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NOTE ON E-POLYNOMIALS ASSOCIATED TO
Z4-CODES

NUR HAMID

Abstract. The invariant theory of finite groups can connect the coding theory

to the number theory. In this paper, under this conformity, we obtain the minimal

generators of the rings of E-polynomials constructed from the groups related to Z4-

codes. In addition, we determine the generators of the invariant rings appearing

by E-Polynomials and complete weight enumerators of Type II Z4-codes.

1. Introduction

Our study is inspired by the idea of Motomura and Oura [6]. In their paper, they

introduced the E-polynomials associated to the Z4-codes. They determined both

the ring and the field structures generated by that E-polynomials. E-polynomials

associated to the binary codes were investigated in a previously conducted study (see

[7]). In the present paper, we deal with Z4-codes. Then, we define an E-polynomial

with respect to the complete weight enumerator of Z4-codes and show that the ring

generated by them is minimally generated by E-polynomials of the following weights:

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

It seems that the ring generated by E-polynomials is not sufficient to generate the

invariant ring for the finite group G8 defined in the next section. By combining the

E-polynomials and the complete weight enumerators of Z4-codes, we present the

generators of that invariant ring.

We denote by C the field of complex number as usual. Let Aw be a finite-

dimensional vector space over C. We write the dimension formula of A by the

formal series
∞∑

w=0

(dimAw)t
w.
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For the dimension formulas and the basic theory of E-polynomials used herein, we

refer to references [1] and [6]. For the computations, we use Magma [3] and SageMath

[9]. The generator matrices of the groups and the codes used can be found in [5].

2. Preliminaries

We denote a primitive 8-th root of unity by η8. Following the notation used in [1],

let G be a finite matrix group generated by

η8
2


1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i


and diag [1, η8,−1, η8]. LetG

8 be a matrix group generated byG and diag [η8, η8, η8, η8].

The group G is of order 384, whereas G8 is of order 1536. We denote by R and R8

the invariant rings of G and G8, respectively:

R = C[t0, t1, t2, t3]
G,

R8 = C[t0, t1, t2, t3]
G8

under an action of such matrices on the polynomial ring of four variables t0, t1, t2,

and t3. The dimension formulas of R and R8 are given as follows:∑
w

(dimRw) t
w =

1 + t8 + 2t10 + 2t12 + 2t14 + 2t16 + t18 + t20 + t22 + t26 + t28 + t30

(1− t8)3 (1− t12)
,

∑
w

(
dimR8

w

)
tw =

1 + t8 + 2 t16 + 2 t24 + t32 + t40

(1− t8)3 (1− t24)
.

In the next section, we present a fundamental theory of codes that can help us

obtain the generators of ring R8.

3. Codes

A code C over Z4 of length n, called Z4-code, is an additive subgroup of Zn
4 . The

inner product of two elements a, b ∈ C on Zn
4 is given by

(a, b) = a1b1 + a2b2 + ...+ anbn mod 4

where a = (a1, a2, ..., an) and b = (b1, b2, ..., bn). The dual of C is code C⊥ satisfying

C⊥ = {y ∈ Zn
4 |(x, y) ≡ 0 mod 4,∀x ∈ C}.
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We say that C is self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥. A code C is

called Type II if it is self-dual and satisfies

(x, x) ≡ 0 mod 8

for all x ∈ C. Type II Z4-code can only exist when its length is multiple of 8.

There are several types of weight enumerators associated with a Z4-code. In this

paper, we deal with complete weight enumerators.

The complete weight enumerator (CW) of a Z4-code C is defined by

CWC(t0, t1, t2, t3) =
∑
c∈C

t
n0(c)
0 t

n1(c)
1 t

n2(c)
2 t

n4(c)
3

where ni(c) denotes the number of c components which are equivalent to i modulo

4. For every Type II Z4-code, CWC(t0, t1, t2, t3) is G
8-invariant (see [2]). From the

dimension formula of R8, we have the following proposition.

Proposition 3.1. The invariant ring R8 can be generated by the set of complete

weight enumerators of Type II Z4-codes consisting of at most

4 codes of length 8,

2 codes of length 16,

3 codes of length 24,

1 code of length 32,

1 code of length 40.

We denote by p8a, p8b, o8, k8, p16a, p16b, q24a, q24b, g24, q32 the complete weight enu-

merators of some codes. The numbers written as subscript denote the degree of each

polynomial. The codes o8, k8, and g24 are known as octacode, Klemm code, and

Golay code, respectively. The generator matrices of the complete weight enumera-

tors which are denoted by p are taken from [8]. We give the generator matrices of

other complete weight enumerators in Appendix 5.2. The following are the explicit
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forms of some complete weight enumerators:

p8a = t80 + 4t30t
4
1t2 + 12t60t

2
2 + 4t0t

4
1t

3
2 + 38t40t

4
2 + 12t20t

6
2 + t82 + 4t71t3 + 16t30t

3
1t2t3

+ 16t0t
3
1t

3
2t3 + 24t30t

2
1t2t

2
3 + 24t0t

2
1t

3
2t

2
3 + 28t51t

3
3 + 16t30t1t2t

3
3 + 16t0t1t

3
2t

3
3

+ 4t30t2t
4
3 + 4t0t

3
2t

4
3 + 28t31t

5
3 + 4t1t

7
3,

p8b = t80 + 8t30t
4
1t2 + 12t60t

2
2 + 8t0t

4
1t

3
2 + 38t40t

4
2 + 12t20t

6
2 + t82 + 16t61t

2
3 + 48t30t

2
1t2t

2
3

+ 48t0t
2
1t

3
2t

2
3 + 32t41t

4
3 + 8t30t2t

4
3 + 8t0t

3
2t

4
3 + 16t21t

6
3,

k8 = t80 + t81 + 28t60t
2
2 + 70t40t

4
2 + 28t20t

6
2 + t82 + 28t61t

2
3 + 70t41t

4
3 + 28t21t

6
3 + t83,

o8 = t80 + t81 + 14t40t
4
2 + t82 + 56t30t

3
1t2t3 + 56t0t

3
1t

3
2t3 + 56t30t1t2t

3
3 + 56t0t1t

3
2t

3
3

+ 14t41t
4
3 + t83,

p16a = t160 + 30t80t
8
1 + t161 + 140t120 t42 + 420t40t

8
1t

4
2 + 448t100 t62 + 870t80t

8
2 + 30t81t

8
2

+ 448t60t
10
2 + 140t40t

12
2 + t162 + 3360t60t

6
1t

2
2t

2
3 + 6720t40t

6
1t

4
2t

2
3 + 3360t20t

6
1t

6
2t

2
3

+ 420t80t
4
1t

4
3 + 140t121 t43 + 6720t60t

4
1t

2
2t

4
3 + 19320t40t

4
1t

4
2t

4
3 + 6720t20t

4
1t

6
2t

4
3

+ 420t41t
8
2t

4
3 + 448t101 t63 + 3360t60t

2
1t

2
2t

6
3 + 6720t40t

2
1t

4
2t

6
3 + 3360t20t

2
1t

6
2t

6
3

+ 30t80t
8
3 + 870t81t

8
3 + 420t40t

4
2t

8
3 + 30t82t

8
3 + 448t61t

10
3 + 140t41t

12
3 + t163 .

Since other weight enumerators are too large, we do not write them.

Let W be a ring generated by the complete weight enumerators aforementioned:

W = C[p8a, p8b, o8, k8, p16a, p16b, q24a, q24b, g24, q32].

By obtaining the dimension of W, we have the following result.

Theorem 3.1. The invariant ring R8 can be generated by W.

Proof. By Proposition 3.1, we generate W by utilizing some complete weight enu-

merators of non-equivalent codes. Then, we compute the dimension of W. The

dimension of each Wk is shown in Table 1. This completes the proof of Theorem

3.1. □

Table 1. The dimensions of R8
k and Wk

k 8 16 24 32 40

dimR8
k 4 11 25 48 83

dimW 4 11 25 48 83

It is noteworthy that we do not need to use the code of length 40. On the next

section, we shall give the generators of R8 by the weight enumerators of Type II

Z4-codes and E-polynomials.
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4. E-Polynomials

Let t be a column vector that comprises the following: t0, t1, t2, and t3. An E-

polynomial of weight k for G is defined by

φG
k = φG

k (t) =
1

|G|
∑
σ∈G

(σ0t)
k =

|K|
|G|

∑
K\G∋σ

(σ0t)
k

where

K = {


1 0 0 0

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

 ∈ G}

and σ0 is the first row of σ. We apply the same definition for G8. The subgroup

K of G is of order 8 and K8 of G8 is of order 16. For simplicity, we denote by φk

without specifying the group. We denote by E and E8 the rings generated by φk’s

for the groups G and G8, respectively.

Denote by κ the cardinality of K\G. For clarity, we write κG instead of κ by

including the group objected. It is clear that κG = 48 and κG8 = 96.

Theorem 4.1. (1) The ring E is generated by φk where

k ≡ 0 mod 4, 8 ≤ k ≤ 48.

(2) The ring E8 is generated by φk where

k ≡ 0 mod 8, 8 ≤ k ≤ 96.

Proof. (1) For each representative σi of K\G (1 ≤ i ≤ κ), let xi = σ′
it, where σ′

i

is the first row of σi. Then, every φi can be expressed in C[x1, . . . , xκ]. By the

fundamental theorem of symmetric polynomials, every φi can be written uniquely

in εi, . . . , εκ ∈ C[x1, . . . , xκ] where

εr =
∑

i1<i2<...<ir

xi1xi2 . . . xir , (1 ≤ r ≤ κ).

We mention that φ4=0. This completes the proof.

(2) The proof follows similarly that of Theorem 4.1 (1). □

Theorem 4.1 informs us that the rings E and E8 are finitely generated. Hence, we

can find their minimal generators. In the next theorem, we determine the generators

of both E and E8.

Theorem 4.2. (1) E is minimally generated by the E-polynomials of weights

8, 12, 16, 20, 24, 28, 32, 40, 48.
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Table 2. The dimensions of Rk and Ek

k 8 12 16 20 24 28 32 36 40 44 48

dimRk 4 3 16 11 25 27 48 54 83 94 133

dimEk 1 1 2 2 4 4 4 7 7 10 18

Table 3. The dimensions of R8
k and E8

k

k 8 16 24 32 40 48 56 64 72 80 88 96

dimR8
k 4 11 25 48 83 133 200 287 397 532 695 889

dimE8
k 1 2 3 5 7 11 15 22 30 42 52 61

(2) E8 is minimally generated by the E-polynomials of weights

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

Proof. For each k, we construct the rings Ek and E8
k. Then, we determine whether

φk is generator or not. The dimensions of each E and E8 are demonstrated in Tables

2 and 3. This completes the proof of Theorem 4.2.

Now, we obtain the relation between E8 and R8. From Table 3, we observe that

the ring E8 is not sufficient to generate R8. By combining R8 and W, we have the

following theorem.

Theorem 4.3. The invariant ring R8 can be generated by E8 and the complete

weight enumerators

p8, o8, k8, p16, p24, q24, p32.

More specifically, the set

{φk, p8, o8, k8, p16, p24, q24, p32 | k = 8, 16, 24}

generates ring R8.

Proof. Denote by R̃ the polynomial generated by E8 and the complete weight enu-

merators aforementioned. Then we construct R̃k for k ≡ 0 mod 8 and 8 ≤ k ≤ 96.

It follows that each φk for k ̸= 8, 16, 24 is linearly dependent. We compute the di-

mension of each R̃k and write the results in Table 4. This completes the proof. □

Table 4. The dimensions of R8
k and R̃k

k 8 16 24 32 40

dimR8
k 4 11 25 48 83

dimR̃k 4 11 25 48 83
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5. Appendices

5.1. Other E-polynomials

Let G and H be the matrix groups described as follows:

G = ⟨ 1

i
√
3

(
1 2

1 −1

)
,

(
1 0

0 e
2πi
3

)
⟩,

H = ⟨

1 2 2

1 ζ + ζ4 ζ2 + ζ3

1 ζ2 + ζ3 ζ + ζ4

 ,

1 0 0

0 ζ2 0

0 0 ζ3

 ,−

1 0 0

0 0 1

0 1 0

⟩.

The group G is of order 24, whereas H is of order 120. The group G is related to

the self-dual ternary codes, whereas H is related to the ring of symmetric Hilbert

modular form. The discussion on these group can be found in [4].

By utilizing the same method discussed, we have that the ring generated by E-

polynomials φG
k s (respectively φH

k s) is minimally generated by E-polynomials φ4 and

φ6 (respectively φ2, φ6, and φ10). Thus, we have that

E(G) = ⟨φ4, φ6⟩

and

E(H) = ⟨φ2, φ6, φ10⟩.
The following tables present the dimensions of E for each group.

Table 5. The dimensions of R(G)k and E(G)k

k 4 6

dimRk 1 1

dimEk 1 1

Table 6. The dimensions of R(H)k and E(H)k

k 2 4 6 8 10

dimR8
k 1 1 2 2 3

dimE8
k 1 1 2 2 3

From Tables 5 and 6, we can conclude that E(G) (respectively E(H)) satisfies

dimE(G)k = dimR(G)k
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(dimE(H)l = dimR(H)l)

for k ≥ 4 and k ≡ 0 mod 2 (respectively l ≡ 0 mod 2). The dimension formulas

of R(G) and R(H) can be written as follows.

G :
1

(1− t4)(1− t6)
,

H :
1

(1− t2)(1− t6)(1− t10)
.

5.2. Generator Matrices

The generator matrix of q24a and q24b are given by

q24a :



101011100110002100101101

010011020110002300110000

002000000000000200020020

000111010000000200020020

000020020000000000020002

000002020000000000020002

000000200000000200020020

000000001110001200020002

000000000200002000020002

000000000020002000020002

000000000001112100011121

000000000000200200020002

000000000000020200020002

000000000000000011131131

000000000000000002000020

000000000000000000220022

000000000000000000002002

000000000000000000000202



, q24b :



100000100100000201011213

011000020100000201011011

002000200000000000000202

000111210000000000000202

000020020000000000000000

000002020000000000000000

000000001110001200011323

000000000200000000000002

000000000020000000000200

000000000001110100000002

000000000000200200000000

000000000000020200000000

000000000000002000000200

000000000000000011100012

000000000000000002000020

000000000000000000200222

000000000000000000020002

000000000000000000002002



— 38 —



The generator matrix of q32 is given by



10101010011000000010001201012123

01001000011000000010001201001020

00200002000000000000000000000022

00011103000000000000000000013101

00002002000000000000000000002002

00000202000000000000000000000000

00000022000000000000000000000022

00000000111000120000000000002002

00000000020000200000000000002002

00000000002000200000000000002002

00000000000111210000000000000000

00000000000020020000000000000000

00000000000002020000000000000000

00000000000000001110001200002002

00000000000000000200002000002002

00000000000000000020002000000000

00000000000000000001112100000000

00000000000000000000200200000000

00000000000000000000020200000000

00000000000000000000000011111133

00000000000000000000000002002022

00000000000000000000000000200020

00000000000000000000000000020002

00000000000000000000000000000202
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