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ON THE BOREL SUMMABILITY OF DIVERGENT

SOLUTIONS OF THE HEAT EQUATION

D. A. LUTZ, M. MIYAKE and R. SCHÄFKE

Abstract. In recent years, the theory of Borel summability or multisumma-
bility of divergent power series of one variable has been established and it has
been proved that every formal solution of an ordinary differential equation with
irregular singular point is multisummable. For partial differential equations the
summability problem for divergent solutions has not been studied so well, and in
this paper we shall try to develop the Borel summability of divergent solutions
of the Cauchy problem of the complex heat equation, since the heat equation
is a typical and an important equation where we meet diveregent solutions. In
conclusion, the Borel summability of a formal solution is characterized by an
analytic continuation property together with its growth condition of Cauchy
data to infinity along a stripe domain, and the Borel sum is nothing but the
solution given by the integral expression by the heat kernel. We also give new
ways to get the heat kernel from the Borel sum by taking a special Cauchy
data.

§0. Introduction and main results

We consider the following “characteristic” Cauchy problem for the com-

plex heat equation

∂

∂τ
u(τ, z) =

∂2

∂z2
u(τ, z), u(0, z) = ϕ(z)(0.1)

where τ = t+ iη and z = x+ iy are complex variables and ϕ(z) is assumed

to be analytic in a domain D, which we assume to contain a neighborhood

of the origin without loss of generality.

As easily seen, this Cauchy problem has the unique formal solution

û(τ, z) =

∞
∑

n=0

ϕ(2n)(z)
τn

n!
=
put

∞
∑

n=0

un(z)τn,(0.2)

where ϕ(k) = dkϕ/dzk (k ≥ 0). This formal solution diverges for general

Cauchy data ϕ(z), as is shown by the example ϕ(z) = (1 − z)−1, where

un(z) = (2n!)
n! (1 − z)−2n−1.
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By Cauchy’s integral formula, for any r > 0 such that {|z| ≤ r} ⊂
D, we have the following estimate for {un(z)}∞n=0 by taking some positive

constants A and B,

max
|z|≤r

|un(z)| ≤ ABnn!, for all n = 0, 1, 2, . . . .(0.3)

Such a formal power series is called Gevrey of order one in the vari-

able τ .

In the one variable case of ordinary differential equations, after the

fundamental work of J. Ecalle, great progress has been made in the the-

ory of summability for Gevrey type power series by many authors. As an

application, they proved that every formal solution of an analytic ordinary

differential equation is multi-summable (cf. [Ram 1], [Mal], [Bal] and refer-

ences cited there).

For partial differential equations, a corresponding theory has been slow-

er to develop. See recent work by [Ger-Tah], [Miy 2], [Miy 3], [Miy-Has],

[Miy-Yos 1], [Yon] on the Gevrey properties of formal solutions and by

S. Ōuchi [Ōuc] on an asymptotic interpretation of formal solutions. Our

purpose in this paper is to improve the asymptotic results by discussing the

summation of formal solutions and under which conditions this is possible

or not possible. While some of the results could possibly be extended to

more general differential equations, we choose to consider only the heat

equation since in this simple case we obtain both necessary and sufficient

conditions.

It is natural to ask the following questions about the formal solution

û(τ, z) constructed above:

[1] under what conditions on ϕ(z) does the formal solution (0.2) con-

verge?

[2] if (0.2) diverges, is it an asymptotic expansion of actual solutions as

τ → 0 in sectorial domains?

[3] if asymptotic solutions exist, when are they unique and how can

they be constructed?

As regards question [1], an easy way to get a sufficient condition for

(0.2) to converges is to assume the Cauchy data ϕ(z) satisfy the following

inequalities for some positive constants r, C and D

max
|z|≤r

|ϕ(n)(z)| ≤ CDn(n!)1/2, for all n = 0, 1, 2, . . . .(0.4)
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This condition is equivalent to assuming ϕ(z) to be an entire function of

exponential order at most 2, that is, the following inequality holds for some

positive constants E and δ,

|ϕ(z)| ≤ Eeδ|z|
2

, z ∈ C(0.5)

It is remarkable that S. Kowalevskaya already proved in her histori-

cal paper on the Cauchy problem for analytic partial differential equations

published in 1875 that these conditions are also necessary for the conver-

gence of the formal solution (0.2) ([Kow], see also [Pic]). Thus we know

a complete answer to the question [1]. Kowalevskaya’s result tells us that

there can not exist any locally analytic solutions of the heat equation in the

variable z. Precisely, they should be entire functions in the z variable with

an exponential growth condition of order at most 2.

On the question [2], S. Ōuchi studied divergent formal solutions of

the characteristic Cauchy problem for partial differential equations, and

under fairly general conditions for the operators he proved that the formal

solutions are asymptotic expansions (in the sense of Poincaré) of actual

solutions as τ → 0 in sectorial domains with small opening angle ([Ōuc]).

In this sense, we have a satisfactory answer to the question [2].

His result is stated as follows in our case:

Let S be a sectorial domain of opening angle α less than π with the

origin as its vertex (the radius is assumed to be small). Then there exists

an analytic solution u(τ, z) of the heat equation defined on S × {|z| ≤ r}
for small r > 0 whose asymptotic expansion (in the sense of Poincaré) as

S 3 τ → 0 is û(τ, z), i.e., satisfying

max
|z|≤r

∣

∣

∣

∣

u(τ, z) −
N
∑

n=0

un(z)τn

∣

∣

∣

∣

= o(|τ |N ), as τ → 0 (τ ∈ S)(0.6)

for all N = 0, 1, 2, . . . .

Unfortunately, there are infinitely many such actual solutions with

û(τ, z) as their asymptotic expansion in any sector of opening angle less

than π (see Example in Section 2).

Our main interest in this paper concerns answers to question [3] in the

cases where the angle opening α of an “asymptotic sector” is at least π.

Here, the concepts of Borel summability and fine Borel summability are

important.
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Postponing the exact definitions in our situation to the next section,

we state our main results as follows:

(A) The formal solution û(τ, z) is Borel summable to an actual solution

in a sector of the complex τ -plane in the direction θ and of opening angle

α > π if and only if the Cauchy data ϕ(z) is analytic in a domain containing

a double cone

D(θ, α) = S

(

θ

2
,
α− π

2
,∞
)

∪ S
(

π +
θ

2
,
α− π

2
,∞
)

and has at most exponential growth order two as |z| → ∞ there.

(B) the formal solution û(τ, z) is finely Borel summable in a direction

θ, if and only if the Cauchy data ϕ(z) is analytic in a strip

Ω

(

θ

2
, ω

)

= {z ∈ C | dist(z, eiθ/2
R) < ω}

for some ω > 0 and has at most exponential growth order two as |z| → 0

there.

It follows from our results, that just the local analyticity of the Cauchy

data is insufficient for either Borel summability or fine Borel summability,

to hold even though these are in some sense locally defined concepts. This

is somewhat surprising, but also to be expected in view of Kowalevskaya’s

result.

In Section 1, we shall give a summary of the theory of Gevrey asymp-

totic expansions and Borel summability without proofs, since they are es-

sentially the same as in the one variable case. The most important idea here

is a transfer principle between the Borel summability of û and properties

of its Borel associated function.

In Section 2, we shall give a refined form of Ōuchi’s result for the case

of Gevrey asymptotic expansion in sectors of opening angle less than π.

In Section 3, we shall prove the main theorems and give more precise

properties for the fine Borel sum of the formal solution. As a corollary

we shall give a characterization of Borel summability in sectors of opening

angle larger than π, where we shall meet again Kowalevskaya’s result if we

ask for the validly of the asymptotic expansion of the Borel sum in sectors

with opening angle larger than 3π. The main results follow from a complete

correspondance between the properties of the Borel associated function and

the Cauchy data.
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In Section 4, we apply the result to convergence of factorial series expan-

sions for the fine Borel sum, and give a recursion formula for the coefficients

of a factorial series expansion.

In Section 5, we shall present new derivations of the heat kernel by using

the Borel sum of the formal solution with the Cauchy data ϕ(z) = 1/z.

Acknowledgements. The authors first discussed problems of this

type for the heat equation during their stay at the I.R.M.A., Université

Louis Pasteur, Strasbourg in June of 1993 and wish to give special thanks

to Professor Raymond Gérard for making this possible.

§1. Summary of Gevrey asymptotic expansions

We summarize the fundamentals on Gevrey asymptotic expansions and

the Borel summability for Gevrey type formal power series without the

proofs, since they are essentially the same with one variable case studied by

many authors (see, [Ram 2], [Mal], [Bal]). In fact, the only difference with

them is that we consider the formal power series over the ring of analytic

functions, not over just the complex numbers.

1.1. Formal power series

O(r) is the ring of analytic functions on B(r) := {z ∈ C | |z| ≤ r}.
O(r)[[τ ]] is the ring of formal power series in τ over the ring O(r), and we

define O[[τ ]] by

O[[τ ]] :=
⋃

r>0

O(r)[[τ ]].(1.1)

An element û(τ, z) ∈ O[[τ ]] is written as

û(τ, z) =

∞
∑

n=0

un(z)τn, un(z) ∈ O(r) for some r > 0.(1.2)

1.2. 1-Gevrey formal power series

O(r)[[τ ]]1, which is called of class Gevrey one or 1-Gevrey for short, is

the subring of O(r)[[τ ]] whose coefficient satisfy the following inequalities

for some positive constants C and K,

max
|z|≤r

|un(z)| ≤ CKnn!, for n = 0, 1, 2, . . . .(1.3)

Also we define O[[τ ]]1 by

O[[τ ]]1 :=
⋃

r>0

O(r)[[τ ]]1.(1.4)
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1.3.

For θ ∈ R, α > 0 and 0 < T ≤ +∞, we denote by S(θ, α;T ) a sectorial

domain defined by

S(θ, α;T ) := {τ ∈ C | |arg(τ) − θ| < α/2, 0 < |r| < T}.(1.5)

Here θ, α and T are called the direction, opening angle, and radius of the

sectorial domain S(θ, α;T ), respectively. If the radius T is not so important

to identify, we will sometimes suppress it and denote the sector by S(θ, α)

for simplicity. A sectorial domain S′ is called a proper subsector of S(θ, α;T )

if its closure is contained in S(θ, α;T ) ∪ {0}.
1.4. Gevrey asymptotic expansion

Let u(τ, z) be analytic on
⋂

α′<α S(θ, α′) × B(r(α′)), where r(α′) may

tend to 0 as α′ → α. Then û(τ, z) ∈ O[[t]]1 is called a Gevrey asymptotic

expansion of u(τ, z) as τ → 0 in S(θ, α) or shortly in S(θ, α) if for any

proper subsector S′ ⊂ S(θ, α;T ) (with sufficiently small radius), there exist

positive constants C,K and 0 < r1 < r such that û(τ, z) ∈ O(r1)[[τ ]]1 and

max
|z|≤r1

∣

∣

∣

∣

u(τ, z) −
N−1
∑

n=0

un(z)τn

∣

∣

∣

∣

≤ CKNN !|τ |N ,(1.6)

τ ∈ S′, N = 1, 2, 3, . . . .

This relation is denoted by

u(τ, z) ∼1 û(τ, z), in S(θ, α).(1.7)

An analytic function u(τ, z) is said to be Gevrey asymptotic expandable

in S(θ, α) if it has a Gevrey asymptotic expansion û(τ, z) ∈ O[[τ ]]1.

Let us denote by A(1)(S(θ, α)) the set of analytic functions which are

Gevrey asymptotic expandable in S(θ, α). We define a mapping J (1) by

J (1) : A(1)(S(θ, α)) −→ O[[τ ]]1,(1.8)

where J (1)(u(τ, z)) = û(τ, z) is the Gevrey asymptotic expansion û(τ, z) of

u(τ, z).

Now the following result is known as an analogue of Borel-Ritt’s theo-

rem for Gevrey asymptotic expansions (cf. [Ram 2], [Mal], [Bal]).

Theorem 1.1. (1) The mapping J (1) defined by (1.8) is surjective but

is not injective for any θ ∈ R and α with α ≤ π.

(2) For any α with α > π, the mapping J (1) is not surjective but is

injective for any θ ∈ R.
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1.5. Formal Borel transform

To get an element u(τ, z) ∈ (J (1))−1(û) for û ∈ O[[τ ]]1, an effective way

is to introduce the formal Borel transform v(s, z) of û(τ, z) defined by

v(s, z) :=

∞
∑

n=0

un(z)
sn

n!
.(1.9)

By the definition of O[[τ ]]1, v(s, z) is analytic in a neighborhood of the origin

(s, z) = (0, 0), and so we assume that it is analytic on {|s| < r} × {|z| < r}
(∃r > 0). Now for any θ ∈ R, we fix a positive constant ρ such that 0 < ρ <

r, and we define

u(θ,ρ)(τ, z) :=
1

τ

∫ ρeiθ

0
e−s/τv(s, z)ds, |arg(τ) − θ| < π/2.(1.10)

Then it can be proved ([Bal]) that J (1)(u(θ,ρ)(τ, z)) = û(τ, z) in S(θ, π).

Here, the arbitrariness of ρ shows the non uniqueness of functions u(τ, z)

such that J (1)(u) = û in S(θ, π).

1.6. Borel summability

According to the assertion (2) of theorem 1.1, we know that if the

opening angle of a sector S is larger than π, for û(τ, z) ∈ J (1)(A(1)(S)),

u(τ, z) ∈ A(1)(S) such that J (1)(u) = û is unique. This u(τ, z) is called the

Borel sum of û(τ, z), and û(τ, z) is said to be Borel summable in S. The

Borel summability of û(τ, z) ∈ O[[τ ]]1 can be characterized (with respect

to its formal Borel transform) as follows:

Theorem 1.2. A formal series û(τ, z) ∈ O[[τ ]]1 is Borel summable

in S(θ, α) (α > π) if and only if its Borel transform v(s, z) is analytic in

S(θ, α−π;∞)×B(r) and satisfies a growth condition of exponential type as

s→ ∞ in S(θ, α−π;∞), i.e., for any proper subsector S′ ⊂ S(θ, α−π;∞)

of infinite radius there exists 0 < r1 < r such that

max
|z|≤r1

|v(s, z)| ≤ Ceδ|s|, s ∈ S′(1.11)

for some constants C and δ. Finally, the Borel sum (J (1))−1(û) in S(θ, α)

is represented by the Laplace integral,

uϕ(τ, z) =
1

τ

∫ ∞eiϕ

0
e−s/τv(s, z) ds,(1.12)

where the integration in taken over the ray eiϕR+ = {reiϕ | r ≥ 0} (R+ :=

[0,∞)) for ϕ such that |ϕ− θ| < α− π.
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1.7. Fine Borel summability

In the definition of Gevrey asymptotic expansion (1.6), we always take

a proper subsector S′ ⊂ S(θ, α). In the case of crucial value of α = π, F.

Nevanlinna [Nev] have gave a refined form of asymptotic expansion which

corresponds to taking open disks instead of subsectors as follows. For θ ∈ R

and T > 0 we define an open disk O(θ, T ) by

O(θ, T ) := {τ ∈ C | |τ − Teiθ| < T}.(1.13)

Then we say that û(τ, z) ∈ O[[τ ]]1 is finely Borel summable in a di-

rection θ if there exists an analytic function u(τ, z) in O(θ, T ) × B(r)

(∃T,∃ r > 0) such that for some 0 < T ′ < T the following inequalities

max
|z|≤r

∣

∣

∣

∣

u(τ, z) −
N−1
∑

n=0

un(z)τn

∣

∣

∣

∣

≤ CKNN !|τ |N ,(1.14)

N = 1, 2, 3, . . . ; τ ∈ O(θ, T ′)

hold for some positive constants C and K. This relation is denoted by

u(τ, z) ∼1 û(τ, z), finely in the direction θ.(1.15)

For a modern treatment of fine Borel summability, see Malgrange [Mal].

As in the Borel summable case, it is proved that if u(τ, z) ∼1 0 finely

in θ we have u(τ, z) ≡ 0 ([Mal]). Hence for û(τ, z) ∈ O[[τ ]]1, if there exists

u(τ, z) such that the relation (1.15) holds, it is called the fine Borel sum in

θ direction of û(τ, z) (see [Mal]).

To characterize the fine Borel summability we need to define a set

E+(θ, w) by

E+(θ, w) := {s ∈ C | dist(s, eiθR+) < w}.(1.16)

Now the fine summability is characterized as follows.

Theorem 1.3. The formal power series û(τ, z) ∈ O[[τ ]]1 is fine Borel

summable in a direction θ if and only if its formal Borel transform v(s, z)

is analytic on E+(θ, w) × B(r) for some w > 0 and r > 0, and satisfies a

growth condition of exponential type as s→ ∞ in E+(θ, w), that is,

max
|z|≤r

|v(s, z)| ≤ Ceδ|s|, s ∈ E+(θ, w).(1.17)

The fine Borel sum uθ(τ, z) in the direction θ of û(τ, z) is obtained by the

expression (1.12).

For the proof, see Malgrange [Mal].
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1.8. Functions satisfying J (1)(u) = 0

The following criterion for analytic functions with 0 Gevrey asymptotic

expansion is used in the following sections.

Proposition 1.4. In order that u(τ, z) ∼1 0 in S(θ, α) it is necessary

and sufficient that for any proper subsector S′ ⊂ S(θ, α) there exist positive

constants r1, C and δ such that

max
|z|≤r1

|u(τ, z)| ≤ Ce−δ/|τ |, τ ∈ S′.(1.18)

In the case of fine summability in a direction θ, S′ should be replaced by

O(θ, T ) for some T > 0, and the ineqiality implies that u ≡ 0 by Watson’s

lemma (cf. [Mal]).

§2. Existence of actual solutions in small sectors

By Theorem 1.1 we know that the mapping J (1) : A(S(θ, α)) → O[[τ ]]1
is surjective whenever α ≤ π for any θ ∈ R. Corresponding to this result

we can prove the similar result for the formal solution (0.2) of the Cauchy

problem (0.1) which is the Gevrey version of Ōuchi’s result stated in the

Introduction.

Theorem 2.1. Let û(τ, z) be the formal solution (0.2) where ϕ(z) is

assumed to be just analytic at 0. Then for any θ ∈ R and any α with

0 < α ≤ π, there exists an actual solution u(τ, z) of the heat equation such

that u(τ, z) ∼1 û(τ, z) in S(θ, α). Moreover, there are infinitely many such

solutions.

Let û(τ, z) be the formal solution (0.2). By Theorem 1.1, there exists

u(τ, z) analytic on S(θ, π;T ) × B(r) such that u(τ, z) ∼1 û(τ, z) in S(θ, π)

by taking small T and r. Then it holds that

∂

∂τ
u(τ, z) − ∂2

∂z2
u(τ, z) =

put
f(τ, z) ∼1 0 in S(θ, π).

Now the first part of Theorem 2.1 is an immediate consequence of the

following.

Lemma 2.2. Let f(τ, z) ∼1 0 in S(θ, α) with α ≤ π. Then for any

ψi(τ) ∼1 0 in S(θ, α) (i = 0, 1), the Cauchy problem

∂2

∂z2
w(τ, z) − ∂

∂τ
w(τ, z) = f(τ, z),

∂iw

∂zi
(τ, 0) = ψi(τ) (i = 0, 1),(2.1)

has a unique solution w(τ, z) satisfying w(τ, z) ∼1 0 in S(θ, α).
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Proof. By changing the unknown function w(τ, z) by w(τ, z)−ψ0(τ)−
ψ1(τ)z, we may assume that ψi(τ) ≡ 0 (i = 0, 1) for the Cauchy data. For

any β with 0 < β < α, by taking small T and r, we may assume that

f(τ, z) is analytic on S(θ, β;T ) × B(r). Then the unique existence of an

analytic solution w(τ, z) on S(θ, β;T ) × B(r) is known from the general

theory (cf. M. Miyake [Miy 2, theorem 3.1]). Therefore we have to prove

that w(τ, z) ∼1 0 in S(θ, β). From Proposition 1.4, it is sufficient to prove

that for any positive constant α′ with α′ < β, there exists a positive constant

r1 such that

max
|z|≤r1

|w(τ, z)| ≤ Ce−δ/|τ |, τ ∈ S(θ, α′)(2.2)

holds for some positive constants C and δ.

Since f(τ, z) ∼1 0 in S(θ, α) we may assume

max
|z|≤r

|f(τ, z)| ≤ Ae−c/|τ |, τ ∈ S(θ, β) (because β < α),(2.3)

for some positive constants A and c. For simplicity in the proof below, we

assume that the direction θ = 0 without loss of generality. Let

f(τ, z) =

∞
∑

n=0

fn(τ)
zn

n!
(2.4)

be the Taylor expansion of f(τ, z). Then an easy calculation shows the

following Taylor expansion for w(τ, z),

w(τ, z) =

∞
∑

n=1

z2n

(2n)!

(

n
∑

k=1

dk−1

dτk−1
f2(n−k)(τ)

)

+

∞
∑

n=1

z2n+1

(2n+ 1)!

(

n
∑

k=1

dk−1

dτk−1
f2(n−k)+1(τ)

)

(2.5)

=
put

w+(τ, z) + w−(τ, z).

In order to prove the estimate (2.2) for w(τ, z), it is sufficient to consider

the part w+(τ, z), since the other part is similar.

We choose and fix a positive constant ε satisfying α′ + ε < β. For τ ∈
S(0, α′;T/2), we choose a closed curve Γτ,ε := ∂{S(0, α′ + ε; 2|τ |)\S(0, α′ +
ε; |τ |/2)}, where ∂Ω denotes the boundary of domain Ω. Then for τ ∈
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S(0, α′;T/2) Cauchy’s integral formula implies

dk−1

dτk−1
f2(n−k)(τ) =

{2(n− k)}!(k − 1)!

(2πi)2

∮

Γτ,ε

dζ

(ζ − τ)k

∮

|z|=r0

f(ζ, z)

z2(n−k)+1
dz,

where r0 < r/2 is fixed, but arbitrary.

By the restriction of τ in S(0, α′;T/2) and the definition of Γτ,ε, there

is a positive constant c > 0 depending only on ε such that

|τ |/2 ≤ |ζ| ≤ 2|τ | and c|τ | ≤ |ζ − τ | for all ζ ∈ Γτ,ε.

Therefore, from the estimate (2.3) we got

∣

∣

∣

∣

dk−1

dτk−1
f2(n−k)(τ)

∣

∣

∣

∣

≤ C

r2n
0

r2n
0

ck
{2(n − k)}!(k − 1)!

e−δ/|τ |

|τ |k−1
,(2.6)

for some positive constants C and δ. By using {2(n − k)!}!(k − 1)! ≤
(2n)!/(k − 1)!, (2.5) yields

|w+(τ, z)| ≤ C
r20
c

∞
∑

n=1

|z|2n

r2n
0

exp(−(δ − r20/c)/|τ |).

Therefore, if r0 is sufficiently small and |z| < r0, the sum converges and w+

is exponentially small. This completes the proof.

To end the proof of Theorem 2.1, we remark that the existence of

infinitely many actual solutions is shown as follows. For the formal solution

û(τ, z) we know that there are infinitely many u(τ, z) such that u(τ, z) ∼1

û(τ, z) in S(θ, π) by the expression (1.10). Also the arbitrariness of ψi(τ)

(i = 1, 2) in the Cauchy problem (2.1) shows the existence of infinitely

many actual solutions. In order to see such solutions directly, the following

example is useful.

Example 2.1. Let

un(τ, z) =
1√
τ

exp

(

−(z − neiθ/2)2

4τ

)

, |z| ≤ 1

be a sequence of analytic solutions of the heat equation. For a given sector

S(θ, α) (α < π), we choose N such that Re{(z − Neiθ/2)2/4τ} > 0 for

|z| ≤ 1, τ ∈ S(θ, α). Then un(τ, z) ∼1 0 in S(θ, α) for any n ≥ N .
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§3. Fine Borel summability – Proof of main results

We first remark that if the formal solution û(τ, z) is finely Borel summ-

able in a direction θ, then its fine Borel sum uθ(τ, z) is an actual analytic

solution of the heat equation. Indeed,

∂

∂τ
uθ(τ, z) − ∂2

∂z2
uθ(τ, z) ∼1 0, finely in the direction θ

implies the assertion (cf. §1.7).

Now our main result (B) is an immediate consequence of the following

theorem in view of Theorem 1.3.

Main Theorem 3.1. Let v(s, z) be the formal Borel transform of the

formal solution û(τ, z) given by (0.2). Then the following two statements

are equivalent:

(i) v(s, z) is analytic on E+(θ, w) × B(r) for some positive constants

w and r, and satisfies the exponential type growth condition as s → ∞ in

E+(θ;w). Here

E+(θ, w) = {s ∈ C | dist(s, eiθR+) < w}.

(ii) The Cauchy data ϕ(z) is analytic on Ω(θ/2, ω) for some positive

constant ω, and satisfies the growth condition of exponential order at most 2

as z → ∞ in Ω(θ/2, ω). Here

Ω(θ/2, ω) = {z ∈ C | dist(z, eiθR) < ω}.

Remark 3.1. The proof below shows that v(s, z) is actually analytic on

E+(θ, w′)×Ω(θ/2, ω′) for small w′ and ω′, and satisfies the growth condition

|v(s, z)| ≤ CeA|s|+B|z|2 on E+(θ, w′) × Ω(θ/2, ω′)

for some positive constants A, B and C. This implies that the Borel sum

uθ(τ, z) in the direction θ, which is given by (1.12), is analytic on O(θ, T )×
Ω(θ/2, ω′′) for some positive constants T and ω′′. More precise properties

will be given after the proof of this theorem.

Proof of (ii) ⇒ (i). Suppose that the Cauchy data ϕ(z) satisfies the

conditions in (ii). We take a positive constant r so that B(2r) ⊂ Ω(θ/2, ω).



BOREL SUMMABILITY OF DIVERGENT SOLUTIONS 13

Then, by the definition of the formal Borel transform, we have for z ∈ B(r)

v(s, z) =

∞
∑

n=0

ϕ(2n)(z)
sn

(n!)2

=
∞
∑

n=0

sn

(n!)2
(2n)!

2πi

∮

|ζ|=r

ϕ(ζ + z)

ζ2n+1
dζ

=
1

2πi

∮

|ζ|=r

∞
∑

n=0

(2n)!

(n!)2
sn

ζ2n+1
ϕ(ζ + z) dζ.

Since
∑∞

n=0 ξ
n(2n)!/(n!)2 = 1/

√
1 − 4ξ (|ξ| < 1/4), we have

1

ζ

∞
∑

n=0

(2n)!

(n!)2
sn

ζ2n
=

1
√

ζ2 − 4s
, 4|s| < |ζ|2,

where
√

ζ2 := ζ for s = 0. Hence we have

v(s, z) =
1

2πi

∮

|ζ|=r

ϕ(ζ + z)
√

ζ2 − 4s
dζ, |s| < r2/4, |z| < r.(3.1)

Since
√

ζ2 − 4s (s 6= 0) is univalent in ζ-plane outside a segment joining

two points {±2
√
s}, we can deform the contour of integration into any

simple, piecewise smooth curve Γ surrounding this segment such that z+Γ

is contained in Ω(θ/2, ω), the domain of holomorphy of ϕ(ζ).

We take a small positive constant w such that E+(θ, w) ⊂ {z2/4 | z ∈
Ω(θ/2, ω/3)}. By the definition, ±2

√
s ∈ Ω(θ/2, ω/3) for any s ∈ E+(θ, w).

Therefore w can deform the contour in (3.1) to a rectangle Γ consist-

ing of the boundary of Ω(θ/2, ω/2) by cutting it off at |Re(ζe−iθ/2)| =

2|s|1/2 + 1. By this choice of Γ, we see that v(s, z) can be contined ana-

lytically on E+(θ, w) × Ω(θ/2, ω/3), because z + Γ ⊂ Ω(θ/2, 5ω/6) for any

z ∈ Ω(θ/2, ω/3).

Here we recall the growth condition for ϕ(z) that |ϕ(z)| ≤ C exp(δ|z|2),
(z ∈ Ω(θ/2, ω)) for some positive constants C and δ. Then the above choice

of the contour Γ implies the following growth estimate for v(s, z),

|v(s, z)| ≤ C ′eA|s|+B|z|2, (s, z) ∈ E+(θ, w) × Ω(θ/2, ω/3).(3.2)

for some positive constants C ′, A and B. In fact, it is sufficient to notice

the following inequalities for ζ ∈ Γ and s ∈ E+(θ, w),

|z + ζ| ≤ |z| + 2|s|1/2 + 1, |ζ2 − 4s| ≥ ω/6.
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Proof of (i) ⇒ (ii). The formal Borel transform v(s, z) of the formal

solution û(τ, z) is assumed to be analytic on E+(θ, w)×B(r), and max|z|≤r

|v(s, z)| is assumed to satisfy the growth condition of exponential type as

s→ ∞ in E+(θ, w).

First, we remark that v(s, z) satisfies the following Fuchs type partial

differential equation,
(

∂

∂s
s
∂

∂s

)

v(s, z) =
∂2

∂z2
v(s, z).(3.3)

In fact, this is deduced from the following commutative diagram;

∑

n≥0 unτ
n

Borel tr.
−−−−−−−→

∑

n≥0 uns
n/n!

d/dτ







y







y

(d/ds)s(d/ds)

∑

n≥1 nunτ
n−1 −−−−−−−→

Borel tr.

∑

n≥1 nuns
n−1/(n− 1)!

(3.4)

Now we regard v(s, z) as a solution of the Cauchy problem to the equa-

tion (3.3) with data v(s, z0) and vz(s, z0) at z = z0.

v(s, z0) = ψ0(s),
∂v

∂z
(s, z0) = ψ1(s).(3.5)

For simplicity, we put Then by the assumption on v(s, z), ψi(s) (i = 0, 1)

are analytic on E+(θ, w), and satisfy the exponential type growth condition

on the domain.

Here we introduce a bell type domain ∆(θ/2, w) in z-plane, defined by

∆(θ/2, w) := {z ∈ C | z2/4 ∈ E+(θ, w)}(3.6)

which contains the line eiθ/2
R and shrinks to this line as z → ∞.

s z
eiθR+

eiθ/2
R+

E+(θ; δ) ∆(θ/2; δ)
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We shall prove that if we take small r′, then for the solution v(s, z) of

the Cauchy problem (3.3)–(3.5) with z0 ∈ B(r′), v(0, z) (= ϕ(z)) can be

continued analytically on z0 + ∆(θ/2, w/2), and satisfies the growth condi-

tion of exponential order at most 2 on the domain. If this will be proved,

the assertion (i) follows from the fact that
⋃

z0∈B(R′){z0 + ∆(θ/2, w/2)}
contains Ω(θ/2, ω) for small ω > 0.

To prove the above assertion, we may assume ψ0(s) ≡ 0 without loss

of generality, and we write ψ1(s) by ψ(s). Then the solution v(s, z) of the

Cauchy problem (3.3)–(3.5) has the following expansion in a neighborhood

of z0,

v(s, z) =

∞
∑

n=0

(

∂

∂s
s
∂

∂s

)n

ψ(s)
(z − z0)

2n+1

(2n+ 1)!
.

Since
(

∂

∂s
s
∂

∂s

)n

ψ(0) = n!ψ(n)(0),

We get the following integral expression of v(0, z) in a neighborhood of z0.

v(0, z) =

∞
∑

n=0

ψ(n)(0)
n!

(2n + 1)!
(z − z0)

2n+1

=
1

2πi

∞
∑

n=0

∮

|σ|=w

n!n!

(2n+ 1)!

(z − z0)
2n+1

σn+1
ψ(σ) dσ(3.7)

=
z − z0
2πi

∮

|σ|=w
2F1

(

1, 1;
3

2
;
(z − z0)

2

4σ

)

ψ(σ)

σ
dσ,

(|z − z0|2/4 < w)

where 2F1 is the Gauss hypergeometric function which is given by

2F1(α, β; γ; ζ) =
∞
∑

n=0

(α)n(β)n
(γ)n

ζn

n!
, for |ζ| < 1

where (α)n := α(α+ 1) · · · (α+ n− 1) (n ≥ 1) and (α)0 := 1 for α ∈ C and

continued analytically to C\[1,∞).

Since 2F1(1, 1; 3/2; ζ) has possible singular points {1,∞} of regular sin-

gular type, it therefore satisfies a growth condition of polynomial type as

ζ → 1 and ζ → ∞ in any sector with finite opening angle. Now we restrict
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z0 in |z0| < 2
√
w so that v(0, z) is defined at z = 0 in the expression (3.7).

By the definition of the domain ∆(θ/2, w/2), we have

inf{dist((z − z0)
2/4, ∂E+(θ, w)) | z ∈ z0 + ∆(θ/2, w/2)} = w/2.

From the expression (3.7), we already know that v(0, z) is defined for z

such that |z − z0|2/4 ≤ w/2, and such points z belong to z0 + ∆(θ/2, w/2).

In the integral expression (3.7), for z ∈ z0 +∆(θ/2, w/2) we deform the

contour to a simple closed curve Γ consisting of ∂E+(θ, w) by cutting at

Re(σe−iθ) = |z|2 + 1. Then we see that v(0, z) can be continued to z = ∞
in z0 + ∆(θ/2, w/2). Finally, we can easily see that v(0, z) has the growth

condition of exponential order at most 2 in the mentioned domain, from

the new integral expression for v(0, z) and the growth condition for ψ(s).

This completes the proof.

As a corollary to the Main Theorem, we can characterize Cauchy data

with Borel summable formal solutions in sectors of opening angle larger

than π as follows.

Theorem 3.2. The formal solution û(τ, z) is Borel summable in a

sector S(θ, α) with α > π if and only if the Cauchy data ϕ(z) can be

continued analytically in a domain consisting a two sided infinite sector

D(θ, α) := S(θ/2, (α − π)/2;∞) ∪ S(π + (θ/2), (α − π)/2;∞) and satisfies

the growth condition of exponential order at most 2 as z → ∞ in D(θ, α′)
for any α′ < α, i.e.,

|ϕ(z)| ≤ Ceδ|z|
2

, x ∈ D(θ, α′),

where C and δ may depend upon α′.
Hence the formal solution û(τ, z) is Borel summable in a sector with

an opening angle larger than 3π if and only if ϕ(z) is an entire func-

tion of exponential order at most 2, which is nothing but the condition of

Kowalevskaya’s result stated in Introduction.

Proof. First notice that if the formal solution û(τ, z) is Borel summable

in S(θ, α), where α > π, then it is finely Borel summable in each direction η

with |η− θ| < (α′ − π)/2 for any α′ < α. This proves the “if” part. Next, if

the Cauchy data ϕ(z) satisfies the above condition then it is easily seen that

the formal Borel transform v(s, z) satisfies the growth condition as s→ ∞
in S(θ, α′ − π) for any α′ < α as in the proof of theorem 3.1. Hence by
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theorem 1.2, the formal solution is Borel summable in S(θ, α). This proves

the theorem.

Example 3.1. (Example of a just finely summable case) Let ϕ(z) =

eiz
3

or sin z3. Then it is easily verified that ϕ(z) satisfies the growth con-

dition of exponential order 2 in Ω(0, ω) for any fixed ω > 0, but the same

growth condition never holds in any sector S(0, α;∞), (α > 0). By taking

this ϕ(z) as a Cauchy data, we have an example of formal solution û(τ, z)

which is finely Borel summable in 0-direction but is not Borel summable in

a sectorial domain of opening angle larger than π.

Next we shall give an improvement of Gevrey asymptotic estimates and

an integral expression of the fine Borel sum.

Theorem 3.3. Let suppose the formal solution û(τ, z)=
∑∞

n=0un(z)τn

to be finely Borel summable in a direction θ with Cauchy data u0(z) = ϕ(z),

and uθ(τ, z) be its fine sum defined on O(θ, T ) × Ω(θ/2, ω). Then we have:

(i) (Gevrey asymptotic estimates) For some T ′ < T , ω′ < ω, there exist

positive constants C, K and δ such that the following asymptotic estimates

hold.

∣

∣

∣

∣

uθ(τ, z) −
N−1
∑

n=0

un(z)τn

∣

∣

∣

∣

≤ CKNN !eδ|z|
2 |τ |N ,(3.8)

(τ, z) ∈ O(θ, T ′) × Ω(θ/2, ω′)

for all N = 1, 2, 3, . . . .

(ii) (integral expression) The fine Borel sum uθ(τ, z) has the following

integral expression involving the heat kernel, e−ζ2/(4τ)/
√

4πτ .

uθ(τ, z) =
1√
4πτ

∫ ∞eiθ/2

−∞eiθ/2

e−ζ2/(4τ)ϕ(z + ζ)dζ.(3.9)

Proof of (i). By Theorem 3.1, the Cauchy data ϕ(z) is analytic on

Ω(θ/2, w) for some positive constant w, and satisfies there a growth con-

dition of exponential order at most 2. We recall that the fine Borel sum

uθ(τ, z) has an integral expression (cf. (1.12)),

uθ(τ, z) =
1

τ

∫ ∞eiθ

0
e−s/τv(s, z)ds,(3.10)
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where v(s, z) is the formal Borel transform of û(τ, z), and satisfies (from

(3.2)) the following inequality

|v(s, z)| ≤ CeA|s|+B|z|2, (s, z) ∈ E+(θ, w′) × Ω(θ/2, ω′)

for some positive constants A, B, C, w′ and ω′.
∣

∣

∣

∣

∂nv

∂sn
(s, z)

∣

∣

∣

∣

≤ C ′Knn!eA|s|+B|z|2,(3.11)

(s, z) ∈ E+(θ, w′′) × Ω(θ/2, ω′)

Hence by Cauchy’s integral formula for any w′′ < w′ for suitable positive

constants C ′ and K.

Now by the repeated use of integration by parts in (3.10), we have

uθ(τ, z) −
N−1
∑

n=0

un(z)τn = uN (z)τN + τN

∫ ∞eiθ

o
e−s/τ ∂

N+1

∂sN+1
v(s, z) ds,

for τ such that Re(eiθ/τ) > 2A, and z ∈ Ω(θ/2, ω′). Here, un(z) = (∂nv/∂sn)(0, z).

By restricting τ as above, the integral part in the above equality is

estimated by

C ′|τ |NKN (N + 1)!eB|z|2
∫ ∞

0
e−Ardr = C ′A−1|τ |NKN (N + 1)!eB|z|2

≤ C ′′K ′NN !eB|z|2 |τ |N

for some positive constants C ′′ and K ′. Here we notice that {τ | Re(eiθ/τ) >

2A} = {τ | |τ − eiθ/A| < 1/A} = O(θ, 1/A). Combining the results above,

we have the desired asymptotic estimates (3.8).

Proof of (ii). First we recall the integral expression of v(s, z) given

by (3.1),

v(s, z) =
1

2πi

∫

Γ

ϕ(z + ζ)
√

ζ2 − 4s
dζ,

where Γ is any simple closed piecewise smooth curve surrounding the seg-

ment joining two points {±2
√
s} (s 6= 0). We restrict s to the ray {reiθ |

r ≥ 0}, and put
√
s :=

√
reiθ/2.

Let r > 0 and ζ = ξ + iη, where |ξ| < 2
√
r. Then by noticing

√

(ξ + i0)2 − 4r = i
√

4r − ξ2,
√

(ξ − i0)2 − 4r = −i
√

4r − ξ2,
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we have

v(s, z) = v(reiθ, z) =
1

π

∫ 2
√

r

−2
√

r

ϕ(z + ξeiθ/2)
√

4r − ξ2
dξ, r > 0.

Then by substituting this into (3.10), we have

uθ(τ, z) =
eiθ

πτ

∫ ∞

0
exp
(

−e
iθ

τ
r
)

dr

∫ 2
√

2

−2
√

r

ϕ(z + ξeiθ/2)
√

4r − ξ2
dξ

=
eiθ/2

πτ

∫ ∞

−∞
ϕ(z + ξeiθ/2) d(ξeiθ/2)

∫ ∞

ξ2/4
exp
(

−e
iθ

τ
r
) dr
√

4r − ξ2
.

Now the desired integral expression (3.9) is a consequence of the

∫ ∞

ξ2/4
exp
(

−e
iθ

τ
r
) dr
√

4r − ξ2

(

x =
√

4r − ξ2
)

=
1

2
exp
(

−(ξeiθ/2)2

4τ

)

∫ ∞

0
exp
(

−e
iθ

4τ
x2
)

dx
(

y = xeiθ/2/(2
√
τ)
)

= e−iθ/2

√
πτ

2
exp
(

−(ξeiθ/2)2

4τ

)

.

following calculations. This completes the proof.

§4. Factorial series expansion

In this section, we shall give a factorial series expansion for the Borel

sum uθ(τ, z) of û(τ, z) in the θ direction,

uθ(τ, z) =
1

τ

∫ ∞(θ)

0
e−s/τv(s, z) ds,(4.1)

where v(s, z) is the formal Borel transform of û(τ, z) and is assumed to be

analytic on E+(θ, w) ×B(r) and satisfy the growth condition,

max
z∈B(r)

|v(s, z)| ≤ CeA|s|, s ∈ E+(θ, w).(4.2)

Although we restrict the variable z in B(r) for the simplicity, the results

will hold for z ∈ Ω(θ/2, ω) by using the asymptotic estimate (3.8).

First we give a formal procedure to get the factorial series expansion

of uθ(τ, z) (cf. [Was, Chap. XI]). We choose and fix a positive constant κ
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such that κ < 2w/π or w/κ > 2π. We transform a variable s to p by p =

se−iθ/κ. Then by this change of variables, the domain E+(θ, w) corresponds

to E+(0, ρ) with ρ = w/κ > π/2. We put g(p, z) = v(eiθκp, z). Then we

have

max
z∈B(r)

|g(p, z)| ≤ CeAκ|p|, p ∈ E+(0, ρ) (ρ > π/2).(4.3)

We further change the variable p to η by η = e−p, and put f(η, z) =

f(log(1/η), z) = v(eiθκ log(1/η), z). By this change of variables the domain

E+(0, ρ) corresponds to a domain D containing O(0, h) := {η ∈ C | |η−h| <
h} (∃h > 1).

η p

η = e−p

|η − 1| = 1

π/2

−π/2

−π/2 log(1/2)

By definition, f(η, z) (z ∈ B(r)) is analytic on {|η − h| ≤ h}\{0}, and

satisfies the following growth condition as η → 0,

max
z∈B(r)

|f(η, z)| ≤ C|η|−Aκ, |η − h| < h.(4.4)

By the above changes of variables, we see that uθ(τ, z) is given by

uθ(τ, z) =
eiθκ

τ

∫ 1

0
η(eiθκ/τ)−1f(η, z) dη.(4.5)

Since f(η, z) is analytic on O(0, 1) × B(r) (O(0, 1) ⊂ O(0, h)), it has a

Taylor expansion

f(η, z) =

∞
∑

n=0

φn(z)(1 − η)n, (η, z) ∈ O(0, 1) ×B(r).(4.6)
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Now by substituting this expansion into (4.5), a formal calculation leads to

the following factorial series expansion

uθ(τ, z) =

∞
∑

n=0

φn(z)
n!

((eiθκ/τ) + 1) · · · ((eiθκ/τ) + n)
(4.7)

=
∞
∑

n=0

φn(z)
n!τn

(eiθκ+ τ) · · · (eiθκ+ nτ )
, Re(eiθ/τ) > 0.

where, here and in the sequel, the term corresponding to n = 0 in the sums

is meant to be ϕ(z). Now we shall prove the following.

Theorem 4.1. Assume that ϕ(z) satisfies the conditions in theorem

3.1 (ii). Then choosing κ as above, the Borel sum (4.1) can be represented

as (4.7) which converges absolutely and uniformly on O(θ, 1/(2B)) × B(r)

for every B > A, where O(θ, 1/(2B)) = {|r − eiθ/(2B) < 1/(2B)} =

{τ | Re(eiθ/τ) > B}. Moreover the following estimates hold for all N =

1, 2, 3, . . . ,

∣

∣

∣

∣

∣

uθ(τ, z) −
N−1
∑

n=0

φn(z)
n!τn

(eiθκ+ τ) · · · (eiθκ+ nτ )

∣

∣

∣

∣

∣

≤ C

N (B−A)κ
,(4.8)

((τ, z) ∈ O(θ, 1/(2B))×B(r)), for some positive constant C only depending

on B > A.

For the proof, the following lemma plays a crucial role.

Lemma 4.2. Let v(s, z) satisfy the inequality (4.2). Then the Taylor

coefficients {φn(z)} of f(η, z) satisfy

max
z∈B(r)

|φn(z)| ≤ CnAκ−1,(4.9)

for some positive constant C.

For the case where Aκ > 1, one can find a proof in G. Doetsch [Doe,

Chap. 11, p. 207]. For the case 0 < Aκ ≤ 1, recall the relation f(η, z) =

v(eiθκ log(1/η), z). This shows

∂f

∂η
(η, z) = −e

iθκ

η

∂v

∂s
(s, z), s = eiθκ log(1/η).
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Since v(s, z) satisfies the growth condition (4.2), we may assume that

∂v(s, z)/∂s also satisfies the same growth condition by Cauchy’s integral

formula. Hence we have

max
z∈B(r)

∣

∣

∣

∣

∂f

∂η
(η, z)

∣

∣

∣

∣

≤ C ′|η|−Aκ−1, |η − 1| < 1.

Hence the first case shows that n|φn(z)| ≤ C ′′nAκ (z ∈ B(r)), which implies

the desired estimates.

Proof of Theorem 4.1. Let B > A and we restrict τ such that Re(eiθ/τ)

≥ B, i.e., τ ∈ O(θ, 1/(2B)). Then by the above lemmas we have

max
z∈B(r)

|φn(z)|
∣

∣

∣

∣

n!τn

(eiθκ+ τ) · · · (eiθκ+ nτ )

∣

∣

∣

∣

≤ CnAκ−1 n!

(Bκ+ 1) · · · (Bκ+ n)
≤ C ′Γ(Bκ+ 1)

n(B−A)κ+1
.

This shows that the factorial series (4.7) converges absolutely and uniformly

on O(θ, 1/(2B)) × B(r) and the remainder estimate (4.8) follows. On the

other hand, for 0 < η ≤ 1 we have, by Lemma 4.2,

∞
∑

n=0

|φn(z)|(1 − η)n ≤ C

∞
∑

n=0

nAκ−1(1 − η)n

≤ C ′
∞
∑

n=0

Aκ(Aκ+ 1) · · · (Aκ+ n− 1)

n!
(1 − η)n = C ′η−Aκ.

Here, the last equality follows from (1 − y)−α =
∑∞

n=0{α(α + 1) · · · (α +

n− 1)/n!}yn (|y| < 1). Hence we have for (τ, z) ∈ O(θ, 1/(2B)) ×B(r),

|η(eiθκ/τ)−1|
∞
∑

n=0

|φn(z)|(1 − η)n ≤ Cη(B−A)κ−1, 0 < η ≤ 1,

which is integrable on (0, 1]. This permits the change of order of integration

and summation in (4.5), which proves the theorem.

From the well known relation between formal power series and facto-

rial series (cf. Wasow [Was, section 46.3], it follows that the coefficients

{φn(z)}∞n=0 in the factorial series expansion (4.7) are linear combinations of

{ϕ(z), ϕ(2)(z), . . . , ϕ(2n)(z)} with constant coefficients. Below, we shall give

a recurrence formula to determine them directly from the data.
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Theorem 4.3. We have the following recurrence formula for

{φn(z)}∞n=0 (here λ = κeiθ):

φ0(z) = ϕ(z), φ1(z) = λϕ′′(z),(4.10)

φ2(z) =
λ

2
ϕ(2)(z) +

λ2

4
ϕ(4)(z).

(n+ 1)2φn+1(z) = λφ′′n(z) +
(3n+ 1)n

2
φn(z)(4.11)

−
n
∑

j=1

(2n− j)(n− j)

j(j + 1)(j + 2)
φn−j(z), n ≥ 2.

Proof. We will first derive a factorial series expansion of ∂u(τ, z)/∂τ

and then compare it to that of ∂2u(τ, z)/∂z2.

For that purpose, put

fn(τ, λ) =
n!τn

(λ+ τ)(λ+ 2τ) · · · (λ+ nτ )
,

and calculate dfn(τ, λ)/dτ .

d

dτ
fn(τ, λ) =

d

dτ

{

λ

τ

∫ 1

0
ζλ/τ−1(1 − ζ)n dζ

}

= − λ

τ2

∫ 1

0
ζλ/τ−1(1 − ζ)ndζ

−λ
2

τ3

∫ 1

0
ζλ/τ−1 log(ζ)(1 − ζ)n dζ.

In the second integral, we substitute the following expansion of log(ζ),

log(ζ) = log(1 − (1 − ζ)) = −
∞
∑

j=1

(1 − ζ)j

j
, (|1 − ζ| < 1).

Then we have

d

dτ
fn(τ, λ) = −1

τ
fn(τ, λ) +

∞
∑

j=1

1

j

λ

τ2
fn+j(τ, λ).(4.12)

The following formulas are easily proved, and we omit the proof.

1

τ
fn(τ, λ) =

n

λ
fn−1(τ, λ) − n

λ
fn(τ, λ).(4.13)
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λ

τ2
fn+j(τ, λ) =

(n+ j)(n+ j − 1)

λ
fn+j−2(τ, λ)(4.14)

−(n+ j)(2(n+ j) − 1)

λ
fn+j−1(τ, λ)

+
(n+ j)2

λ
fn+j(τ, λ).

Therefore by substituting these relations into (4.12), we have

d

dτ
fn(τ, λ) =

n

λ
fn(τ, λ) − n

λ
fn−1(τ, λ)

+
∞
∑

j=1

1

j

(n+ j)(n+ j − 1)

λ
fn+j−2(τ, λ)

−
∞
∑

j=1

1

j

(n+ j)(2(n+ j) − 1)

λ
fn+j−1(τ, λ)

+

∞
∑

j=1

1

j

(n+ j)2

λ
fn+j(τ, λ).

Since ∂uθ(τ, z)/∂τ =
∑∞

n=0 φn(z)dfn(τ, λ)/dτ , we have

∂uθ(τ, z)

∂τ
=

∞
∑

n=1

n

λ
φn(z)fn(τ, z) −

∞
∑

n=0

n+ 1

λ
φn+1(z)fn(τ, z)

+
∞
∑

n=0

(n+ 2)(n+ 1)

λ

{n+2
∑

j=1

φn+2−j(z)

j

}

fn(τ, λ)

−
∞
∑

n=0

(n+ 1)(2n+ 1)

λ

{n+1
∑

j=1

φn+1−j(z)

j

}

fn(τ, λ)

+

∞
∑

n=0

n2

λ

{ n
∑

j=1

φn−j(z)

j

}

fn(τ, λ).

On the other hand, it is obvious that

∂2uθ(τ, z)

∂z2
=

∞
∑

n=0

φ′′n(z)fn(τ, λ).

Now by comparing the coefficients of fn(τ, λ) (n = 0, 1, 2, . . .), we have

the desired recurrence formula (4.11). In fact, it is sufficient to arrange the
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following relation which is obtained by comparing the coefficients of fn(τ, λ)

in the equation, ∂uθ/∂τ = ∂2uθ/∂z2.

n

λ
φn(z) − n+ 1

λ
φn+1(z)

+
(n+ 2)(n+ 1)

λ

{

φn+1(z) +
φn

2
(z) + · · · + φ0

n+ 2
(z)

}

−(n+ 1)(2n+ 1)

λ

{

φn(z) +
φn−1

2
(z) + · · · + φ0

n+ 1
(z)

}

+
n2

λ

{

φn−1(z) +
φn−2

2
(z) + · · · + φ0

n
(z)

}

= φ′′n(z).

In special cases where n = 1, 2, we have φ1(z) = λϕ′′(z) and

φ2(z) =
1

2
φ1(z) +

λ

4
φ′′1(z) =

λ

2
ϕ′′(z) +

λ2

4
ϕ(4)(z).

This completes the proof.

§5. New derivations of the heat kernel

In this section, we shall give new methods to derive the heat kernel

E(t, x) =
1√
4πt

e−x2/4t, x ∈ R, t > 0,

by using the Borel sum of the following Cauchy problem,

∂u

∂τ
=
∂2u

∂z2
, u(0, z) =

1

z
.(5.1)

Here the formal solution ê(τ, z) is given by

ê(τ, z) =

∞
∑

n=0

(2n)!

n!

τn

z2n+1
=
put

1

z
f̂
( τ

z2

)

.(5.2)

We prove the following.

Theorem 5.1. (i) For any x ∈ R\{0}, ê(τ, x) is Borel summable in

a sector −π/2 < arg τ < 5π/2, and let e(τ, x) be its Borel sum. Then we

have

E(τ, x) =
−1

2πi
{e(τe2πi, x) − e(τ, x)},(5.3)

|arg τ | < π/2, x ∈ R\{0}.
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(ii) For τ with |arg τ | < π/2, ê(τ, z) is finely Borel summable in both

sides of the upper and lower half plane in complex z-plane. Let e±(τ, z) be

the fine Borel sums in both half planes, respectively. Then we have

E(τ, x) =
−1

2πi
{e+(τ, x+ i0) − e−(τ, x− i0)}.(5.4)

Proof. (i) (First Proof) Let f̂(ζ) (ζ = τ/z2) be the divergent power

series defined in (5.2), and let g(ξ) be the formal Borel transform of f̂(ζ),

that is,

g(ξ) :=

∞
∑

n=0

(2n)!

(n!)2
ξn =

1√
1 − 4ξ

.

This shows that f̂(ζ) is Borel summable in the sector −π/2 < arg ζ < 5π/2,

and its Borel sum f(ζ) is obtained by analytic continuation of the following

function.

f θ(ζ) =
1

ζ

∫ ∞eiθ

0
e−ξ/ζ dξ√

1 − 4ξ
, | arg(ζ) − θ| < π/2 (0 < θ < π/2).

Now we restrict ζ such that | arg ζ| < π/2. Then we have

f(ζ) =
1

ζ

∫ 1/4

0
e−ξ/ζ dξ√

1 − 4ξ
+
i

ζ

∫ +∞

1/4
e−ξ/ζ dξ√

4ξ − 1
,

and

f(ζe2πi) =
1

ζ

∫ 1/4

0
e−ξ/ζ dξ√

1 − 4ξ
− i

ζ

∫ +∞

1/4
e−ξ/ζ dξ√

4ξ − 1
.

Hence we have

f(ζe2πi) − f(ζ) = −2i

ζ

∫ +∞

1/4
e−ξ/ζ dξ√

4ξ − 1
= −i

√
π√
ζ
e−1/4ζ .(5.5)

Let e(τ, x) be the Borel sum of ê(τ, x) in the sector −π/2 < arg(τ) <

5π/2 for x ∈ R\{0}. Then

e(τ, x) =
1

x
f
( τ

x2

)

,

and the desired formula (5.3) is obtained from (5.5).
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It is interesting to note the equations which f̂(ζ) and g(ξ) satisfy and

this helps to explain the occurence of the hypergeometric function in the

proof of theorem 3.1:

4ζ2f̂ ′′(ζ) + (10ζ − 1)f̂ ′(ζ) + 2f̂(ζ) = 0,(5.6)

ξ(4ξ − 1)g′′(ξ) + (10ξ − 1)g′(ξ) + 2g(ξ) = 0,(5.7)

(Gauss’ hypergeometric equation).

(Second Proof) Let x ∈ R be fixed, and e(τ, x) be the Borel sum of

ê(τ, x) defined on −π/2 < arg(τ) < 5π/2 which is obtained by the analytic

continuation of the following function.

eθ(τ, x) =
1√
4πτ

∫

R−iε
e−ζ2/(4τ) dζ

ζ + x
, | arg(τ) − θ| < π/2 (0 < θ < π/2),

where ε > 0 is small and arbitrary.

We restrict τ such that |arg(τ)| < π/2. Then we have

e(τ, x) − e(τe2πi, x) =
1√
4πτ

∮

|ζ+x|=δ
e−ζ2/(4τ) dζ

ζ + x
=

2πi√
4πτ

e−x2/(4τ),

which implies the desired formula (5.3).

(ii) The formal Borel transform v(s, z) of ê(τ, z) is given by v(s, z) =

1/
√
z2 − 4s. Let s > 0. Then v(s, z) is univalent in C\[−2

√
s, 2

√
s] and we

have

−1

2πi
{v(s, x+ i0) − v(s, x− i0)} =











1

π

1√
4s− x2

, x2 < 4s

0, x2 ≥ 4s

We set Ω± := {τ | |arg τ | < π/2} × {z | ±Im z > 0}. Then the Laplace

transforms e±(τ, z) of v(s, z) are well defined in Ω± by

e±(τ, z) =
1

τ

∫ ∞

0
e−s/τ ds√

z2 − 4s
, ± Im z > 0.(5.8)

The following asymptotic estimate is easily proved.

∣

∣

∣

∣

∣

e±(τ, z) −
N−1
∑

n=0

(2n)!

n!

τn

z2n+1

∣

∣

∣

∣

∣

≤ C(δ)K(z)NN !|τ |N , N = 1, 2, 3, . . . ,



28 D. A. LUTZ, M. MIYAKE AND R. SCHÄFKE

where (τ, z) ∈ {| arg τ | < π/2 − δ} × {± Im z > 0} (δ > 0). Here C(δ) is

a positive constant depending only on δ, and K(z) is a positive constant

depending only on z. We remark that K(z) can be taken uniformly on z

outside a bell type domain ∆(0; ε) (cf. (3.6)).

The expressions (5.8) imply the following relations.

e+(τ, x+ i0) =
1

τ

∫ x2/4

0
e−s/τ ds√

x2 − 4s
− i

τ

∫ ∞

x2/4
e−s/τ ds√

4s− x2
,

and

e−(τ, x− i0) =
1

τ

∫ x2/4

0
e−s/τ ds√

x2 − 4s
+
i

τ

∫ ∞

x2/4
e−s/τ ds√

4s− x2
.

Now we get

−1

2πi
{e+(τ, x+ i0) − e−(τ, x− i0)} =

1

τπ

∫ ∞

x2/4
e−s/τ ds√

4s− x2
=
e−x2/4τ

√
4πτ

,

which we want to prove.
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Basel und Stuttgart, Ulm, Germany, 1955.

[Ec] J. Ecalle, Les fonctions résurgentes I–III, Publication mathématiques d’Orsay,
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Université de Strasbourg

7, rue René-Descartes
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