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LANDEN INEQUALITIES FOR HYPERGEOMETRIC

FUNCTIONS

S.-L. QIU and M. VUORINEN

Abstract. A generalization of the Landen identity, in the form of an inequality,
is proved for hypergeometric functions. Some well-known asymptotic formulas
are refined.

§1. Introduction

For real numbers a, b and c with c 6= 0,−1,−2, . . . , the Gaussian hy-

pergeometric function is defined by

F (a, b; c;x) := 2F1(a, b; c;x) =

∞
∑

n=0

(a, n)(b, n)

(c, n)

xn

n!
(1.1)

for x ∈ (−1, 1), where

(a, n) := a(a + 1)(a + 2) · · · (a + n − 1)

for n = 1, 2, . . . , and (a, 0) = 1 for a 6= 0. The word “hypergeometric”

occurred perhaps first in J. Wallis’ writings [Du]. The series (1.1) was

introduced by L. Euler who also found an integral representation for it.

In the nineteenth century, through the results of C. Gauss, E. Kummer,

E. Goursat, H. A. Schwarz, F. Klein and many others, the central role of

the hypergeometric series in function theory became apparent. In the pe-

riod 1900–1920, S. Ramanujan carried out extensive studies of the series

(1.1), however, in most cases in unpublished notebooks without complete

proofs (see [Ask1]). B. C. Berndt has published a series of edited notebooks

[Be1], [Be2], [Be3] and [Be4]. Because complete reconstructed proofs are

given there, Berndt has rescued this work of a genius from oblivion and

obscurity and thus made many jewels of the mathematical science widely

available. In the 1990’s, the function F (a, b; c;x) had found new applica-

tions or generalizations in many different contexts, see for instance [Ao],
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[Ask2], [AVV2], [BH], [CC], [DM], [GKZ], [Var], [Va], [WZ]. Many classes

of special functions of mathematical physics are particular or limiting cases

of (1.1) and long lists of such particular cases are given in [PBM].

It is clear that small changes of the parameters a, b, c will have small

influence on the value of F (a, b; c;x). In this paper we shall study to what

extent the well-known properties of the complete elliptic integral of the first

kind

K(x) ≡ π

2
F

(1

2
,
1

2
; 1;x2

)

=

∫ π/2

0
(1 − x2 sin2 t)−1/2 dt, x ∈ (0, 1),(1.2)

can be extended to F (a, b; a + b;x) for (a, b) close to (1/2,1/2). Recall that

F (a, b; c; r) is called zero-balanced if c = a + b. In the zero-balanced case,

there is a logarithmic singularity at r = 1 and Gauss proved the asymptotic

formula [E]

F (a, b; a + b; r) ∼ − 1

B(a, b)
log(1 − r)(1.3)

as r tends to 1, where

B(z,w) ≡ Γ(z)Γ(w)

Γ(z + w)
, Re z > 0, Re w > 0(1.4)

is the classical beta function.

Ramanujan found a much sharper asymptotic formula

B(a, b)F (a, b; a + b; r) + log(1 − r) = R(a, b) + O((1 − r) log(1 − r))(1.5)

as r tends to 1 (see also [Ask1], [Be1], and [E]). Here and in the sequel,







R(a, b) ≡−Ψ(a) − Ψ(b) − 2γ, R(1/2,1/2) = log 16,

Ψ(z) ≡ d

dz
(log Γ(z)) =

Γ′(z)

Γ(z)
, Re z > 0,

(1.6)

and γ is the Euler-Mascheroni constant. Ramanujan’s formula (1.5) is a

particular case of another well-known formula given below in (2.1).

Some of the most important properties of the elliptic integral K(r) are

the Landen identities proved in 1771 [AlB], [WW, p. 507]:

K
( 2

√
r

1 + r

)

= (1 + r)K(r), K
(1 − r

1 + r

)

=
1 + r

2
K′(r),(1.7)

where K′(r) = K(
√

1 − r2), r ∈ (0, 1). In [AVV1, p. 79], the following prob-

lem was raised:
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Open problem 1.1. Find an analog of Landen’s transformation for-

mulas in (1.7) for F (a, b; a + b; r). In particular, if h(r) = F (a, b; a + b; r2)

and a, b ∈ (0, 1), is it true that

h(2
√

r/(1 + r)) ≤ Ch(r)

for some constant C and all r ∈ (0, 1) ?

Since 2
√

r/(1 + r) > r for r ∈ (0, 1), C must be greater than 1. We

formulate our first result, which answers this open problem.

Theorem 1.2. For a, b ∈ (0, 1), c = a + b and C = const. > 1, with

c ≤ 1, define the functions f and g on (0, 1) by

f(r) = (1 +
√

r)F (a, b; c; r) − F (a, b; c; 4
√

r/(1 +
√

r)2),

g(r) = CF (a, b; c; r) − F (a, b; c; 4
√

r/(1 +
√

r)2),

respectively. Then we have:

(1) For any a, b ∈ (0, 1) with c ≤ 1 (c < 1, respectively), f is (strictly,

respectively) increasing from (0, 1) onto (0, (R−log 16)/B), where B =

B(a, b) and R = R(a, b) are defined by (1.4) and (1.6), respectively. In

particular, for a, b ∈ (0, 1) with c = a + b ≤ 1, and for all r ∈ (0, 1),

F (a, b; c; (2
√

r/(1 + r))2) ≤ (1 + r)F (a, b; c; r2)(1.8)

≤ F (a, b; c; (2
√

r/(1 + r))2) + [(R − log 16)/B]

and

1 + r

2
F (a, b; c; 1 − r2) ≤ F

(

a, b; c;
(1 − r

1 + r

)2)

(1.9)

≤ 1 + r

2

[

F (a, b; c; 1 − r2) +
1

B
(R − log 16)

]

,

with equality in each instance if and only if a = b = 1/2.

(2) If C ≥ 2, then g(r) > 0 for all r ∈ (0, 1). Moreover, if 1 < C ≤ 2,

then g is strictly decreasing from (0, 1) onto (C1, C − 1), where

C1 =

{

−∞, if 1 < C < 2,

(R − log 16)/B, if C = 2.
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In particular, for all r ∈ (0, 1),

F
(

a, b; c;
( 2

√
r

1 + r

)2)

− 1 < 2F (a, b; c; r) − 1(1.10)

< F
(

a, b; c;
( 2

√
r

1 + r

)2)

< 2F (a, b; c; r) − 1

B
(R − log 16).

(3) If 1 < C < 2, then F (a, b; c; (2
√

r/(1+r))2) and CF (a, b; c; r2) are not

directly comparable for all r ∈ (0, 1), that is, neither the inequality

F (a, b; c; (2
√

r/(1 + r))2) ≥ CF (a, b; c; r2)

nor its reversed inequality holds for all r ∈ (0, 1).

From Theorem 1.2, we see that the first and second identities in (1.7)

are the special case of (1.8) and (1.9), respectively, when a = b = 1/2. Parts

(2) and (3) of Theorem 1.2 imply that in the Open Problem 1.1 the best

value of C, for which h(2
√

r/(1 + r)) ≤ Ch(r), is 2. It should be noted

that in (1.8) and (1.9), the hypergeometric functions have the same sets of

parameters, in analogue with (1.7) where K(r) is this function. The so-called

quadratic transformation formulas (see e.g. [AS, 15.3.15–15.3.32]) also yield

formulas which give (1.7) as a particular case, but those formulas involve

hypergeometric functions with two different sets of parameters.

In [AVV1, p. 79], the following problem was put forward. (For the

particular case a = b = 1/2 the answer is known to be affirmative.)

Open problem 1.3. Is it true that the function

W (r) ≡ F (a, b; a + b; r) +
C

r
log(1 − r),

where C = 1/B(a, b), is monotone on (0, 1) for suitable a and b ?

In [AVV1, Theorem 6], Gauss’ asymptotic formula (1.3) was refined

by finding the lower and upper bounds for W (r), while in [ABRVV, The-

orem 1.4] the function W (r) was shown to be monotone when a, b ∈ (0, 1)

or a, b ∈ (1,∞). Our second result gives a full solution to the Open Prob-

lem 1.3.

Theorem 1.4. For a, b ∈ (0,∞), c = a + b, let a1 = 1 − ab, a2 =

2ab − a − b, a3 = |a1| + |a2|, and define the function f on (0, 1) by

f(r) = BF (a, b; c; r) +
1

r
log(1 − r),

where B = B(a, b). Then we have:
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(1) If a3 = 0, then f(r) ≡ 0.

(2) If a3 6= 0 and a1 ≥ max{0, a2}, then f is strictly increasing from (0, 1)

onto (B − 1, R), where R = R(a, b).

(3) If a3 6= 0 and a1 ≤ min{0, a2}, then f is strictly decreasing from (0, 1)

onto (R,B − 1).

(4) In the other cases not stated in parts (1)–(3), that is, a2 < a1 < 0, f

is not always monotone on (0, 1).

Remark 1.1. It seems that there would be two possible cases not stated

in parts (1)–(3) of Theorem 1.4:

a2 < a1 < 0 if a2 < 0, and, 0 ≤ a1 ≤ a2 if a2 ≥ 0.

However, one can show that there are no values of a and b such that a2 ≥
a1 ≥ 0 with a3 6= 0. In fact, if a2 > a1 = 0, then ab = 1 and a2 = 2−(a+b) >

0 so that 2 > a + b = a + (1/a) ≥ 2, a contradiction. If a2 ≥ a1 > 0, then

a + b − 3ab + 1 ≤ 0 and ab < 1.(1.11)

Since if a, b ≤ 1 then a2 = a(b− 1) + b(a− 1) ≤ 0 and since if a, b ≥ 1 then

a1 ≤ 0, we may assume that 0 < a < 1 ≤ b. Thus it follows from (1.11)

that a ≥ (b + 1)/(3b − 1) and hence

a1 = 1 − ab ≤ 1 − b(b + 1)

3b − 1
= −(b − 1)2

3b − 1
≤ 0,

a contradiction again.

It is not difficult for us to employ the Monotone l’Hôpital’s rule [AVV2,

Theorem 1.25] to prove that the function

f(r) ≡ [K(r) − log(4/r′)][(r′/r)2 log(1/r′)]−1

is strictly decreasing from (0, 1) onto (1/4, π − log 16), (see Corollary 2.1).

Here and in the sequel, we let r′ =
√

1 − r2 for r ∈ (0, 1). Consider the

function

g(r) ≡ B(a, b)F (a, b; a + b; r) + log(1 − r) − R(a, b)

[(1 − r)/r] log(1/(1 − r))
.

Then for a = b = 1/2 we have g(r2) = f(r). Therefore, it is natural to ask

if the function g(r) is monotone on (0, 1) for a, b ∈ (0,∞). Our next result

answers this question.
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Theorem 1.5. For a, b ∈ (0,∞), let A1 = A1(a, b) = a + b + ab − 3,

A2 = A2(a, b) = a + b− 3ab + 1, A = |A1|+ |A2|, and define the function f

on (0, 1) by

f(r) =
BF (a, b; a + b; r) + log(1 − r) − R

[(1 − r)/r] log[1/(1 − r)]
,

where B = B(a, b) and R = R(a, b) are defined by (1.4) and (1.6), respec-

tively. Then we have the following conclusions:

(1) If A = 0, then f(r) ≡ 1.

(2) If A 6= 0 and A1 ≤ min{0,A2}, then f is strictly decreasing from (0, 1)

onto (ab,B − R). In particular, with this condition, for all r ∈ (0, 1),










ab
1 − r

r
log

1

1 − r
< BF (a, b; a + b; r) + log(1 − r) − R

< (B − R)
1 − r

r
log

1

1 − r
.

(1.12)

(3) If A 6= 0 and A1 ≥ max{0,A2}, then f is strictly increasing from (0, 1)

onto (B−R, ab). In particular, under this condition, for all r ∈ (0, 1),










(B − R)
1 − r

r
log

1

1 − r
< BF (a, b; a + b; r) + log(1 − r) − R

< ab
1 − r

r
log

1

1 − r
.

(1.13)

(4) In the other cases not stated in parts (1)–(3), namely, 0 < A1 < A2,

f is not always monotone on (0, 1) for all a and b with 0 < A1 < A2.

Theorem 1.5 gives twosided estimates for the O-term in Ramanujan’s

asymptotic formula (1.4).

§2. Proofs of Theorems

In this section, we prove our main theorems stated in Section 1. First of

all, let us recall the following formulas, which will later be frequently used,

see 6.3.2, 6.3.5, 15.3.10 and 15.3.12 in [AS]: For a, b ∈ (0,∞) and r ∈ (0, 1),

B(a, b)F (a, b; a+b; r) =
∞

∑

n=0

(a, n)(b, n)

(n!)2
[Rn(a, b)− log(1−r)](1−r)n,(2.1)

where

Rn(a, b) = 2Ψ(n + 1) − Ψ(n + a) − Ψ(n + b)(2.2)
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for n = 0, 1, 2, . . . ,

F (a, b; a + b − 1; r) =
Γ(a + b − 1)

Γ(a)Γ(b)

1

(1 − r)
(2.3)

+
Γ(a + b − 1)

Γ(a − 1)Γ(b − 1)

∞
∑

n=0

(a, n)(b, n)

n!(n + 1)!
[Qn(a, b) + log(1 − r)](1 − r)n,

where

Qn(a, b) = −Ψ(n + 1) − Ψ(n + 2) + Ψ(n + a) + Ψ(n + b)(2.4)

= −Rn(a, b) − 1/(n + 2)

for n = 0, 1, 2, . . . ,

Ψ(1) = −γ, Ψ(n) = −γ +

n−1
∑

k=1

1

k
, n ≥ 2,(2.5)

and

Ψ(x + 1) =
1

x
+ Ψ(x).(2.6)

We shall also frequently employ the following relation

D(a + n, b + n, c + n) =
(c, n)(a + b − c, n)

(a, n)(b, n)
D(a, b, c)(2.7)

for n = 1, 2, . . . , and c < a+b, which can be easily verified by the definition

of D(a, b, c), namely (2.40), and the simple fact that Γ(a + n) = (a, n)Γ(a).

Proof of Theorem 1.5. Since lim
r→0

1
r log 1

1−r = 1, we get f(0+) = B − R.

By (2.1), we have

f(1−) = lim
r→1

1

(1 − r) log[1/(1 − r)]
{[log(1− r) − R] + [R − log(1 − r)]

+ab[R1(a, b) − log(1 − r)](1 − r) + O((1 − r)2 log(1 − r))}
= ab.

Next, let c = a + b for convenience, and let

f1(r) = BF (a, b; c; r) + log(1 − r) − R, f2(r) =
1 − r

r
log

1

1 − r
.
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Then f1(1
−) = f2(1

−) = 0 by (1.5), and

f ′

1(r)/f ′

2(r) = f3(r)/f4(r),(2.8)

where f4(r) = r + log(1 − r) and

f3(r) =
ab

c
Br2F (a + 1, b + 1; c + 1; r) − r2

1 − r

with f3(0) = f4(0) = 0.

Let f6(r) = r − 1 and

f5(r) =
2ab

c
B(1 − r)2F (a + 1, b + 1; c + 1; r) − (2 − r)

+
ab(a + 1)(b + 1)

c(c + 1)
Br(1 − r)2F (a + 2, b + 2; c + 2; r).

Then it follows from (2.39) and (2.40) that

f5(1
−) =

ab(a + 1)(b + 1)

c(c + 1)
BD(a + 2, b + 2, c + 2) − 1 = 0 = f6(1).

Differentiation gives

f ′

3(r)/f ′

4(r) = f5(r)/f6(r)(2.9)

and

f ′

5(r)/f ′

6(r) = f ′

5(r) = 1 − 4abB

c
(1 − r)F (a + 1, b + 1; c + 1; r)(2.10)

+
2ab(a + 1)(b + 1)B

c(c + 1)
(1 − r)2F (a + 2, b + 2; c + 2; r)

+
ab(a + 1)(b + 1)B

c(c + 1)
(1 − r)(1 − 3r)F (a + 2, b + 2; c + 2; r)

+
ab(a + 1)(b + 1)(a + 2)(b + 2)B

c(c + 1)(c + 2)
r(1 − r)2F (a + 3, b + 3; c + 3; r).

Using series expansion (1.1) and the simple fact

a(a + 1, n) = (a, n + 1),(2.11)

we can get from (2.10) that

f ′

5(r) = 1 + abB

∞
∑

n=0

(a, n)(b, n)an

(c, n + 2)n!
rn,(2.12)
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where an = A1n − A2.

Observe that A = 0 if and only if a = b = 1. Hence it follows from

(1.6), (2.5) and the well-known formula

F (1, 1; 2; r) = −1

r
log(1 − r)(2.13)

that

f(r) =
F (1, 1; 2; r) + log(1 − r) − 2[Ψ(1) + γ]

[(1 − r)/r] log[1/(1 − r)]
≡ 1

if A = 0, so that part (1) follows.

For part (2), we investigate two cases.

Case (2) (i). A1 ≤ A2 ≤ 0 with A 6= 0

If A2 = 0, then A1 < 0 so that an = A1n < 0 for all n = 1, 2, . . . . If

A2 < 0, then

an ≤ A2(n − 1) ≤ 0 for all n = 1, 2, . . . ,

and an = 0 if and only if A1 = A2 and n = 1.

Case (2) (ii). A1 ≤ 0 ≤ A2 with A 6= 0.

In this case, it is clear that An < 0 for n = 1, 2, . . . .

From the above investigation and (2.12), we see that under the condi-

tion of part (2), f ′

5 is strictly decreasing on (0, 1). Hence the monotoneity of

f follows from (2.8), (2.9), (2.10) and the Monotone l’Hôpital’s rule [AVV2,

Theorem 1.25]. The double inequality (1.12) is clear.

For part (3), we also investigate two cases.

Case (3) (i). A1 ≥ A2 ≥ 0 with A 6= 0.

If A2 = 0, then A1 > 0 so that an > 0 for all n ≥ 1. If A2 > 0, then

an ≥ A2(n − 1) ≥ 0 for all n ≥ 1,

and an = 0 if and only if A1 = A2 and n = 1.

Case (3) (ii). A1 ≥ 0 ≥ A2 with A 6= 0.

If A1 = 0, then A2 < 0 and an = −A2 > 0 for all n ≥ 0. If A1 > 0,

then it is clear that an > 0 for all n ≥ 1.

Consequently, under the condition of part (3), f ′

5 is strictly increasing

on (0, 1), and so is f by (2.8), (2.9), (2.10) and the Monotone l’Hôpitals

rule [AVV2, Theorem 1.25]. The inequalities in (1.13) are clear.
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For part (4), we first observe that the other cases not stated in parts

(1) ∼ (3) are as follows:

(i) 0 < A1 < A2, and, (ii) A2 < A1 < 0.

However, the second case is actually impossible. In fact, A2 < A1 implies

that ab > 1 so that

A1 > a + (1/a) + ab − 3 > 0,

a contradiction. Hence we have only case (i), that is, 0 < A1 < A2.

Next, we find f ′(0+) and f ′(1−). By differentiation, we obtain

f ′(r) =
r

(1 − r)2 log[1/(1 − r)]

{abB

c
(1 − r)F (a + 1, b + 1; c + 1; r)(2.14)

−1 + [BF (a, b; c; r) + log(1 − r) − R]
[1

r
+

1

log(1 − r)

]}

.

Since

lim
r→0

1

log[1/(1 − r)]

{ log[1/(1 − r)]

r
− 1

}

=
1

2

by l’Hôpital’s rule, we get from (2.14)

f ′(0+) =
ab

c
B +

1

2
(B − R) − 1.(2.15)

It follows from (2.1), (2.2), (2.5) and (2.6) that

BF (a, b; c; r) + log(1 − r) − R(2.16)

=
∞
∑

n=1

(a, n)(b, n)

(n!)2
[Rn(a, b) − log(1 − r)](1 − r)n

= ab
(

R − c

ab
+ 2 + log

1

1 − r

)

(1 − r)

+
∞
∑

n=2

(a, n)(b, n)

(n!)2
[Rn(a, b) − log(1 − r)](1 − r)n.

On the other hand, it follows from (2.3), (2.4), (2.5) and (2.6) that

ab

c
B(1 − r)F (a + 1, b + 1; c + 1; r) − 1(2.17)
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= ab(1 − r)

∞
∑

n=0

(a + 1, n)(b + 1, n)

n!(n + 1)!
[Qn(a, b) + log(1 − r)](1 − r)n

= ab(1 − r)
[ c

ab
− R − 1 + log(1 − r)

]

+ab(1 − r)2
∞

∑

n=1

(a + 1, n)(b + 1, n)

n!(n + 1)!

×[Qn(a, b) + log(1 − r)](1 − r)n−1.

From (2.14), (2.16) and (2.17), we get

f ′(r) =
abr

(1 − r) log[1/(1 − r)]

{

c

ab
− R − 1 + log(1 − r)

+(1 − r)
∞

∑

n=1

(a + 1, n)(b + 1, n)

n!(n + 1)!
[Qn(a, b) + log(1 − r)](1 − r)n−1

+
[1

r
+

1

log(1 − r)

]

[

(

R − c

ab
+ 2 − log(1 − r)

)

+
1 − r

ab

∞
∑

n=2

(a, n)(b, n)

(n!)2
(Rn(a, b) − log(1 − r))(1 − r)n−2

]}

=
abr

(1 − r) log[1/(1 − r)]

{(

R − c

ab
+ 2

)1 − r

r

+
1 − r

r
log

1

1 − r
− R − [c/(ab)] + 2

log[1/(1 − r)]

+(1 − r)

∞
∑

n=1

(a + 1, n)(b + 1, n)

n!(n + 1)!
[Qn(a, b) + log(1 − r)](1 − r)n−1

+
(1 − r)

abr

[

1 +
r

log(1 − r)

]

×
∞

∑

n=2

(a, n)(b, n)

(n!)2
[Rn(a, b) − log(1 − r)](1 − r)n−2

}

= ab

{

(

R − c

ab
+ 2

) (1 − r) log[1/(1 − r)] − r

(1 − r)[log(1− r)]2
+ 1

−(a + 1)(b + 1)

2
r
[

1 +
Q1(a, b)

log(1 − r)

]

−r

∞
∑

n=2

(a + 1, n)(b + 1, n)

n!(n + 1)!

[

1 +
Qn(a, b)

log(1 − r)

]

(1 − r)n−1
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+
(a + 1)(b + 1)

4

[

1 +
r

log(1 − r)

][

1 − R2(a, b)

log(1 − r)

]

+
1

ab

[

1 +
r

log(1 − r)

] ∞
∑

n=3

(a, n)(b, n)

(n!)2

[

1 − Rn(a, b)

log(1 − r)

]

(1 − r)n−2

}

.

Hence we have

f ′(1−) =







∞, if R + 2 < c/(ab),

−abA1/4, if R + 2 = c/(ab),

−∞, if R + 2 > c/(ab).

(2.18)

Let g(a, b) = R − [c/(ab)] + 2. Then by (1.6) and (2.6),

g(a, b) = 2(1 − γ) − [Ψ(a + 1) + Ψ(b + 1)].(2.19)

Choose a = (1 − ε)/b for b > 2 + ε and ε ∈ (0, 1/2). Then

A1

(1 − ε

b

)

=
1 − ε

b
+ b − (2 − ε) > 0

for b > 2 + ε, and

A2 − A1 = 4(1 − ab) = 4ε > 0.

For such values of a and b, we have, by (2.19),

g(a, b) = 2(1 − γ) −
[

Ψ
(1 − ε

b
+ 1

)

+ Ψ(b + 1)
]

and hence,

lim
b→∞

g(a, b) = −∞.

Consequently, for sufficiently large b and a = (1 − ε)/b, we see from (2.18)

that f ′(r) > 0 as long as r is close to 1. Hence f cannot be always decreasing

on (0, 1) if A2 > A1 > 0.

Next let b = −2a + 3 and a ∈ (0, 1/2). Then A1 = 2a(1 − a) > 0 and

A2 − A1 = 4(1 − ab) = 4(1 − a)(1 − 2a) > 0.

For such values of a and b, we have by (2.19)

g(a, b) = g(a,−2a + 3) = h(a) ≡ 2(1 − γ) − Ψ(a + 1) − Ψ(4 − 2a)
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so that it follows from (2.5) that

lim
a→0

g(a, b) = h(0) = 1/6 > 0

and

lim
a→1/2

g(a, b) = h(1/2) = log 4 − 3/2 < 0.

Therefore by (2.18), f can be neither increasing on (0, 1) nor decreasing on

(0, 1) for all a and b with A2 > A1 > 0. This yields part (4) and completes

the proof.

Remark 2.1. In order to make the conditions in parts (2)–(4) of The-

orem 1.5 be clearer, we indicate that

{(a, b) | a, b ∈ (0,∞), A1 ≤ min{0,A2}, A 6= 0}(2.20)

= D1 ≡
{

(a, b)
∣

∣

∣
0 < a < 3, 0 < b ≤ 3 − a

1 + a
, (a, b) 6= (1, 1)

}

,

{(a, b) | a, b ∈ (0,∞), A1 ≥ max{0,A2}, A 6= 0}(2.21)

= D2 ≡ {(a, b) | a, b ∈ (0,∞), b ≥ 1/a, (a, b) 6= (1, 1)}

and that

{(a, b) | a, b ∈ (0,∞), 0 < A1 < A2}(2.22)

= D3 ≡
{

(a, b)
∣

∣

∣
a, b ∈ (0,∞),

3 − a

1 + a
< b < 1/a

}

.

Here A1 and A2 are as in Theorem 1.5. It is not difficult to verify (2.20),

(2.21) and (2.22). Thus, Theorem 1.5 indicates that f is strictly decreasing

on (0, 1) for (a, b) ∈ D1, increasing on (0, 1) for (a, b) ∈ D2, and f(r) ≡ 1

for a = b = 1, and that f is not always monotone on (0, 1) if (a, b) ∈ D3. In

order to illuminate this result, we have graphed D1,D2 and D3 in Figure 1

below.
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Figure 1.

Taking a = b = 1/2 in Theorem 1.5, we obtain the following result for

K(r).

Corollary 2.1. The function

f(r) ≡ K(r) − log(4/r′)

(r′/r)2 log(1/r′)

is strictly decreasing from (0, 1) onto (1/4, π − log 16).

We shall next compare Corollary 2.1 to some earlier bounds for the

function K(r). For this purpose we need the following proposition.

Proposition 2.2. The function g(r) ≡ (log(1/r′))/(r2 log(4/r′)) is

strictly increasing and convex from (0, 1) onto (1/ log 16, 1). In particular,

for all r ∈ (0, 1),

1/ log 16 < g(r) < (1/ log 16) + [1 − (1/ log 16)]r.
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Proof. Let

G(r) =
[r2 − 2r′2 log(1/r′)] log(4/r′) − r2 log(1/r′)

r3
, and

H(r) =
(

r′ log
4

r′

)

−2
.

Then differentiation gives

g′(r) = G(r)H(r).(2.23)

Clearly, H is strictly increasing from (0, 1) onto (1/ log 4,∞). Let G2(r) = r3

and

G1(r) =
(

r2 − 2r′2 log
1

r′

)

log
4

r′
− r2 log

1

r′
.

Then
G′

1(r)

G′

2(r)
=

4

3

(

log
4

r′
− 1

) log(1/r′)

r
,

which is a product of two positive and strictly increasing functions on (0, 1),

and hence G is strictly increasing on (0, 1) [AVV2, Theorem 1.25] with

G(0+) = 0. Consequently, by (2.23), g′(r) is a product of two positive and

strictly increasing functions on (0, 1). This yields the result.

The asymptotic behavior of K(r) close to the singularity r = 1 was

recently considered in [AVV1, p. 56], [CG], [K], and [QV]. For instance the

following inequality holds for all r ∈ (0, 1)

9

8 + r2
<

K(r)

log(4/r′)
<

4

3 + r2
.

From Proposition 2.2 and Corollary 2.1 it follows that

1 − r2

16 log 2
log

4

r′
<

1 − r2

4r2
log

1

r′
< K(r) − log

4

r′
(2.24)

< (π − log 16)
1 − r2

r2
log

1

r′

< (π − log 16)

[

1

log 16
+

(

1 − 1

log 16

)

r

]

(1 − r2) log
4

r′
.

Observe that in [BB, p. 356, Prop. 2] J. M. Borwein and P. B. Borwein

proved that

K(r) − log
4

r′
< 4(1 − r2)K(r).
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Since K(r) > log(4/r′), the inequalities in (2.24) enable us to reduce the

constant 4 on the right hand side to π − log 16 = 0.369003 · · ·.

Open problem 2.3. Let a, b ∈ (0, 1) with a + b < 1 and define

G(a, b, r) = B(a, b)F (a, b; a + b; r)/ log(c/(1 − r)), c = eR(a,b). Is it true

that the function Q(a, b, r) ≡ (G(a, b, r) − 1)/(1 − r) has a Maclaurin ex-

pansion
∑

∞

n=0 dnrn with non-negative coefficients dn ? A positive answer

would refine (2.24).

Proof of Theorem 1.2. By the symmetry of F (a, b; c; r) with respect to

the parameters, and by (1.7), we may assume that a ≤ b and a < 1/2, so

that 4ab ≤ c2.

(1) Clearly, f(0) = 0. By (2.1), we obtain

f(1−) = lim
r→1

f(r2) =
1

B
(R − log 16).

Next, let x = 4
√

r/(1 +
√

r)2. Then x >
√

r > r,

dx

dr
=

x(1 −√
r)

2
√

r(1 +
√

r)
,

√
r =

1 −
√

1 − x

1 +
√

1 − x
,

and by [AS, 15.3.3],

2(1 −
√

r)
√

rf ′(r) = f1(r) ≡ (1 −
√

r)F (a, b; c; r)(2.25)

+
2ab

c

√
r(1 − r)F (a + 1, b + 1; c + 1; r)

−ab

c

x(1 −√
r)√

1 − x
(1 − x)F (a + 1, b + 1; c + 1;x)

= f2(
√

r) − 2ab

c

x

1 +
√

1 − x
F (a, b; c + 1;x),

where

f2(r) ≡ (1 − r)F (a, b; c; r2) +
2ab

c
rF (a, b; c + 1; r2).

Clearly, f2(0) = 1. By [AS, 15.1.20], f2(1
−) = 2/B(a, b). By differentiation,

[AS, 15.3.3], and (1.1), we obtain

f ′

2(r) = −F (a, b; c; r2) +
2ab

c
r(1 − r)F (a + 1, b + 1; c + 1; r2)

+
2ab

c
F (a, b; c + 1; r2) +

4(ab)2

c(c + 1)
r2F (a + 1, b + 1; c + 2; r2)
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= −F (a, b; c; r2) +
2ab

c

(

1 +
r

1 + r

)

F (a, b; c + 1; r2)

+
4(ab)2

c(c + 1)
r2F (a + 1, b + 1; c + 2; r2)

< −F (a, b; c; r2) +
3ab

c
F (a, b; c + 1; r2)

+
4(ab)2

c(c + 1)
r2F (a + 1, b + 1; c + 2; r2)

= −
∞
∑

n=0

(a, n)(b, n)

(c, n)n!
r2n + 3ab

∞
∑

n=0

(a, n)(b, n)

(c, n + 1)n!
r2n

+4ab

∞
∑

n=0

(a, n + 1)(b, n + 1)

(c, n + 2)n!
r2(n+1)

=
∞

∑

n=0

(a, n)(b, n)

(c, n + 1)n!
(3ab − c − n)r2n + 4ab

∞
∑

n=0

n(a, n)(b, n)

(c, n + 1)n!
r2n

= −
∞
∑

n=0

(a, n)(b, n)

(c, n + 1)n!
[(1 − 4ab)n + c − 3ab]r2n,

which is negative since 4ab ≤ c2 ≤ 1 and 3ab ≤ 3c2/4 < c. Hence f2

is strictly decreasing from (0, 1) onto (2/B(a, b), 1), so that f1 is strictly

decreasing on (0, 1). By (2.39), (2.40), (2.1), and [AS, 15.1.20], we have

f1(1
−) =

2ab

c

[

D(a + 1, b + 1, c + 1) − Γ(c + 1)Γ(1)

Γ(a + 1)Γ(b + 1)

]

= 0.

Hence the monotoneity of f follows from (2.25) and the monotoneity of f1.

The double inequality (1.8) is clear. For (1.9), let

h(r) = 2F (a, b; c; y) − (1 + r)F (a, b; c; r′2),

where y = [(1 − r)/(1 + r)]2. Then

r =
1 −√

y

1 +
√

y
, r′2 =

4
√

y

(1 +
√

y)2
,

and

h(r) = 2F (a, b; c; y) − 2

1 +
√

y
F

(

a, b; c;
4
√

y

(1 +
√

y)2

)

=
2

1 +
√

y
f(y).
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Hence

0 ≤ F (a, b; c; y) − 1 + r

2
F (a, b; c; r′2) =

1

1 +
√

y
f(y)

=
1 + r

2
f(y) ≤ 1 + r

2B
(R − log 16)

so that (1.9) follows. From the monotoneity of f , we see that f(r) ≡ 0 if

and only if R = log 16. Since R = −2γ−Ψ(a)−Ψ(c−a) ≡ h1(a), and since

by the hypothesis

h′

1(a) = (a − b)

∞
∑

n=0

c + 2n

(a + n)2(b + n)2
≤ 0,

we have

R ≥ −2γ − 2Ψ(c/2) ≥ −2γ − 2Ψ(1/2) = log 16,

with equality in each of the first and second inequalities if and only if

a = c/2 = b = 1/2. This yields the last assertion of part (1).

(2) Let x be as in (1). Then

g(r) = CF (a, b; c; r) − F (a, b; c;x).

Clearly, g(0) = C − 1. By (2.1), it is not difficult to find the limiting value

g(1−) =







−∞, if C ∈ (1, 2),

(R − log 16)/B, if C = 2,

∞, if C > 2.

(2.26)

The first statement of part (2) follows from the first inequality in (1.8).

Next, by differentiation and [AS, 15.3.3], we get

c(1 − r)

2ab
g′(r) = g1(r) ≡

C

2
F (a, b; c + 1; r) − F (a, b; c + 1;x).

If C ∈ (1, 2], then

g1(r) ≤ F (a, b; c + 1; r) − F (a, b; c + 1;x),

which is negative since x > r. Hence g is strictly decreasing on (0, 1) for

C ∈ (1, 2].

The first inequality in (1.10) follows from (1.8). Taking C = 2, we get

other inequalities in (1.10) from the monotoneity of g.

For part (3), we observe that by (2.26), if 1 < C < 2, then g(0) =

C − 1 > 0 while g(1−) = −∞. Hence the conclusion follows.
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Proof of Theorem 1.4. Note that a3 = 0 if and only if a = b = 1. Hence

part (1) follows from (2.13).

Next, let f1(r) = BrF (a, b; c; r) + log(1 − r) and f2(r) = r. Then

f(r) = f1(r)/f2(r), f1(0) = f2(0) = 0 and

f ′

1(r)/f ′

2(r) = f3(r)/f4(r),(2.27)

where f4(r) = 1 − r and

f3(r) = B(1 − r)F (a, b; c; r) +
ab

c
Br(1 − r)F (a + 1, b + 1; c + 1; r) − 1,

with

f3(1
−) =

ab

c
BD(a + 1, b + 1, c + 1) − 1 = 0 = f4(1).

Differentiating again, and using (1.1) and (2.11), we get

1

B

f ′

3(r)

f ′

4(r)
= F (a, b; c; r) − ab

c
(2 − 3r)F (a + 1, b + 1; c + 1; r)(2.28)

−ab(a + 1)(b + 1)

c(c + 1)
r(1 − r)F (a + 2, b + 2; c + 2; r)

=

∞
∑

n=0

(a, n)(b, n)

(c, n)

rn

n!
− (2 − 3r)

∞
∑

n=0

(a, n + 1)(b, n + 1)

(c, n + 1)

rn

n!

−r(1 − r)
∞
∑

n=0

(a, n + 2)(b, n + 2)

(c, n + 2)

rn

n!

=

∞
∑

n=0

(a, n)(b, n)

(c, n + 1)n!
cnrn,

where cn = a1n − a2.

By (2.27), (2.28), and the Monotone l’Hôpital’s rule [AVV2, Theo-

rem 1.25], and by a similar investigation to that in the proof of Theorem 1.5,

we can easily get the monotoneity of f stated in parts (2) and (3). The lim-

iting values follow from (1.5).

For part (4), we find the derivative

f ′(r) =
ab

c
BF (a + 1, b + 1; c + 1; r) − r + (1 − r) log(1 − r)

r2(1 − r)
.(2.29)

Since by l’Hôpital’s rule

lim
r→0

r + (1 − r) log(1 − r)

r2
=

1

2
,
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we have

f ′(0+) =
ab

c
B − 1

2
.(2.30)

Next, it follows from (2.3) and (2.29) that

f ′(r) =
1

1 − r
− r + (1 − r) log(1 − r)

r2(1 − r)
(2.31)

+ab
∞
∑

n=0

(a + 1, n)(b + 1, n)

n!(n + 1)!
[Qn(a, b) + log(1 − r)](1 − r)n

= −1

r
− 1

r2
log(1 − r) + ab(a + 1)(b + 1)[Q0(a, b) + log(1 − r)]

+ab

∞
∑

n=1

(a + 1, n)(b + 1, n)

n!(n + 1)!
[Qn(a, b) + log(1 − r)](1 − r)n.

Since by (2.6)

Q0(a, b) =
c

ab
− R − 1,

it follows from (2.31) that

f ′(r) = −1

r
+ ab(a + 1)(b + 1)

( c

ab
− R − 1

)

+
[

ab(a + 1)(b + 1) − 1

r2

]

log(1 − r)

+ab

∞
∑

n=1

(a + 1, n)(b + 1, n)

n!(n + 1)!
[Qn(a, b) + log(1 − r)](1 − r)n,

and hence

f ′(1−) =















−∞, if ab(a + 1)(b + 1) < 1,

ab(a + 1)(b + 1)

×{[c/(ab)] − R − 1}, if ab(a + 1)(b + 1) = 1,

∞, if ab(a + 1)(b + 1) > 1.

(2.32)

Clearly, a2 < a1 < 0 if and only if

ab > 1 and a + b − 3ab + 1 > 0.(2.33)

Hence by (2.32), f ′(1−) = −∞ so that f cannot be increasing on (0, 1) for

any a and b with a2 < a1 < 0.
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Suppose that f is decreasing on (0, 1) for any a, b with a2 < a1 < 0.

Then

f ′(0+) =
abB

c
− 1

2
< 0 and f(0+) = B − 1 > R = f(1−),(2.34)

and hence by (1.6) and (2.6),

f ′(0+) >
ab

c
(R + 1) − 1

2
(2.35)

= (1 − 2γ)
ab

c
+

1

2
− ab

c
[Ψ(a + 1) + Ψ(b + 1)].

Take a = (1 + ε)/b for ε > 0. Then a1 = −ε < 0 and

a1 − a2 = b +
1 + ε

b
− (2 + 3ε) > 0

for large b, say b > 2 + 3ε. For such values of a and b, we have, by (2.35),

f ′(0+) > g(b) ≡ (1 − 2γ)
(1 + ε)b

1 + ε + b2
+

1

2
(2.36)

− (1 + ε)b

1 + ε + b2

[

Ψ
(

1 +
1 + ε

b

)

+ Ψ(b + 1)
]

.

Since lim
x→∞

Ψ(x)/x = 0, it follows that

lim
b→∞

g(b) =
1

2
− lim

b→∞

b(b + 1)(1 + ε)

b2 + 1 + ε

Ψ(b + 1)

b + 1
=

1

2
.

Hence by (2.36), there exist b0 > 1 and r0 ∈ (0, 1) such that

f ′(r) > 0 for r ∈ (0, r0), a = (1 + ε)/b and b > b0,

contradicting to (2.34).

Part (4) now follows from the above discussion.

Remark 2.2. As we did in Remark 2.1, we can make the conditions in

Theorem 1.4 be clearer by detailed computation. In fact, if we let

D4 = {(a, b) | a, b ∈ (0,∞), ab ≤ 1, (a, b) 6= (1, 1)},

D5 = {(a, b) | a, b ∈ (0,∞), 0 < (a + 1)/(3a − 1) ≤ b, (a, b) 6= (1, 1)}
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and

D6 = {(a, b) | a, b ∈ (0,∞), 1/a < b < (a + 1)/(3a − 1)},

then it is not difficult to show that

{(a, b) | a, b ∈ (0,∞), a1 ≥ max{0, a2}} = D4,

{(a, b) | a, b ∈ (0,∞), a1 ≤ min{0, a2}} = D5

and

{(a, b) | a, b ∈ (0,∞), a2 < a1 < 0} = D6,

where a1 and a2 are as in Theorem 1.4. Hence this theorem indicates that

f is strictly increasing on (0, 1) if (a, b) ∈ D4, decreasing on (0, 1) if (a, b) ∈
D5, f(r) ≡ 0 if a = b = 1, and that f is not always monotone (0, 1) if

(a, b) ∈ D6. (See Figure 2 below.)

a

b

0 1 2 3

1

2

3

D4

D5

D6

D6

a = 1/3

b = (a + 1)/(3a− 1)

b = 1/a

Figure 2.

Combining Theorem 1.4 with Theorem 1.5, we can improve (1.12) and

(1.13) for the cases (a, b) ∈ D1, and (a, b) ∈ D5, to the following
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Corollary 2.4. Let D1 and D2 be as in Remark 2.1, D4 and D5 as

in Remark 2.2, B = B(a, b) and R = R(a, b). Then for all r ∈ (0, 1),

max

{

ab
1 − r

r
log

1

1 − r
,B − R − 1 +

1 − r

r
log

1

1 − r

}

(2.37)

< BF (a, b; a + b; r) + log(1 − r) − R

< (B − R)
1 − r

r
log

1

1 − r

if (a, b) ∈ D1, and

(B − R)
1 − r

r
log

1

1 − r
< BF (a, b; a + b; r) + log(1 − r) − R(2.38)

< min

{

ab
1 − r

r
log

1

1 − r
,B − R − 1 +

1 − r

r
log

1

1 − r

}

if (a, b) ∈ D5.

Proof. It is clear that D1 ⊂ D4 and D5 ⊂ D2. Hence the result imme-

diately follows from Theorems 1.4 and 1.5, and Remarks 2.1 and 2.2.

Note that the lower and upper bounds in (2.37) and (2.38) have the

same limiting values as those of BF (a, b; a+ b; r)+ log(1− r)−R as r tends

to 0 or 1.

It is well known that if a, b, c ∈ (0,∞) with c < a + b, then

F (a, b; c; r) ∼ D(a, b, c)(1 − r)c−a−b(2.39)

as r → 1, (see [WW, p. 299]), where

D(a, b, c) ≡ B(c, a + b − c)/B(a, b).(2.40)

This asymptotic formula was recently refined by [PV, Theorem 1.10]. With

a simpler and direct method, we shall improve [PV, Theorem 1.10] to the

following result.

Theorem 2.5. For a, b, c ∈ (0,∞) with c < a + b, let d = a + b − c,

and define the function f on (0, 1) by

f(r) = (1 − r)dF (a, b; c; r).

Then

f ′(r) =
1

c
(c − a)(c − b)(1 − r)d−1F (a, b; c + 1; r),(2.41)

and we have:
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(1) If c = a or c = b, then f(r) ≡ 1.

(2) If c < min{a, b} or c > max{a, b}, then f is strictly increasing from

(0, 1) onto (1,D), where D = D(a, b, c) is defined by (2.40). Moreover,

if ab ≥ (d−1)(c+1) (resp. ab < (d−1)(c+1)), then f is convex (resp.

concave) on (0, 1).

(3) If min{a, b} < c < max{a, b}, then f is strictly decreasing from (0, 1)

onto (D, 1). Moreover, if ab ≥ (d−1)(c+1) (resp. ab < (d−1)(c+1)),

then f is concave (resp. convex) on (0, 1).

Proof. By differentiation, and (1.1), we get

f ′(r) = (ab − cd)(1 − r)d−1
∞

∑

n=0

(a, n)(b, n)

(c, n + 1)n!
rn(2.42)

=
1

c
(c − a)(c − b)(1 − r)d−1F (a, b; c + 1; r),

and

c(c + 1)(1 − r)2−df ′′(r)(2.43)

= (c − a)(c − b)[ab − (d − 1)(c + 1)]F (a, b; c + 2; r).

The result now follows from (2.41) and (2.43).
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