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VERY AMPLENESS OF

ADJOINT LINEAR SYSTEMS ON

SMOOTH SURFACES WITH BOUNDARY

VLADIMIR MAŞEK

Abstract. Let M be a Q-divisor on a smooth surface over C . In this paper
we give criteria for very ampleness of the adjoint of dMe, the round-up of M .
(Similar results for global generation were given by Ein and Lazarsfeld and
used in their proof of Fujita’s Conjecture in dimension 3.) In §4 we discuss an
example which suggests that this kind of criteria might also be useful in the
study of linear systems on surfaces.

Notations

d·e round-up

b·c round-down

{·} fractional part

f−1D strict transform (proper transform)

f∗D pull-back (total inverse image)

PLC partially log-canonical (Definition 1.7)

≡ numerical equivalence

∼ linear equivalence

∼� Q-linear equivalence

0. Introduction

Let S be a nonsingular projective surface over C , and let H be a given

line bundle on S. Consider the following natural questions regarding the

complete linear system |H|:

(1) Compute dim |H|.

(2) Is |H| base-point-free?
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2 V. MAŞEK

(3) Is |H| very ample?

The answer to (1) is usually given in two parts: the Riemann-Roch theorem

computes χ(S,H), and then we need estimates for hi(S,H), i > 0. In

particular, we may ask the following question related to (1):

(1′) When are h1(S,H) and h2(S,H) equal to zero?

One classical answer to (1′) is provided by Kodaira’s vanishing theorem:

if L is any ample line bundle on S, then hi(S,−L) = 0 for all i < 2;

therefore, by Serre duality, we have hi(S,KS + L) = 0 for all i > 0. To

answer (1′), write H = KS + L (thus defining L as H −KS); if L is ample,

then hi(S,H) = 0 for all i > 0.

For questions (2) and (3), Reider [Rei] gave an answer which again

considers H in the form of an adjoint line bundle, H = KS + L:

Proposition (cf. [Rei, Theorem 1]). If L is a line bundle on S,

L2 ≥ 5 and L · C ≥ 2 for every curve C ⊂ S, then |KS + L| is base-point-

free. If L2 ≥ 10 and L · C ≥ 3 for every curve C, then |KS + L| is very

ample.

We note here that Kodaira’s theorem holds in all dimensions. Reider’s

criterion was tentatively extended in higher dimensions in the form of Fu-

jita’s conjecture ([Fuj]): if X is a smooth projective variety of dimension

n, and L is an ample line bundle on X, then |KX + mL| is base-point-free

for m ≥ n + 1 and very ample for m ≥ n + 2. Fujita’s conjecture for base-

point-freeness was proved in dimension 3 by Ein and Lazarsfeld ([EL]) and

in dimension 4 by Kawamata ([Kaw]); more precise statements, which re-

semble Reider’s criterion more closely, were also obtained. Very ampleness,

however, is still open, even in dimension 3.

Kodaira’s vanishing theorem and Reider’s criterion are already very

useful as stated. However, the applicability of Kodaira’s theorem was

greatly extended, first on surfaces, by Mumford, Ramanujam, Miyaoka,

and then in all dimensions by Kawamata and Viehweg, as follows. First,

the ampleness condition for L can be relaxed to L · C ≥ 0 for every curve

C and L2 > 0 (L nef and big). Second, and most important, assume that

L itself is not nef and big, but there is a nef and big Q-divisor M on S

(M ∈ Div(S)⊗Q) such that L = dMe (i.e. L−M is an effective Q-divisor

B whose coefficients are all < 1). Then we have hi(S,KS + L) = 0 for all
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i > 0, just as in Kodaira’s theorem. (Q-divisors were first considered in this

context in connection with the Zariski decomposition of effective divisors.)

In dimension ≥ 3, the Kawamata–Viehweg vanishing theorem requires

an extra hypothesis (the irreducible components of Supp(B) must cross

normally); however, Sakai remarked that for surfaces this extra hypothesis

is not necessary (see Proposition 1.2.1 in §1).

For base-point-freeness (question (2) above), Ein and Lazarsfeld ([EL])

proved a similar extension of Reider’s criterion, expressing H as KS + dMe
for a Q-divisor M on S; if M2 > 4 and M · C ≥ 2 for every curve C,

then |H| is base-point-free. They used this result in their proof of Fujita’s

conjecture for base-point-freeness in dimension 3. (In fact they used a more

precise local version, involving the local multiplicities of B = L−M ; see §1
below).

In this paper we give criteria for very ampleness of linear systems of

the form |KS + B + M |, B = dMe − M , as above. In particular, we prove

the following result:

Theorem 1. Let S, B and M be as above, and assume that

(0.1) M2 > 2(β2)
2,

(0.2) M · C ≥ 2β1 for every irreducible curve C ⊂ S,

where β2, β1 are positive numbers satisfying the following inequalities:

(0.3) β2 ≥ 2,

(0.4) β1 ≥ β2

β2−1 .

Then |KS + B + M | is very ample.

An immediate consequence of Theorem 1 is the following:

Corollary 2. Assume that (S,B) is as before, and M is an ample Q-

divisor on S such that B = dMe−M , M2 > (2+
√

2)2, and M ·C > 2+
√

2

for every curve C ⊂ S. Then |KS + B + M | is very ample. In particular,

if A is an ample divisor (with integer coefficients) on S, then |KS + daAe|
is very ample for every a ∈ Q, a > 2 +

√
2.

Note that Reider’s criterion implies only that |KS + aA| is very ample

for every integer a ≥ 4.
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As in [EL, §2] (where the analogue for base-point-freeness was proved),

we prove a local version of Theorem 1, with the numerical conditions on M

relaxed in terms of local multiplicities of B.

As we mentioned earlier, the result for base-point-freeness on surfaces

with boundary (i.e. for Q-divisors M) was used in [EL] in the proof of

Fujita’s Conjecture in dimension 3. Similarly, we expect that the proof

of the analogous result for very ampleness in dimension 3 will use very

ampleness for Q-divisors on surfaces. However, a natural and interesting

question is whether or not the results for Q-divisors on surfaces have any

useful applications to the study of linear systems on surfaces. An example

we discuss in §4 seems to indicate an affirmative answer. While the results

proved in §4 can be obtained with other methods, our example shows how

our Q-Reider theorem extends the applicability of Reider’s original result

in the same way the Kawamata–Viehweg vanishing theorem extends the

range of applicability of Kodaira’s vanishing theorem. The usefulness of

considering local multiplicities of B is also evident in this example.

The paper is divided as follows: §1 is devoted to base-point-freeness.

The results discussed in this section, with one exception, were proved in

[EL]; I include a (slightly modified) proof to fix the ideas and notations for

the later sections. As one might expect, separation of points is relatively

easy (at least in principle); it is discussed in §2. Then we move on to

separation of tangent directions in §3. This part is surprisingly delicate; in

particular the “multiplier ideal” method of Ein–Lazarsfeld, or Kawamata’s

equivalent “log-canonical threshold” formalism, do not work in this context.

We explain the geometric contents of our method in the beginning of §3.

Theorem 1 follows from Proposition 4 in §2 and Proposition 5 in §3. Finally,

§4 contains the example mentioned earlier.

The author is grateful to L. Ein, R. Lazarsfeld, S. Lee, and N. Mohan

Kumar for their many useful suggestions.

1. Base-point-freeness

(1.1) Let S be a smooth projective surface over C, and B =
∑

biCi a

fixed effective Q-divisor on S with 0 ≤ bi < 1 for all i. (The pair (S,B) is

sometimes called a “surface with boundary”, whence the title of this paper.)

Let M be a Q-divisor on S such that B + M has integer coefficients.



VERY AMPLENESS ON SURFACES WITH BOUNDARY 5

We assume throughout this paper that M is nef and big, i.e.

that M · C ≥ 0 for every curve C ⊂ S and M2 > 0.

(1.2) For convenience, we gather here two technical results which we

use time and again in our proofs.

(1.2.1) We use the following variants of the Kawamata–Viehweg van-

ishing theorem, which hold on smooth surfaces:

Theorem. (a) (cf. [EL, Lemma 1.1]) Let S be a smooth projective

surface over C, and let M be a nef and big Q-divisor on S. Then

H i(S,KS + dMe) = 0, ∀i > 0.

(b) (cf. [EL, Lemma 2.4]) Assume moreover that C1, . . . , Ck are dis-

tinct irreducible curves on S which have integer coefficients in M . Assume

that M · Cj > 0 for all j = 1, . . . , k. Then

H i(S,KS + dMe + C1 + · · · + Ck) = 0, ∀i > 0.

(1.2.2) We use the following criterion for base-point-freeness, respec-

tively very ampleness, on a complete Gorenstein curve (cf. [Har2]):

Proposition. Let D be a Cartier divisor on the integral projective

Gorenstein curve C. Then :

(a) deg(D) ≥ 2 =⇒ the complete linear system |KC + D| is base-point-

free ;

(b) deg(D) ≥ 3 =⇒ |KC + D| is very ample.

Proof. See [Har2, §1] for the relevant definitions (generalized divisors

on C, including 0-dimensional subschemes; degree; etc.)

We prove (b); the proof of (a) is similar. By [Har2, Proposition 1.5],

it suffices to show that h0(C,KC + D − Z) = h0(C,KC + D) − 2 for every

0-dimensional subscheme Z ⊂ C of length 2. Consider the exact sequence:

0 −→ OC(KC + D − Z) −→ OC(KC + D) −→ OC(KC + D) ⊗OZ −→ 0.

As OC(KC + D) ⊗OZ
∼= OZ has length 2, the conclusion will follow from

the vanishing of H1(C,KC +D−Z). By Serre duality (cf. [Har2, Theorem

1.4]), H1(C,KC + D − Z) ∼= H0(C,Z − D), and H0(C,Z − D) = 0 due to

deg(Z − D) = 2 − deg(D) < 0.
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(1.3) Fix a point p ∈ S. In this section we give sufficient conditions

for |KS + B + M | to be free at p.

(1.3.1) Notation. µ = ordp(B)
def
=

∑

bi · multp(Ci) (B =
∑

biCi).

Proposition 3. |KS + B + M | is free at p in each of the following

cases :

1. µ ≥ 2 ;

2. 0 ≤ µ < 2; M2 > (β2)
2, M ·C ≥ β1 for every irreducible curve C ⊂ S

such that p ∈ C, where β2, β1 are positive numbers which satisfy the

inequalities :

β2 ≥ 2 − µ,(1.3.2)

β1 ≥ min

{

(2 − µ);
β2

β2 − (1 − µ)

}

.(1.3.3)

Remark. Explicitly, the minimum in (1.3.3) is given by:

min

{

(2 − µ);
β2

β2 − (1 − µ)

}

=

{

2 − µ if 1 ≤ µ < 2

β2

β2−(1−µ) if 0 ≤ µ < 1.

In other words, when 0 ≤ µ < 2, the inequalities β2 ≥ 2−µ and β1 ≥ 2−µ

suffice. When µ < 1 the inequality for β1 can be relaxed to

β1 ≥ β2

β2 − (1 − µ)
;(1.3.4)

this last part (which is useful in applications, cf. §4) is not contained in

[EL].

Proof of Proposition 3

(1.4) Let f : S1 → S be the blowing-up of S at p, and let E ⊂ S1 be

the exceptional divisor of f . We have f∗B = f−1B + µE; bf−1Bc = 0, and

therefore

KS1
+ df∗Me = f∗KS + E + df∗(B + M) − f∗Be(1.4.1)

= f∗(KS + B + M) + E − bf∗Bc
= f∗(KS + B + M) − (bµc − 1)E.
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(1.5) case t = bµc − 1 is a positive integer; since f∗M is nef and big

on S1, the vanishing theorem (1.2.1)(a) yields

H1(S1,KS1
+ df∗Me) = 0,(1.5.1)

and therefore (using (1.4.1) and the projection formula)

H1(S,OS(KS + B + M) ⊗ mp
t) = 0,(1.5.2)

where mp is the maximal ideal of OS at p. The conclusion follows from the

surjectivity of the restriction map

H0(S,KS + B + M) −→ H0(S,OS(KS + B + M) ⊗OS/mp
t) ∼= OS/mp

t.

(1.5.3) Remark. In fact we proved that |KS + B + M | separates s-jets

at p, if µ
def
= ordp(B) ≥ s + 2.

(1.6) Now assume that µ < 2, and M2 > (β2)
2 with β2 ≥ 2 − µ, etc.

(1.6.1) Claim. We can find an effective Q-divisor D on S such that

ordp(D) = 2 − µ and D ∼� tM for some t ∈ Q , 0 < t < 2−µ
β2

. (∼� denotes

Q-linear equivalence, i.e. mD and mtM have integer coefficients and are

linearly equivalent for some suitably large and divisible integer m.)

Proof of (1.6.1). By Riemann–Roch, dim |nM | grows like M2

2 n2 >
(β2)2

2 n2 for n sufficiently large and divisible (such that nM has integer co-

efficients). Since dim(OS,p/mp
n) grows like n2

2 , for suitable n we can find

G ∈ |nM | with ordp(G) > β2n.

Take D = rG, r = 2−µ
ordp(G) ; then ordp(D) = 2 − µ, and D ∼� tM for

t = rn < 2−µ
β2n

n = 2−µ
β2

.

Note that 2−µ
β2

≤ 1, by (1.3.2), so that t < 1; therefore M−D ∼� (1−t)M

is still nef and big.

(1.7) Recall that B =
∑

biCi, for distinct irreducible curves Ci ⊂ S.

Write D =
∑

diCi (we allow some coefficients bi and di to be zero); di ∈ Q,

di ≥ 0, and ordp(D) =
∑

di · multp(Ci) = 2 − µ.

Let Di = f−1Ci ⊂ S1 be the strict transform of Ci; then f∗B =
∑

biDi + µE, f∗D =
∑

diDi + (2 − µ)E, KS1
= f∗KS + E, and

KS1
− f∗(KS + B + D) = −E −

∑

(bi + di)Di.
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Definition. (S,B,D) is partially log-canonical at p (PLC at p)

if −(bi + di) ≥ −1 (i.e. bi + di ≤ 1) for every i such that p ∈ Ci. (The

general definition requires the coefficient of E to be ≥ −1, too; in our case

that coefficient is equal to −1.)

Note that PLC is not the same as log-canonical (cf. [KMM, Definition

0-2-10]), because f is not an embedded resolution of (S,B + D).

(1.8) If (S,B,D) is PLC at p, then the proof is almost as simple as in

the case µ ≥ 2:

KS1
+ df∗(M − D)e(1.8.1)

= f∗KS + E + f∗(B + M) − bf∗(B + D)c
= f∗(KS + B + M) + E − 2E −

∑

bbi + dicDi

= f∗(KS + B + M) − E −
∑′

Di − N1,

where
∑′ Di extends over those i for which p ∈ Ci and bi + di = 1 (if any),

and N1 is an effective divisor supported away from E.

f∗M · Di = M · Ci > 0 if p ∈ Ci; therefore (1.2.1)(b) yields:

H1(S1, f
∗(KS + B + M) − E − N1) = 0.(1.8.2)

Arguing as in (1.5), we can show that p /∈ Bs |KS + B + M − N |,
where N = f∗N1; i.e., ∃Λ ∈ |KS + B + M − N | with p /∈ Supp(Λ). Then

Λ + N ∈ |KS + B + M | and p /∈ Supp(Λ + N), as required.

Note that we haven’t used (1.3.3) yet; all we needed so far was β1 > 0.

(1.9) Finally, assume that (S,B,D) is not PLC at p. Then bj +dj > 1

for some j with p ∈ Cj. In fact, since 2 = ordp(B + D) =
∑

(bi + di) ·
multp(Ci), there can be at most one Cj through p with bj + dj > 1, and

then that Cj must be smooth at p and also bi + di < 1 for all i 6= j with

p ∈ Ci. Let that j be 0; thus b0 + d0 > 1, C0 is smooth at p, and bi + di < 1

if i 6= 0 and p ∈ Ci. We say that C0 is the critical curve at p.

Let c be the PLC threshold of (S,B,D) at p:

c = max{λ ∈ Q+ | (S,B, λD) is PLC at p};

explicitly, b0 + cd0 = 1, i.e. c = 1−b0
d0

. Note that 0 < c < 1.
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M − cD ∼� (1 − ct)M is still nef and big on S, and we have:

KS + dM − cDe = KS + B + M − bB + cDc
= KS + B + M − C0 − N,

with p /∈ Supp(N ). (If p ∈ Ci and i 6= 0 then bi + di < 1, and therefore

bi + cdi < 1, too, because c < 1; hence p /∈ Supp(N ).)

(1.2.1)(a) yields H1(S,KS + B + M − C0 − N) = 0, and therefore the

restriction map H0(S,KS + B + M −N) → H0(C0, (KS + B + M −N)|C0
)

is surjective. Hence it suffices to show that p /∈ Bs |(KS + B + M −N)|C0
|.

We have

KS + B + M − N = KS + dM − cDe + C0,(1.9.1)

and therefore (KS + B + M − N)|C0
= KC0

+ dM − cDe|C0
; by (1.2.2)(a),

it suffices to show that dM − cDe · C0 ≥ 2. In any event dM − cDe · C0 is

an integer; we will show that dM − cDe · C0 > 1.

dM − cDe = (M − cD) + ∆, where ∆ = dM − cDe − (M − cD) =

d(M + B)− (B + cD)e − (M − cD) = (M + B)− bB + cDc − (M − cD) =

(B + cD)−bB + cDc = {B + cD}. ∆ is an effective divisor which intersects

C0 properly, because C0 has integer coefficient (namely, 1) in B + cD.

Moreover, in a neighborhood of p we have {B + cD} = (B + cD) − C0,

because B + cD = C0 +
∑

i6=0(bi + cdi)Ci, and 0 ≤ bi + cdi < 1 for every

i 6= 0 such that p ∈ Ci. In particular, we have

ord p(∆) = ord p(B + cD) − 1 = µ + c(2 − µ) − 1.

dM − cDe · C0(1.10)

= (M − cD) · C0 + ∆ · C0 ≥ (1 − ct)M · C0 + ord p(∆)

≥ (1 − ct)β1 + µ + c(2 − µ) − 1.

Therefore the inequality dM − cDe · C0 > 1 follows from

(1 − ct)β1 > (1 − c)(2 − µ).(1.10.1)

If β1 ≥ 2 − µ then (1.10.1) is trivial, because t < 1 =⇒ 1 − ct > 1 − c.

(1.11) When µ < 1 the inequality we assume for β1 (namely, (1.3.4))

is weaker than β1 ≥ 2 − µ. However, in this case the equation B + cD =
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C0 + other terms yields a nontrivial lower bound for c: µ + c(2 − µ) =

ordp(B + cD) ≥ ordp(C0) = 1, and therefore c ≥ 1−µ
2−µ

> 0.

The inequality (1.10.1) can also be written as

c(2 − µ − tβ1) > 2 − µ − β1.(1.11.1)

We may assume that β1 < 2 − µ (or else (1.10.1) is already proved).

We have c ≥ 1−µ
2−µ

, t < 2−µ
β2

(see (1.6.1)), and 1−µ
β2

≤ 1 − 1
β1

(by (1.3.4));

therefore

c(2 − µ − tβ1) >
1 − µ

2 − µ
(2 − µ − 2 − µ

β2
β1) = (1 − µ − 1 − µ

β2
β1)

≥ (1 − µ) − (1 − 1

β1
)β1 = 2 − µ − β1.

(1.11.1) is proved. This concludes the proof of proposition 3.

2. Separation of points

(2.1) Let (S,B,M) be as in (1.1). Fix two distinct points p, q ∈ S. In

this section we give criteria for |KS + B + M | to separate (p, q).

Note that in each case |KS +B+M | is free at p and q, by proposition 3,

and therefore it suffices to find s ∈ H0(S,KS + B + M) such that s(p) =

0, s(q) 6= 0, or vice-versa.

Notation. µp = ordp(B), µq = ordq(B).

Proposition 4. |KS +B+M | separates (p, q) in each of the following

cases :

1. µp ≥ 2 and µq ≥ 2 ;

2. µq ≥ 2; 0 ≤ µp < 2; M2 > (β2)
2,M · C ≥ β1 for every irreducible

curve C ⊂ S passing through p, where β2, β1 are positive numbers

which satisfy (1.3.2) and (1.3.3) for µ = µp ;

3. 0 ≤ µp < 2 and 0 ≤ µq < 2 ; M2 > (β2,p)
2 + (β2,q)

2, and

(i) M · C ≥ β1,p for every curve C ⊂ S passing through p,

(ii) M · C ≥ β1,q for every curve C ⊂ S passing through q,

(iii) M · C ≥ β1,p + β1,q if C passes through both p and q,
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where β2,p, β1,p ;β2,q , β1,q are positive numbers which satisfy the in-

equalities

β2,p ≥ 2 − µp, β2,q ≥ 2 − µq;(2.1.1)

β1,p ≥ min

{

(2 − µp);
β2,p

β2,p − (1 − µp)

}

, and similarly for β1,q .(2.1.2)

Proof of Proposition 4

(2.2) Let f : S1 → S be the blowing-up of S at p and q, with exceptional

curves Ep, Eq. As in (1.4), we have:

KS1
+ df∗Me = f∗(KS + B + M) − (bµpc − 1)Ep − (bµqc − 1)Eq.

In particular, if µp ≥ 2 and µq ≥ 2 (case 1 of the proposition), we get

H1(S,OS(KS + B + M) ⊗ mp
tp ⊗ mq

tq ) = 0

for positive integers tp, tq (compare to (1.5.2)); the conclusion follows as in

(1.5).

(2.3) Next assume that µp < 2, µq ≥ 2, M2 > (β2)
2 with β2 ≥ 2 − µp,

etc. (case 2 of the proposition). Write µ = µp. As in (1.6.1), we can find

an effective Q-divisor D on S such that ordp(D) = 2 − µ and D ∼� tM for

some t ∈ Q , 0 < t < 2−µ
β2

.

If (S,B,D) is PLC at p, the argument of (1.8) yields a vanishing

H1(S1, f
∗(KS + B + M) − Ep − N0) = 0(2.3.1)

where N0 is an effective divisor supported away from Ep. Note that in this

case N0 ≥ Eq, because µq ≥ 2. Indeed, (2.3.1) is obtained by applying

(1.2.1)(b) to

KS1
+ df∗(M − D)e(2.3.2)

= f∗(KS + B + M) − Ep − tqEq −
∑

bbi + dicDi

= f∗(KS + B + M) − Ep − tqEq −
∑′

Di − N1,

where
∑′ Di and N1 are as in (1.8.1) and tq = bµq + ordq(D)c − 1 is an

integer, tq ≥ 1; then N0 = N1 + tqEq ≥ Eq.
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The vanishing (2.3.1) implies the surjectivity of the restriction map

H0(S1, f
∗(KS + B + M) − N0)

−→ H0(Ep, (f
∗(KS + B + M) − N0)|Ep)

∼= C

(note that f∗(KS+B+M)|Ep is trivial, and so is N0|Ep because N0∩Ep = ∅).
Hence we can find Γ ∈ |f∗(KS +B+M)−N0| such that Γ∩Ep = ∅. As

Γ+N0 ∈ |f∗(KS+B+M)|, we have Γ+N0 = f∗Λ for some Λ ∈ |KS+B+M |.
Moreover, p /∈ Supp(Λ), because f∗Λ ∩ Ep = ∅, but q ∈ Supp(Λ), because

f∗Λ = Γ + N0 ≥ Eq. Thus |KS + B + M | separates (p, q) in this case.

(2.4) Now assume that (S,B,D) is not PLC at p. Let c,C0 be the PLC

threshold and the critical curve at p, as in §1, (1.9)–(1.11). Let φ : S2 −→ S

be the blowing-up of S at q (only), with exceptional curve Fq. Let C ′
0 ⊂ S2

be the proper transform of C0 in S2. Let p′ = φ−1(p). We have:

KS2
+ dφ∗(M − cD)e = φ∗(KS + B + M) − C ′

0 − N0,

where p′ /∈ Supp(N0), as in (1.9), and N0 ≥ Fq, as in (2.3).

The argument in (1.9)–(1.11) shows that there exists Γ ∈ |φ∗(KS +B +

M) − N0| with p′ /∈ Supp(Γ). Now the proof can be completed as in the

last part of (2.3).

(2.5) Finally, consider the case µp < 2 and µq < 2, with M2 > (β2,p)
2+

(β2,q)
2, etc. (case 3 of the proposition).

As in (1.6.1), we can find G ∈ |nM | with ordp(G) > β2,pn and ordq(G)

> β2,qn. Let r = max
{

2−µp

ordp(G) ,
2−µq

ordq(G)

}

, and D = rG. Then ordp(D) ≥
2−µp and ordq(G) ≥ 2−µq, and at least one of the last two inequalities is an

equality. Without loss of generality we may assume that ordp(D) = 2 − µp

and mq
def
= ordq(D) ≥ 2 − µq. We have D ∼� tM , with

0 < t = rn =
2 − µp

ordp(G)
n <

2 − µp

β2,p
≤ 1;(2.5.1)

also, mq = ordq(D) = r · ordq(G) > r · (β2,qn) = tβ2,q, and therefore

t <
mq

β2,q
(2.5.2)

(this is the analogue of (2.5.1) at q).
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If (S,B,D) is PLC at p, then (1.2.1)(b) yields

H1(S1, f
∗(KS + B + M) − Ep − N0) = 0,(2.5.3)

with N0 ∩ Ep = ∅,N0 ≥ Eq (the computation in (2.3.2) applies unchanged

in this situation). In this case we conclude as in (2.3).

(2.6) Now assume that (S,B,D) is not PLC at p. Let c,C0 be the

PLC threshold and the critical curve at p. (1.2.1)(a) yields

H1(S1, f
∗(KS + B + M) − D0 − N0) = 0, N0 ∩ Ep = ∅.(2.6.1)

If N0∩Eq 6= ∅, we use (2.6.1) to find Γ ∈ |f∗(KS +B +M)−N0| which

does not pass through p̃ = D0∩Ep; the proof is the same as in (1.9)–(1.11).

Then the conclusion follows as in (2.3).

Assume that N0 ∩ Eq = ∅. We discuss separately the subcases q ∈ C0

and q /∈ C0. If q ∈ C0, we separate (p, q) on C0. If q /∈ C0, we reverse the

roles of p and q.

(2.7) First consider the subcase q ∈ C0. The vanishing (2.6.1) implies

H1(S,KS + B + M − C0 − N) = 0,(2.7.1)

with N = f∗N0, Supp(N ) ∩ {p, q} = ∅. Consequently, the restriction map

H0(S,KS + B + M − N) −→ H0(C0, (KS + B + M − N)|C0
)

is surjective, and it suffices to show that |(KS + B + M − N)|C0
| separates

(p, q) on C0. As in (1.9.1), we have

(KS + B + M − N)|C0
= KC0

+ dM − cDe|C0
;

by (1.2.2)(b) it is enough to show that dM −cDe·C0 > 2 (and consequently

≥ 3).

We proceed as in §1: dM − cDe = (M − cD) + ∆, with ∆ = {B + cD};
∆ and C0 intersect properly, and ordp(∆) = µp + c(2 − µp) − 1, ordq(∆) =

µq +cmq−1 (note that N0∩Eq = ∅ =⇒ the only component with coefficient

≥ 1 of B + cD through q is C0, and moreover C0 must be smooth at q).

Therefore

dM − cDe · C0

= (M − cD) · C0 + ∆ · C0

≥ (1 − ct)M · C0 + ord p(∆) + ord q(∆)

≥ (1 − ct)(β1,p + β1,q) + (µp + c(2 − µp) − 1) + (µq + cmq − 1)
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(M · C0 ≥ β1,p + β1,q , because this time C0 passes through both p and q.)

Hence dM − cDe · C0 > 2 follows from

(1 − ct)(β1,p + β1,q) + (µp + c(2 − µp) − 1) + (µq + cmq − 1) > 2,(2.7.2)

which in turn follows from the following two inequalities:

(1 − ct)β1,p + (µp + c(2 − µp) − 1) > 1 and(2.7.3)

(1 − ct)β1,q + (µq + cmq − 1) > 1.(2.7.4)

(2.7.3) is proved like (1.10.1) in §1: if β1,p ≥ 2 − µp, then t < 1 =⇒
(1−ct)β1,p > (1−c)(2−µp) =⇒ (2.7.3). If β1,p < 2−µp (which can happen

only if µp < 1), then we have c ≥ 1−µp

2−µp
as in (1.11), t <

2−µp

β2,p
by (2.5.1),

and
1−µp

β2,p
≤ 1 − 1

β1,p
by (2.1.2), and therefore (2.7.3) follows as in (1.11).

(2.7.4) is proved similarly. First, since mq = ordq(D) ≥ 2 − µq, the

inequality is true when β1,q ≥ 2−µq, as in the proof of (2.7.3) above. When

β1,q < 2−µq we must have µq < 1; then B+cD ≥ C0 =⇒ µq +cmq ≥ 1 =⇒
c ≥ 1−µq

mq
, t <

mq

β2,q
by (2.5.2), and

1−µq

β2,q
≤ 1 − 1

β1,q
by (2.1.2); consequently

c(mq − tβ1,q) >
1 − µq

mq

(

mq −
mq

β2,q
β1,q

)

= (1 − µq) −
1 − µq

β2,q
β1,q ≥ 2 − µq − β1,q,

which yields (2.7.4).

Thus (2.7.2) is proved; this concludes the proof when q ∈ C0.

(2.8) To complete the proof of the proposition in case 3, consider the

remaining subcase, q /∈ C0. In this subcase separation of (p, q) is obtained

by reversing the roles of p and q. Namely, let D′ = αD, for the positive

rational number α such that ordq(D
′) = 2−µq; that is, α =

2−µq

ordq(D) =
2−µq

mq
.

Note that D′ ∼� t′M , where t′ = αt <
2−µq

mq
· mq

β2,q
(by (2.5.2)), i.e.

0 < t′ <
2 − µq

β2,q
≤ 1.(2.8.1)

Let c′ be the PLC threshold for (S,B,D′) at q; note that c′α > c (c′α is

the PLC threshold of (S,B,D) at q, and therefore c < c′α follows from

N0 ∩ Eq = ∅ in (2.6.1)). This, in turn, implies B + c′D′ = B + c′αD ≥ C0.
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If (S,B,D′) is PLC at q (i.e. if c′ = 1), then (1.2.1)(b) yields

H1(S1, f
∗(KS + B + M) − Eq − N ′

0) = 0, N ′
0 ∩ Eq = ∅(2.5.3′)

(Compare to (2.5.3)).

If (S,B,D′) is not PLC at q (i.e. if c′ < 1), and C ′
0 is the critical curve

at q, then (1.2.1.)(a) yields

H1(S1, f
∗(KS + B + M) − D′

0 − N ′
0) = 0, N ′

0 ∩ Eq = ∅(2.6.1′)

(Compare to (2.6.1), noting that now p and q are interchanged.)

In both cases, the arguments in (1.8) and, respectively, (1.9)–(1.11)

show that there exists Λ ∈ |KS + B + M − N ′| with q /∈ Supp(Λ), where

N ′ = f∗N
′
0 is an effective divisor with q /∈ Supp(N ′). Now, however, N ′ ≥

C0 (because B + c′D′ ≥ C0, as noted earlier, and q /∈ C0 =⇒ C0 is not

discarded even when the vanishing theorem is used in the form (1.2.1)(b));

thus Γ + N ′ ∈ |KS + B + M | passes through p but not through q.

This completes the proof of proposition 4.

3. Separation of tangent directions

(3.1) Let (S,B,M) be as in §1. Fix a point p ∈ S. In this section we

give criteria for |KS + B + M | to separate directions at p.

The statements (and proofs) are somewhat similar to those in §2. The

main difference is in the part of the proof corresponding to the discussion

in (2.8). So far in our proofs we worked with M − cD, where c was always

the PLC threshold at some point or another; this made the arguments

relatively transparent. In (2.8), when we passed from c = PLC threshold

at p to c′α = PLC threshold at q, the relevant fact was that q /∈ C0, where

C0 was the critical curve at p, and therefore C0 did not affect the local

computations around q. In separating tangent directions, the analogue is a

curve C0 through p, such that ~v /∈ Tp(C0) for some fixed ~v ∈ Tp(S), ~v 6= ~0.

Then we will have to increase c to some larger value c′, but clearly in

that case (S,B, c′D) will no longer be PLC at p. While this complicates

the computations, the geometric idea is still the same: find a divisor Γ ∈
|KS + B + M − C0 − N |, p /∈ Supp(N ), such that Γ does not pass through

p; then Γ + C0 + N has only one component through p, namely, C0, and

~v /∈ Tp(C0) – therefore Γ + C0 + N passes through p and is not tangent to

~v, as required.
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Another technical problem, which did not arise before, is that in some

cases the “minimizing” curve C0 may be singular at p. (This possibility is

directly related to the need, in some cases, to increase c beyond the PLC

threshold at p.) In those cases we separate the tangent directions on C0,

using (1.2.2)(b) (note that C0 singular at p =⇒ Tp(S) = Tp(C0)); the

vanishing (1.2.1) is then used to lift from C0 to S.

(3.2) Let S be a smooth surface, as before; let p denote a point on S,

and fix ~v ∈ Tp(S), ~v 6= ~0. Let Z denote the zero-dimensional subscheme of

length 2 of S, corresponding to (p,~v); in local coordinates (x, y) at p such

that ~v is tangent to (y = 0), Z is defined by the ideal IZ = (x2, y) · OS .

Let f : S1 → S be the blowing-up of S at p, with exceptional curve Ep,

and let V ∈ Ep correspond to (the direction of) ~v. Let g : S2 → S1 be the

blowing-up of S1 at V , with exceptional curve F~v, and let Fp = g−1Ep. Let

h = f ◦ g. Write

h∗B = h−1B + µpFp + µ~vF~v;(3.2.1)

µp = ordp(B), while (3.2.1) is the definition of µ~v.

More generally, if G is any effective Q-divisor on S, denote the order of

h∗G along F~v by o~v(G); o~v(G) = ordp(G) + ordV (f−1G). For convenience,

let oV (G)
def
= ordV (f−1G), and let µV = oV (B).

Note that, in general, o~v = ordp +oV and oV ≤ ordp; in particular:

µp ≤ µ~v ≤ 2µp.(3.2.2)

(3.3) Consider again (S,B,M) as in §1, and fix p,~v as in (3.2). Since

the proofs will now be more complex, we will state the criteria for separating

~v at p one by one, in increasing order of difficulty.

The first (and easiest) case is:

Proposition 5. (Case 1) If µp ≥ 3 or µ~v ≥ 4, then |KS + B + M |
separates ~v at p. (M must still be nef and big.)

Proof. Recall that the conclusion means that the restriction map

H0(S,KS + B + M) → H0(Z,KS + B + M |Z) ∼= OZ

is surjective.
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If µp ≥ 3, we use the vanishing theorem in the form (1.2.1)(a) for

KS1
+ df∗Me = f∗(KS + B + M) + Ep − bf∗Bc

= f∗(KS + B + M) − tEp,

where t = bµpc−1 ≥ 2, as in (1.4)–(1.5); then H0(S,KS+B+M) → OS/mp
t

is surjective, and since t ≥ 2, we have mp
t ⊂ IZ , i.e. OS/mp

t → OZ is also

surjective. (See also Remark 1.5.3.)

If µ~v ≥ 4, the argument is similar, starting on S2:

KS2
+ dh∗Me = h∗(KS + B + M) + Fp + 2F~v − bh∗Bc

= h∗(KS + B + M) − tpFp − t~vF~v,

where t~v = bµ~vc − 2 ≥ 2, and tp = bµpc − 1 ≥ 1 (indeed, by (3.2.2),

µp ≥ 1
2µ~v ≥ 2.) As in the previous case, we get a vanishing H1(S,OS(KS +

B + M) ⊗ I) = 0 for I = h∗OS2
(−tpFp − t~vF~v); Supp(OS/I) = {p} and

I ⊂ IZ , so the conclusion follows as before.

(3.4) Now assume that µp < 3 and µ~v < 4.

First consider the case 2 ≤ µp < 3. Then 2 ≤ µ~v < 4, and therefore

0 < (4 − µ~v) ≤ 2.

Proposition 5. (Case 2) Let 2 ≤ µp < 3 and 2 ≤ µ~v < 4. Assume

that M2 > (4 − µ~v)
2, M · C ≥ 1

2 (4 − µ~v) for every curve C ⊂ S through

p, and M · C ≥ (4 − µ~v) for every curve C containing Z – i.e., such that

p ∈ C and ~v ∈ Tp(C). Then |KS + B + M | separates ~v at p.

Proof.

(3.5) Claim. We can find an effective Q-divisor D on S such that

o~v(D) = 4 − µ~v and D ∼� tM for some t ∈ Q , 0 < t < 1. (See (3.2) for the

definition of o~v(D).)

Proof of (3.5). Choose a > (4− µ~v) such that M2 > a2. Then (h∗M −
aF~v)

2 = M2 − a2 > 0 and (h∗M − aF~v) · h∗M = M2 > 0; therefore

h∗M − aF~v ∈ N(S2)
+, the positive cone of S2, and in particular it is big.

(See, for example, [KM, (1.1)].) Therefore ∃T , effective Q-divisor on S2,

such that T ∼� h∗M − aF~v. Put D1 = h∗(T + aF~v); then D1 ∼� h∗(h
∗M) =

M . Also, h∗D1 = T +aF~v (their difference has support contained in Fp∪F~v ;
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on the other hand, T+aF~v ∼� h∗M =⇒ (h∗D1−(T+aF~v))·Fp = (h∗D1−(T+

aF~v)) · F~v = 0, and h∗D1 = T + aF~v follows from the negative definiteness

of the intersection form on h−1(p) = Fp ∪ F~v). We have D1 ∼� M and

o~v(D1) ≥ a > 4 − µ~v. Take D = tD1, t = 4−µ~v

o~v(D1) < 1.

Remark. The statement of (3.5) is similar to that of (1.6.1), and indeed,

we could have proved it as in §1. However, the proof we gave here is easier

to generalize, especially on singular surfaces.

(3.6) We return to the proof of proposition 5, case 2. Choose D as

in (3.5). Write B =
∑

biCi,D =
∑

diCi;Di = f−1Ci, Ti = g−1Di =

h−1Ci;h
∗B = h−1B + µpFp + µ~vF~v, h

∗D = h−1D + mpFp + (4 − µ~v)F~v,

where mp = ordp(D). We have KS2
= h∗KS + Fp + 2F~v .

If bi + di ≤ 1 for every Ci through p, then

KS2
+ dh∗(M − D)e(3.6.1)

= h∗(KS + B + M) + Fp + 2F~v − bh∗(B + D)c
= h∗(KS + B + M) − tpFp − 2F~v −

∑′
Ti − N2,

where
∑′ Ti extends over all i with bi + di = 1 and p ∈ Ci (if any), N2

is an effective divisor on S2 such that Supp(N2) ∩ h−1(p) = ∅, and tp =

bµp + mpc− 1 ≥ 1 (because µp ≥ 2 by hypothesis). Then we conclude as in

(3.3) (case 1 of the proposition), using the vanishing (1.2.1)(b) to dispose

of
∑′ Ti (if it is not zero).

(3.7) Now assume that bi + di > 1 for at least one Ci through p. Let

c
def
= min

{

3 − µp

mp
;
1 − bi

di
: bi + di > 1 and p ∈ Ci

}

.(3.7.1)

If c =
3−µp

mp
, we finish again as in case 1, using (1.2.1)(b) for

KS1
+ df∗(M − cD)e = f∗(KS + B + M) − 2Ep −

∑′
Di − N1

on S1, where
∑′ Di extends over all i such that bi + cdi = 1 and p ∈ Ci (if

any), and Supp(N1) ∩ Ep = ∅.
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(3.8) If c = 1−b0
d0

<
3−µp

mp
for some C0 through p, then

∑

(bi + cdi) · mult p(Ci) = µp + cmp < 3;

therefore multp(C0) ≤ 2, and moreover, if multp(C0) = 2, then bi + cdi < 1

for all Ci through p with i 6= 0. Also, µ~v + c(4 − µ~v) < 4 (since c < 1), and

therefore B + cD ≥ C0 =⇒ o~v(C0) ≤ 3.

(3.9) If C0 is singular at p and ~v /∈ TCp(C0) (the tangent cone to C0

at p), then o~v(C0) = 2. We have Z ⊂ C0, and

KS + dM − cDe = (KS + B + M) − bB + cDc
= (KS + B + M) − C0 − N,

with p /∈ Supp(N ). Using (1.2.1)(a), as in §1, it suffices to show that

((KS + B + M) − N)|C0
separates ~v at p on C0; that, in turn, will follow

from (1.2.2)(b), if we can show that dM − cDe · C0 > 2.

As before, write dM − cDe = (M − cD) + ∆; ∆ = {B + cD} and C0

intersect properly, and ∆ = B + cD − C0 in an open neighborhood of p.

We have: ordp(∆) = µp+cmp−2, and therefore ∆·C0 ≥ 2(µp+cmp−2).

However, we get a better estimate if we consider orders along F~v , as follows:

o~v(∆) = µ~v + c(4 − µ~v) − 2, because o~v(C0) = 2; ordp(∆) ≥ 1
2o~v(∆), and

therefore

∆ · C0 ≥ 1

2
o~v(∆) · 2 = µ~v + c(4 − µ~v) − 2.

Finally,

dM − cDe · C0(3.9.1)

= (M − cD) · C0 + ∆ · C0 = (1 − ct)M · C0 + ∆ · C0

≥ (1 − ct)(4 − µ~v) + µ~v + c(4 − µ~v) − 2

> 2 (because t < 1),

as required.

(3.10) If C0 is singular at p and ~v ∈ TCp(C0), then o~v(C0) = 3 (≥ 3 is

clear, and ≤ 3 was shown in (3.8)).

Working as in (3.9), we can show that

dM − cDe · C0 ≥ (1 − ct)(4 − µ~v) + µ~v + c(4 − µ~v) − 3 > 1(3.10.1)
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(now o~v(∆) = o~v(B + cD − C0) = µ~v + c(4 − µ~v) − 3); thus in this case we

cannot use (1.2.2)(b) as in (3.9). We will modify the argument as follows:

Start with f∗(M − cD) on S1; the vanishing theorem yields

H1(S1, f
∗(KS + B + M)−Ep −D0 −N1) = 0, N1 ∩Ep = ∅(3.10.2)

(the coefficient of Ep is −1 because 2 ≤ µp + cmp < 3; the first inequality

follows from µp ≥ 2, and the second was shown in (3.8)).

~v ∈ TCp(C0) =⇒ V ∈ D0 (recall that V ∈ Ep corresponds to ~v ∈
Tp(S)). (3.10.2) implies the surjectivity of the restriction map

H0(S1, f
∗(KS + B + M) − Ep − N1)(3.10.3)

→ H0(D0, f
∗(KS + B + M) − Ep − N1|D0

).

We will show that ∃Γ̃ ∈ |f∗(KS + B + M) − Ep − N1|D0
| such that V /∈

Supp(Γ̃). Then we can lift Γ̃ to Γ ∈ |f∗(KS + B + M) − Ep − N1|, since

(3.10.3) is surjective. Γ + Ep + N1 ∈ |f∗(KS + B + M)| has the form f∗Λ

for some Λ ∈ |KS + B + M |. Finally, p ∈ Supp(Λ), because f∗Λ ≥ Ep, but

~v /∈ Tp(Λ), because V /∈ Supp(f ∗Λ − Ep); this shows that |KS + B + M |
separates ~v at p on S.

To prove the existence of Γ̃, note that (f∗(KS +B+M)−Ep−N1)|D0
=

KD0
+ df∗(M − cD)e|D0

; we will show that df∗(M − cD)e · D0 > 1 – then

(1.2.2)(a) implies the existence of Γ̃.

As in (1.9), we can write df∗(M − cD)e = f∗(M − cD) + ∆1, where

∆1 = {f∗(B + cD)} and D0 intersect properly, and ∆1 = f∗(B + cD) −
2Ep −D0 = f∗(B + cD−C0) in a neighborhood of Ep (the coefficient of Ep

in f∗(B + cD) is µp + cmp, and 2 ≤ µp + cmp < 3). We have:

df∗(M − cD)e · D0(3.10.4)

= f∗(M − cD) · D0 + ∆1 · D0

≥ (M − cD) · C0 + ord p(B + cD − C0) · mult p(C0)

≥ (1 − ct)(4 − µ~v) + µ~v + c(4 − µ~v) − 3

> 1

as in (3.10.1).

(3.11) Now consider the case: C0 smooth at p and tangent to ~v, and

bi + cdi < 1 for all i 6= 0 with p ∈ Ci.
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Write dM − cDe = (M − cD) + ∆, where ∆ and C0 intersect properly;

then ∆·C0 = h∗∆·T0 (projection formula: recall that T0 = h−1C0) ≥ o~v(∆),

because F~v ·T0 = 1; since ∆ = {B + cD} = B + cD−C0 in a neighborhood

of p, we have o~v(∆) = µ~v + c(4 − µ~v) − 2, and therefore

dM − cDe · C0 ≥ (1 − ct)(4 − µ~v) + µ~v + c(4 − µ~v) − 2 > 2,

exactly as in (3.9.1). Thus KC0
+ dM − cDe|C0

separates ~v on C0; we

conclude as in (3.9).

(3.12) If C0 is smooth at p and tangent to ~v, and moreover bi +cdi = 1

for at least one i 6= 0 with p ∈ Ci, then: such an i is unique, say i = 1, and

C1 must be smooth at p and not tangent to ~v; indeed, B + cD ≥ C0 + C1,

while ordp(B + cD) < 3 and o~v(B + cD) < 4.

In this case reverse the roles of C0 and C1: thus C0 will be smooth at

p and not tangent to ~v. This situation is covered below, in (3.13).

(3.13) Finally, assume that C0 is smooth at p and not tangent to ~v. In

this case we work with M − c′D for some c′ ≥ c, namely:

c′
def
= min

{

1;
3 − µp

mp
;
2 − b0

d0
;
1 − bi

di
with i 6= 0, p ∈ Ci and bi + di ≥ 1

}

.

In all cases, M−c′D ∼� (1−c′t)M is still nef and big; using the vanishing

H1(S,KS + dM − c′De) = 0, or the corresponding vanishing on S1 or S2,

we will show that ∃Λ ∈ |KS + B + M − C0 − N |, p /∈ Supp(N ), such that

p /∈ Supp(Λ). Then Λ+C0 +N ∈ |KS +B +M | has the unique component

C0 through p not tangent to ~v, as required.

It remains to prove the existence of Λ.

(3.13.1) If c′ =
3−µp

mp
, then (1.2.1)(b) yields

H1(S1, f
∗(KS + B + M) − 2Ep − D0 − N1) = 0, N1 ∩ Ep = ∅;

thus H1(S1, f
∗(KS + B + M − C0 − N) − Ep) = 0, where N = f∗N1, and

the existence of Λ follows.

When c′ = 1 the proof is similar, starting on S2, as in the proof of

case 1 of the proposition.

(3.13.2) If c′ = 1−b1
d1

<
3−µp

mp
for another curve C1 through p with

b1 + d1 > 1, then C1 must be smooth at p (because B + c′D ≥ C0 + C1,
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and ordp(B + c′D) = µp + c′mp < 3). We may have c′ = c (e.g., in the case

discussed in (3.12)), or c′ > c. In any event, bi + c′di < 1 for all curves Ci

through p, i 6= 0, 1. (1.2.1)(a) yields:

H1(S,KS + B + M − C0 − C1 − N) = 0, p /∈ Supp(N ).(3.13.3)

We claim that p /∈ Bs |KS + B + M − C0 − N |C1
|, which in turn follows

from (1.2.2)(a) once we show that dM −c′De ·C1 > 1. Then we use (3.13.3)

to lift from C1 to S, proving the existence of Λ as stated.

dM −c′De = (M −c′D)+∆′, with ∆′ = {B+c′D} = B+c′D−C0−C1

in a neighborhood of p, and ∆′, C1 intersect properly.

If ~v /∈ Tp(C1), then M · C1 ≥ 1
2(4 − µ~v) by hypothesis, and ordp(∆

′) ≥
1
2o~v(∆

′) = 1
2(µ~v + c′(4 − µ~v) − 2); therefore

dM − c′De · C1 ≥ 1

2
(1 − c′t)(4 − µ~v) +

1

2
(µ~v + c′(4 − µ~v) − 2) > 1,

as required (compare to (3.9.1)). The proof is the same when c′ = 2−b0
d0

, i.e.

C1 = C0; in that case p /∈ Bs |KS + B + M − C0 − N |C0
|.

If ~v ∈ Tp(C1), then M ·C1 ≥ 4−µ~v and ∆′ ·C1 ≥ o~v(∆
′) = µ~v + c′(4−

µ~v) − 3; all told, we have

dM − c′De · C1 ≥ (1 − c′t)(4 − µ~v) + µ~v + c′(4 − µ~v) − 3 > 1,

as claimed.

This concludes the proof of proposition 5, case 2.

(3.14) Finally, consider the case 0 ≤ µp < 2 (and therefore 0 ≤ µV < 2

and 0 ≤ µ~v = µp + µV < 4).

Proposition 5. (Case 3) Assume that 0 ≤ µp < 2. Assume, more-

over, that M2 > (β2,p)
2 + (β2,V )2 and

(i) M · C ≥ β1 for every curve C ⊂ S passing through p,

(ii) M · C ≥ 2β1 for every curve C containing Z (i.e., passing through p

and with ~v ∈ Tp(C) ),

where β2,p, β2,V , β1 are positive numbers which satisfy:

β2,p ≥ 2 − µp, β2,V ≥ 2 − µV ;(3.14.1)

β1 ≥ min

{

1

2
(4 − µ~v);

β2,p + β2,V

β2,p + β2,V − (2 − µ~v)

}

(3.14.2)
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Proof. The proof is very similar, in many respects, to that of case 2. We

indicate the main steps of the proof, and we provide explicit computations

in a few cases, to show what kind of alterations are needed.

(3.15) Claim. We can find D, an effective Q-divisor on S, such that

o~v(D) = 4 − µ~v and D ∼� tM for some t ∈ Q , t > 0, satisfying

t <
4 − µ~v

β2,p + β2,V
(3.15.1)

– and therefore, in particular, t < 1.

Proof of (3.15). Choose a > β2,p, b > β2,V , such that M2 > a2 +b2. We

have (aFp +(a+b)F~v)
2 = −(a2 +b2), and therefore h∗M − (aFp +(a+b)F~v)

is big, as in the proof of (3.5). Thus we can find D1 ∼� M on S, D1 ≥ 0,

such that h∗D1 ≥ aFp + (a + b)F~v. Then take D = tD1, with

t =
4 − µ~v

o~v(D1)
≤ 4 − µ~v

a + b
<

4 − µ~v

β2,p + β2,V
.

(3.16) If D =
∑

diCi, as before, and bi + di ≤ 1 for every Ci through

p, we conclude as in (3.6).

If bi + di > 1 for at least one Ci through p, then define

(3.16.1) c = min

{

3 − µp

mp
;
1 − bi

di
: bi + di > 1 and p ∈ Ci

}

.

If c =
3−µp

mp
, we finish as in (3.7).

If c = 1−b0
d0

<
3−µp

mp
for some C0 through p, then multp(C0) ≤ 2 and

o~v(C0) ≤ 3; if C0 is singular at p, then it is the only Ci through p with

bi + cdi ≥ 1, and we proceed as in (3.9) or (3.10), according to whether

~v ∈ TCp(C0) or not. Only the proof of dM − cDe ·C0 > 2 (if ~v /∈ TCp(C0))

or > 1 (if ~v ∈ TCp(C0)) needs adjustment.

Assume first that ~v /∈ TCp(C0) (with C0 singular at p). Then dM −
cDe = (M − cD) + ∆,∆ = {B + cD} = B + cD −C0 in a neighborhood of

p, and o~v(∆) = µ~v + c(4 − µ~v) − 2; ordp(∆) ≥ 1
2o~v(∆) and multp(C0) = 2,

so that

dM − cDe · C0 ≥ (1 − ct)(2β1) + µ~v + c(4 − µ~v) − 2.(3.16.2)
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If β1 ≥ 1
2(4 − µ~v), then dM − cDe · C0 > 2 follows from (3.16.2) and

t < 1. In particular, this is true if µ~v ≥ 2. If µ~v < 2, the hypothesis is

weaker than β1 ≥ 1
2(4 − µ~v), namely:

β1 ≥ β2,p + β2,V

β2,p + β2,V − (2 − µ~v)
.(3.16.3)

Assume also that β1 < 1
2 (4−µ~v) (otherwise we are done). Then dM − cDe ·

C0 > 2 follows from (3.16.2), (3.16.3), (3.15.1), and c ≥ 2−µ~v

4−µ~v
, exactly as in

(1.11).

Now consider the case ~v ∈ TCp(C0) (with C0 still singular at p). Using

the strategy of (3.10), all we need to prove is dM − cDe · C0 > 1, which

follows from

dM − cDe · C0 ≥ (1 − ct)(2β1) + µ~v + c(4 − µ~v) − 3(3.16.4)

(same computation as in (3.10) – see (3.10.4)). Using (3.16.4), the inequality

dM − cDe · C0 > 1 is proved exactly as in the previous paragraph.

(3.17) If C0 is smooth at p, ~v ∈ Tp(C0), and bi + cdi < 1 for every Ci

through p with i 6= 0, then the proof goes as in (3.11); the inequality we

need in this case, dM − cDe · C0 > 2, is proved as above.

As in the proof of case 2 of the proposition, if C0 is smooth at p and

tangent to ~v, and b1 + cd1 = 1 for one more curve C1 through p, then C1 is

unique with these properties, and is smooth at p and ~v /∈ Tp(C1). Switching

C0 and C1, we are in the situation discussed below. (Compare to (3.12).)

(3.18) Finally, assume that C0 is smooth at p and ~v /∈ Tp(C0). Define

c′ = min

{

1;
3 − µp

mp
;
2 − b0

d0
;
1 − bi

di
: i 6= 0, bi + di > 1 and p ∈ Ci

}

.

Consider, for example, the case c′ = 2−b0
d0

< 1 and <
3−µp

mp
. In this case,

we show that p /∈ Bs |KS + B + M − C0 − N |, for some effective divisor N

supported away from p. Using the vanishing

H1(S,KS + dM − c′De) = H1(S,KS + B + M − 2C0 − N) = 0,

it suffices to show that p /∈ Bs |KS + B + M − C0 − N |C0
|; this, in turn,

will follow from (1.2.2)(a) and dM − c′De · C0 > 1.
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Now C0 passes through p but is not tangent to ~v, and therefore we

have only M · C0 ≥ β1 (rather than 2β1). dM − c′De = (M − c′D) + ∆′,

with ∆′ = B + c′D− 2C0 in a neighborhood of p, and therefore ordp(∆
′) ≥

1
2(µ~v + c′(4 − µ~v) − 2); it suffices to show that

(1 − c′t)β1 +
1

2
(µ~v + c′(4 − µ~v) − 2) > 1.

An inequality equivalent to this one was already proved in (3.16).

The proof in the remaining cases is a similar adaptation of the argu-

ments in (3.13).

4. Example

Fix an integer n, n ≥ 1. Let S be the nth Hirzebruch surface, i.e.

the geometrically ruled rational surface P(E), where E is the rank 2 vector

bundle O� 1 ⊕O� 1(−n) on P1. Let π : S → P1 be the ruling of S, and let F

denote a fiber of π. S contains a unique irreducible curve G with negative

self-intersection, G2 = −n. Pic(S) ∼= Z ⊕ Z, with generators F and G;

F 2 = 0, F · G = 1. KS ∼ −2G − (n + 2)F . If C is any irreducible curve on

S, then C = G, C ∼ F , or C ∼ aG + bF with a, b ∈ Z, a ≥ 1 and b ≥ na.

All these properties are proved, for example, in [Har1, Ch.V, §2].

Let Hm = G + mF . We will use the Reider-type results for Q-divisors

to prove the following facts:

Claim. (1) (See [Bv, Ch.IV, Ex.1].) |Hn| is base-point-free, and defines

a morphism φn : S → Pn+1. Moreover, φn is an isomorphism on S \G, and

S̄ = φn(S) ⊂ Pn+1 is a (projective) cone with vertex x = φn(G). (Thus S̄ is

the cone over a normal rational curve contained in a hyperplane Pn ⊂ Pn+1,

because G ∼= P1 and G2 = −n. φn is the blowing-up of S̄ at x.)

(2) |Hm| is very ample for m ≥ n+1, defining an embedding φm : S →
P2m−n+1. (See [Bv, Ch.IV, Ex.2] for other properties of |Hm|.)

Certainly, these facts can be proved in many different ways. For in-

stance, for (1): if G ⊂ S is a smooth rational curve with negative self-

intersection on any smooth surface S, then there is a projective contraction

φ : S → S̄, which is an isomorphism on S \ G and contracts G to a normal

point x. (This is a direct generalization of the “easy” part of Castelnuovo’s

criterion – the “hard” part being the regularity of S̄ at x when G2 = −1.)

The proof can be adapted to the situation of the Claim. Alternatively, most

of the Claim is proved in [Har1, Ch.V, Theorem 2.17].
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The methods used in these proofs are somewhat specialized (the “nor-

mal contraction” approach depends on Pic(G) ∼= Z; the proof in [Har1] is

typical for ruled surfaces). From this point of view, Reider’s theorem, which

is based only on intersection numbers, is much more general. However, as

we will see, Reider’s theorem doesn’t apply in the situation of the Claim.

The proof we give below shows that there are instances where the scope of

Reider’s original results can be broadened by allowing Q-divisors into the

picture.

Proof of the Claim

(1) Write Hn = KS +L, thus defining L = Hn −KS = 3G+(2n+2)F .

Then L · G = 3(−n) + (2n + 2) = −n + 2; thus L is not nef for n ≥ 3, and

therefore Reider’s criterion does not apply. However, write L as B + M ,

with B = (1 − ε)G and M = (2 + ε)G + (2n + 2)F, ε ∈ (0, 1). Then

M · F = (2 + ε), M · G = (2 − εn), M2 = (2 + ε)(2n + 4 − εn).

In particular, for ε → 0, we have M ·F → 2,M ·G → 2,M2 → 2(2n+4) ≥ 12.

Fix ε > 0, ε � 1, such that M2 > 9,M · F ≥ 3
2 , and M · G ≥ 3

2 . Since

any irreducible curve C ⊂ S is either C = G, or C ∼ F , or C ∼ aG + bF

with a ≥ 1 and b ≥ na, we automatically have M · C ≥ 3
2 for all such C.

(We will use this observation again later: if M · G ≥ 0 and C 6= G is an

irreducible curve, then M · C ≥ M · F .) Therefore |Hn| is base-point-free

by Proposition 3, part 2, with β2 = 3 and β1 = 3
2 = β2

β2−1 .

Thus |Hn| defines a morphism φn : S → Pν , ν = dim |Hn|. We compute

ν. By Riemann–Roch, we have:

χ(S,Hn) =
Hn · (Hn − KS)

2
+ χ(S,OS) = n + 2.

We get ν = h0(S,Hn) − 1 = n + 1, as stated in the Claim, if we can show

that hi(S,Hn) = 0 for i ≥ 1. If we write Hn = KS +L, as before, Kodaira’s

vanishing theorem does not apply, because L is not ample (it is not even

nef). If we write L = B + M as above, though, we get hi(S,Hn) = 0 for

i ≥ 1, by (1.2.1)(a).

Next we show that φn is an isomorphism on S \ G. Consider two

distinct points p, q ∈ F \G. Write L = B′ + M ′, with B′ = (1− ε)G + (1−
α)F, M ′ = (2 + ε)G + (2n + 1 + α)F, ε, α ∈ (0, 1). (Note that we may use

any decomposition of L of the form B +M , as long as dMe = L.) We have:

M ′ · F = (2 + ε), M ′ · G = (1 + α − εn),
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(M ′)2 = (2 + ε)(2n + 2 + 2α − εn).

In particular, for ε, α → 0, M ′ is nef and big and M ′ → 2(2n + 2) ≥ 8.

Let µ
def
= µp = µq = 1 − α. Choose β2 = β2,p = β2,q = 3

2 (say); then

β2 ≥ 2 − µ = 1 + α and (M ′)2 > 2(β2)
2 for ε, α � 1.

Fix ε � 1, and then choose α � ε such that 1 + ε
2 ≥ β2

β2−(1−µ) = β2

β2−α
;

this can be done, because β2

β2−α
→ 1 for α → 0. Then M ′ ·F = 2 + ε = 2β1,

with β1 = 1+ ε
2 — and therefore M ′ ·C ≥ 2β1 for every irreducible curve C

through p or q. Hence proposition 4, part 3, applies (with β1,p = β1,q = β1):

|Hn| separates (p, q).

If p, q ∈ S \ G are distinct points on another irreducible curve F̄ ∼ F ,

the proof is similar — take B′ = (1 − ε)G + (1 − α)F̄ . (We say F̄ ∼ F

instead of “fiber of π : S → P1”, to emphasize that the proof uses numerical

arguments only.) Finally, if no such curve passes through both p and q, the

proof is even easier.

Separation of tangent directions on S \ G is proved exactly the same

way; note that µp(B
′) = µV (B′) = 1 − α if B′ = (1 − ε)G + (1 − α)F, p ∈

F \ G, and ~v ∈ Tp(F ) \ {~0}.
Hn · G = 0 and Hn · F = 1; therefore φn contracts G to a point x ∈

S̄ = φn(S) ⊂ Pn+1, and φn(F̄ ) is a straight line in Pn+1 for every F̄ ∼ F .

(2) As in part (1) of the Claim, we can show that |Hm| is base-point-

free for m ≥ n + 1, and defines a morphism φm : S → P2m−n+1 which is an

isomorphism on S\G. For m ≥ n+1, we must show that |Hm| separates p, q

even when p (or q, or both) is on G, and also that |Hm| separates tangent

directions at every point p ∈ G.

Let {p} = F ∩ G and ~v ∈ Tp(G) \ {~0}. We will show that |Hn+1|
separates ~v at p; the other properties have similar proofs.

Write Hn+1 = KS + L, L = 3G + (2n + 3)F . Write L = B + M, B =

(1 − ε)G, M = (2 + ε)G + (2n + 3)F, ε ∈ (0, 1). We have:

M · F = (2 + ε), M · G = (3 − εn), M2 = (2 + ε)(2n + 6 − εn).

For ε → 0 we have M · F → 2, M · G → 3, and M2 → 2(2n + 6) ≥ 16; in

particular M is nef and big. (Note that L itself is not nef, if n ≥ 4; indeed,

L · G = 3 − n.) We have M · C ≥ 2 + ε for every irreducible curve C ⊂ S

(assuming that ε � 1); also, if ~v ∈ Tp(C), then M · C ≥ 3 − εn, because

in that case C ∼ aG + bF with a ≥ 1 (proof: if C 6= G, then C · G ≥ 2,

because ~v ∈ TpC ∩ TpG; therefore C 6∼ F .)
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We have µp = µV = 1 − ε, and µ~v = 2(1 − ε). Choose β2 = β2,p =

β2,V = 2 (say), so that M2 > 2(β2)
2, β2,p ≥ 2 − µp, and β2,V ≥ 2 − µV .

Put β1 = 2β2

2β2−(2−µ~v) = β2

β2−ε
. For ε � 1, we have:

M · C = 2 + ε ≥ β1 for all curves C ⊂ S,

M · C = 3 − εn ≥ 2β1 for all C containing (p,~v).

(Note that β1 = β2

β2−ε
→ 1 as ε → 0, so these inequalities are verified for all

ε � 1.) Now use proposition 5, case 3.

By inspecting the proof of the Claim, we can see that the only assump-

tions we used were that Pic(S) = ZG ⊕ ZF, G2 = −n, F 2 = 0, G · F =

1, and KS = −2G − (n + 2)F (if the other hypotheses are satisfied, the

last condition is equivalent to: G and F are smooth rational curves); this

suggests the following

Exercise. A surface S with these properties is isomorphic to the nth

Hirzebruch surface.

Hint. There are several ways to see this. One, of course, is to use part

(1) of the Claim: after all, we have shown that S is the blowing-up of the

cone over the normal rational curve of degree n.

Another solution is to show that |F | is base-point-free and dim |F | = 1,

as in the proof of part (1) of the Claim; thus φ = φ|F | realizes S as a

geometrically ruled surface over P1, as required. (S is minimal, because

C2 ≥ 0 for every irreducible curve C 6= G; this follows easily from the

hypotheses.)
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