568.
[10] S. Bell, Local boundary behavior of proper holomorphic mappings, Proc. Symp. Pure Math., 41 (1984), 1-7.
[11] S. Bell and D. Catlin, Regularity of CR mappings, Math. Z., 199 (1988), 357-368..
[12] F. Berteloot and J. Coeuré, Domaines de \mathbb{C}^{2} pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes, Ann. Inst. Fourier, 41 (1991), 77-86.
[13] F. Berteloot and S. Pinchuk, Proper holomorphic mappings between bounded complete reinhardt domains in \mathbb{C}^{2}, Math. Z., 219 (1995), 343-356.
[14] F. Beteloot and J.J. Loeb, A geometrical characterization of Lattes rational map, Preprint. Univ. d'Angers, 1996.
[15] L. Carleson and T. Gamelin, Complex dynamics, Springer-Verlag, 1993.
[16] D. Catlin, Estimates on invariant metrics on pseudoconvex domains of dimension two, Math. Z., 200 (1989), 429-466.
[17] B. Coupet, S. Pinchuk and A.Sukhov, On boundary rigidity and regularity of holomorphic mappings, Internat. J. Math., 7 (1996), 617-643.
[18] B. Coupet and A. Sukhov, On CR mappings between pseudoconvex hypersurfaces of finite type in \mathbb{C}^{2}, Duke Math. J., 88 (1997), 281-304.
[19] K. Diederich and J.E. Fornaess, Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. math., 39 (1977), 371-384.
[20] J.E. Fornaess and N.Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J., 58 (1989), 633-656.
[21] same, Complex dynamics in higher dimension I, Asterisque, 221 (1994), 201-231.
[22] X. Huang and Y. Pan, Proper holomorphic mappings between real analytic domains in \mathbb{C}^{n}, Duke Math. J., 82 (1996), 437-446.
[23] J. Hubbard and P. Papadopol, Superattractive fixed points in \mathbb{C}^{n}, Indiana Univ. Math. J., 43 (1994), 321-365.
[24] D. Mumford, Alebraic geometry I. Complex projective varieties, Springer Verlag, 1976.
[25] Y. Pan, Proper holomorphic self-mappings of Reinhardt domains, Math. Z., 208 (1991), 289-295.
[26] S. Pinchuk, Holomorphic inequivalence of some classes of domains in \mathbb{C}^{n}, Math. USSR Sb., 39 (1981), 61-86.
[27] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan, 14 (1962), 397-429.

Bernard Coupet
LATP, CNRS/UMR n ${ }^{\circ} 6632$
CMI, Université de Provence
39, rue Joliot Curie
13453 Marseille cedex 13
France
Yifei Pan
Department of Mathematics Indiana University-
Purdue University Ft. Wayne
Ft. Wayne, IN 46805
U.S.A.

Alexandre Sukhov
LATP, CNRS/ UMR n ${ }^{\circ} 6632$
CMI, Université de Provence
39, rue Joliot Curie
13453 Marseille cedex 13
France

