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CYCLIC VECTORS IN FOCK-TYPE SPACES OF
SINGLE VARIABLE

HANSONG HUANG AND KOU HEI IZUCHI

Abstract. This paper mainly considers cyclic vectors in the Fock-type spaces

Lp,s
a,α(C) (α > 0, p ≥ 1, s > 0) which consists of all entire functions f such that

|f |p is integrable with respect to the measure exp(−α|z|s)dA(z). The case of s

not being an integer was done in [9], where cyclic vectors are exactly those non-

vanishing entire functions in Lp,s
a,α(C). In this paper it is shown that for each

positive integer s, a function f is cyclic in Lp,s
a,α(C) if and only if f is non-vanishing

and fC ⊆ Lp,s
a,α(C), where C denotes the polynomial ring. Moreover, the condition

that fC ⊆ Lp,s
a,α(C) can not be dropped.

1. Introduction

Let C be the polynomial ring in one variable. Let X be a Banach space consisting

of some holomorphic functions on a domain in C. In this paper, a function f in X
is called cyclic if the norm closure of {fq : q ∈ C, fq ∈ X} equals X . In many cases,

it holds that for each f ∈ X , fC ∈ X . Let D be the open unit disk of the complex

plane C. The cyclic problem asks for a Banach space X , when a function in X
is cyclic [1]. This problem roots in the characterization for invariant subspaces for

coordinate operators, which usually proves hard even in classical reproducing kernel

Hilbert spaces. In the classical Hardy space H2(D), Beurling proved that a function

in H2(D) is cyclic if and only if it is an H2(D)-outer function, which was extended to

general Hardy spaces Hp(D) [4]. A similar statement is valid in the Bergman space

L2
a(D); that is, a function f in L2

a(D) is cyclic if and only if f is L2
a(D)-outer [7].

However, the definition of L2
a(D)-outer is far more complicated than the traditional

definition of H2(D)-outer. Therefore, the cyclic problem usually requires different

techniques for distinct Banach spaces. For the Hardy space H2(D2) over the bidisk

[11], the cyclic problem is challenging, and to the best knowledge of the authors,

not much has been achieved on related topics.
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In this paper, we focus on the cyclic problem on a class of Banach space, Fock-

type spaces. Precisely, for α, s > 0 and p ≥ 1, let Lp,s
a,α(C) denote the Banach space

of all entire functions f satisfying

∥f∥p =
∫
C
|f(z)|p exp(−α|z|s)dA(z)

2π
< ∞,

where dA denotes the area measure on the complex plane C. For α = 1 and

p = s = 2, Lp,s
a,α(C) is exactly the classical Fock space. For related details, we call

the reader’s attention to [2, 3, 6, 5, 10].

In [8] K. H. Izuchi studied cyclic vectors in Lp,s
a,α(C), and proved the following.

Theorem 1.1. Let f be a function in Lp,s
a,α(C) satisfying fC ⊆ Lp,s

a,α(C). Then the

following are equivalent:

(i) f is a non-vanishing function.

(ii) f = exp(h), where h(z) =
∑[s]

k=0 ckz
k and for each k, ck ∈ C; and in addition

|cs| < α
p
if s is an integer.

(iii) f is cyclic in Lp,s
a,α(C).

It is natural to ask whether the condition fC ⊆ Lp,s
a,α(C) could be removed. In the

case of s not being an integer, the proof in [8] shows that Theorem 1.1 holds even if

the condition fC ⊆ Lp,s
a,α(C) is removed. However, if s is a sufficiently large integer,

this condition can not be dropped. In fact, let φ(z) = exp(α
p
zs) and clearly φ(z) is

non-vanishing. For s = 5, 6, · · · , one can check that φC ̸⊆ Lp,s
a,α(C), and that φ is

not cyclic in Lp,s
a,α(C) [8]. That is, (i) and (iii) are not always equivalent.

As for cyclic vectors, there is some difference between the definition presented

here and the definition in [8]. In [8], a function f is cyclic if fC ⊆ Lp,s
a,α(C) and the

closure of fC equals Lp,s
a,α(C). But in the present paper, recall that a function f in

Lp,s
a,α(C) is cyclic if the closure of {fq : q ∈ C, fq ∈ Lp,s

a,α(C)} equals Lp,s
a,α(C).

The following is our main result and it characterizes cyclic vectors in Lp,s
a,α(C) for

the case of s being an integer.

Theorem 1.2. For each positive integer s, f is a cyclic vector in Lp,s
a,α(C) if and

only if f = exp(h) where h(z) =
∑s

n=0 cnz
n, with an ∈ C and |cs| < α

p
if and only if

f is non-vanishing and fC ⊆ Lp,s
a,α(C).

Let s be an integer. As mentioned before, for s ≥ 5 a non-vanishing function in

Lp,s
a,α(C) is not necessarily cyclic. In the case of s = 1, 2, 3, 4, f is a cyclic vector in

Lp,s
a,α(C) if and only if f is a non-vanishing function in Lp,s

a,α(C) [9].
In the next section, we give the proof of Theorem 1.2.
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2. Proof of Theorem 1.2

This section mainly presents the proof of Theorem 1.2. For this, some lemmas are

needed.

For real numbers ak, bk (1 ≤ k ≤ s− 1) and ε > 0, set

γ = γ(ρ, θ) = −αρs(1− cos sθ) +
s−1∑
k=1

(−ak cos kθ + bk sin kθ) ρ
k, (1)

and

I(t, ε) =
∫ t+ε

t

dθ

∫ +∞

0

exp(γ(ρ, θ)) ρ dρ < +∞.

Put I = I(0, 2π).
For α > 0, put

I(s, j) =

∫ 2π

0

dθ

∫ +∞

0

exp(−αρs(1− cos sθ))ρjdρ.

We have the following.

Lemma 2.1. Suppose s > 0 and j > 0. Then the following are equivalent.

(i) j + 1 < s
2
;

(ii) I(s, j) < +∞;

(iii)
∫ 1

0
dθ

∫ +∞
0

exp(−αρsθ2)ρjdρ < +∞;

(iv) for each b ∈ R,
∫ 1

0
dθ

∫ +∞
0

exp(−αρsθ2 + bρ
s
2 θ)ρjdρ < +∞.

Proof. For a constant λ > 0,∫ +∞

0

exp(−αρsλs)ρjdρ =
1

λj+1

∫ +∞

0

exp(−αρs)ρjdρ. (2)

Letting λs = (1− cos sθ) yields that∫ 2π

0

dθ

∫ +∞

0

exp(−αρs(1− cos sθ))ρjdρ =

∫ 2π

0

1

(1− cos sθ)
j+1
s

dθ

∫ +∞

0

exp(−αρs)ρjdρ.

Thus
∫ 2π

0
dθ

∫ +∞
0

exp(−αρs(1− cos sθ))ρjdρ < +∞ if and only if∫ 2π

0

1

(1− cos sθ)
j+1
s

dθ < +∞;

this is equivalent to 2(j+1)
s

< 1. This immediately gives (i) ⇔ (ii).

Substituting θ2 with λs in (2) yields that∫ 1

0

dθ

∫ +∞

0

exp(−αρsθ2)ρjdρ =

∫ 1

0

1

θ
2(j+1)

s

dθ

∫ +∞

0

exp(−αρs)ρjdρ,

which converges if and only if
∫ 1

0
1

θ
2(j+1)

s

dθ < ∞. Then it follows that (i) ⇔ (iii).
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Note that (iv) ⇒ (iii) is trivial, and it remains to prove (iii) ⇒ (iv). Without loss

of generality, assume that b > 0. Since (iii) ⇔ (i), one gets j + 1 < s
2
, and then∫ 1

0

dθ

∫ +∞

0

exp(−α

2
ρsθ2 +

b2

2α
)ρjdρ < +∞.

Besides, since bρ
s
2 θ ≤ α

2
ρsθ2 + b2

2α
for 0 ≤ θ ≤ 1,

−αρsθ2 + bρ
s
2 θ ≤ −α

2
ρsθ2 +

b2

2α
,

which gives
∫ 1

0
dθ

∫ +∞
0

exp(−αρsθ2 + bρ
s
2 θ)ρjdρ < +∞. Therefore, the proof of

Lemma 2.1 is complete. �

Lemma 2.1 has an immediate corollary.

Corollary 2.1. For positive numbers ε0, ε, δ and s, we have∫ δ

0

dθ

∫ +∞

0

exp(−αρs(1− cos sθ)) + ε0ρ
ε)ρdρ = ∞.

The following plays an important role in the proof of Theorem 1.2.

Lemma 2.2. Let s be a positive integer, and h =
∑s

k=0 ckz
k with

|cs| = α
p
. Suppose f = exp(h) belongs to Lp,s

a,α(C). If s is an odd number, then

f = f(0) exp(c
α

p
zs) for some constant c with |c| = 1. If s is even, then

f(z) = f(0) exp(c(
α

p
zs + βz

s
2 ))

where |c| = 1 and Re β = 0.

Proof. Note that f is in Lp,s
a,α(C) if and only if for each unimodular constant c, f(cz)

is in Lp,s
a,α(C). Without loss of generality, assume cs = α

p
and c0 = 0. Rewrite

ck =
−ak−ibk

p
for 1 ≤ k ≤ s− 1. Let z = ρ exp(iθ) be the polar coordinate of z, ρ > 0

and θ ∈ R. We have

Re (pckz
k) = (−ak cos kθ + bk sin kθ)ρ

k,

and thus

exp(−α|z|s) | exp(h)|p = exp(γ),

where γ is defined by (1)

γ = γ(ρ, θ) = −αρs(1− cos sθ) +
s−1∑
k=1

(−ak cos kθ + bk sin kθ) ρ
k.
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First assume that s is odd. In this case, it will be shown that for each k (1 ≤ k ≤
s − 1), ak = bk = 0. To see this, assume that not all of ak and bk vanish. Let j be

the largest integer in {1, 2, · · · , s− 1} such that

(aj, bj) ̸= (0, 0).

First we have −aj ≤ 0. Otherwise, −aj > 0; that is,

(−aj cos jθ + bj sin jθ)|θ=0 > 0.

Then by continuity there is a positive constant ε0 such that

−aj cos jθ + bj sin jθ > 2ε0, 0 ≤ θ ≤ ε0.

Then for sufficiently large ρ and 0 ≤ θ ≤ ε0,

γ = −αρs(1− cos sθ) +
s−1∑
k=1

(−ak cos kθ + bk sin kθ) ρ
k ≥ −αρs(1− cos sθ) + ε0ρ

j.

Then by Corollary 2.1 I ≥ I(0, ε0) = +∞, which is a contradiction. Therefore,

−aj ≤ 0.

Put θ0 =
2π
s
and d = gcd(j, s). Write j = j′d and s = s′d. Then it follows that

{j
′m2π

s′
mod 2π : m = 1, · · · , s′} = {m2π

s′
mod 2π : m = 1, · · · , s′},

where s′ ≥ 3 because s is odd. In particular, there are integers m1 and m2 such that

j
m12π

s
=

j′m12π

s′
=

2π

s′
mod 2π,

and

j
m22π

s
=

(s′ − 1)2π

s′
mod 2π.

Rewrite θk =
mk2π

s
for k = 1, 2, and one has

cos jθ1 < 0, sin jθ1 > 0; (3)

and

cos jθ2 < 0, sin jθ2 < 0. (4)

Since for each sufficiently small ε > 0, I(θ1, ε) < I < ∞, by similar reasoning as

proving −aj ≤ 0 one deduces that −aj cos jθ1+ bj sin jθ1 ≤ 0. Since −aj ≤ 0, by (3)

bj ≤ 0. Similarly, −aj cos jθ2 + bj sin jθ2 ≤ 0, and then by (4) bj ≥ 0, forcing bj = 0.

Again by

−aj cos jθ2 + bj sin jθ2 ≤ 0,

we have aj = 0. Thus (aj, bj) = (0, 0), which is a contradiction. Therefore, if s is

odd, then f = f(0) exp( cα
p
zs) where |c| is a unimodular constant.
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It remains to deal with the case of s being an even number. First we will show

that for each k, if 1 ≤ k ≤ s − 1 and k ̸= s
2
, ak = bk = 0. To see this, we will first

show that

ak = bk = 0,
s

2
< k ≤ s− 1.

Assume that for s
2
< k ≤ s − 1, not all of ak and bk vanish. Let j be the largest

integer in { s
2
+ 1, · · · , s− 1} such that

(aj, bj) ̸= (0, 0).

Let j′

s′
= j

s
, where j′ and s′ are relatively prime integers. Since j ̸= s

2
, s′ ≥ 3.

Then by similar discussion of the case of s being an odd number, we deduce that

(aj, bj) = (0, 0) to derive a contradiction. Thus j ≤ s
2
.

It is in order to determine a s
2
and b s

2
, and soon we will have a s

2
= 0. In fact, since

I(0, ε) < I < ∞, by Lemma 2.1 −a s
2
≤ 0. To get a s

2
= 0, assume conversely that

−a s
2
< 0. With θ0 =

2π
s
, one gets

cos
s

2
θ < −1

2
, |θ − θ0| <

π

2s
,

and thus for sufficiently large ρ,

γ = −αρs(1− cos sθ) +
s−1∑
k=1

(−ak cos kθ + bk sin kθ) ρ
k

≥ −αρs(1− cos(s(θ − θ0)) +
1

2
a s

2
ρ

s
2 , |θ − θ0| <

π

2s
.

Hence by Corollary 2.1 I ≥ I(θ0, π
2s
) = +∞, which is a contradiction. Thus a s

2
= 0.

Then we have

γ = −αρs(1− cos sθ) + b s
2
ρ

s
2 sin

s

2
θ +

s
2
−1∑

k=1

(−ak cos kθ + bk sin kθ) ρ
k.

Next we proceed to prove that ak = bk = 0, 1 ≤ k < s
2
. As θ tends to zero,

ρs(1− cos sθ) ∼ ρs
s2

2
θ2, and then there are positive constants M and δ such that

α

2
ρs(1− cos sθ) +M ≥ |b s

2
sin

s

2
θρ

s
2 |, |θ| < δ.

The above also holds if |θ − θ′| < δ for θ′ = 0, 2π
s
, 4π

s
, · · · , (s−1)2π

s
. For those θ, we

have γ ≤ γ̃, where

γ̃ = −α

2
ρs(1− cos sθ) +

s
2
−1∑

k=1

(−ak cos kθ + bk sin kθ) ρ
k +M.
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Since I =
∫ 2π

0
dθ

∫ +∞
0

exp(γ(ρ, θ))ρdρ < +∞,∫ 2π

0

dθ

∫ +∞

0

exp(γ̃(ρ, θ))ρdρ < +∞.

Then by similar discussions in the case of s being an odd number, we conclude that

ak = bk = 0 for 1 ≤ k < s
2
to finish the proof. �

By [8, Lemma 2.3], each non-vanishing entire function in Lp,s
a,α(C) is of the form

f = exp(h), where h is a polynomial with order h ≤ s. Then by using Lemmas 2.1

and 2.2, for s = 1, 2, 3, 4, there is no non-vanishing function in Lp,s
a,α(C) for p ≥ 1 (as

mentioned in [9]). For an integer s ≥ 5, we have the following.

Corollary 2.2. Let s be an integer with s ≥ 5. Then the function f in Lemma 2.2

is in Lp,s
a,α(C), but {fq : q ∈ C, fq ∈ Lp,s

a,α(C)} is of finite dimension. Consequently,

f is not cyclic.

Proof. For s ≥ 5, by Lemma 2.1 the function f in Lemma 2.2 is in Lp,s
a,α(C). For

a polynomial q of degree k, there is a positive number ε0 such that |q(z)| ≥ ε0|z|k
for sufficiently large |z|. Again by Lemma 2.1, if deg q + 2 ≥ s

2
, then fq is not in

Lp,s
a,α(C). Therefore, {fq : q ∈ C, fq ∈ Lp,s

a,α(C)} is of finite dimension. �

Proof of Theorem 1.2. Since f is a non-vanishing function in Lp,s
a,α(C) where s is

a positive integer. There is an entire function h satisfying f = exp(h). By the proof

of [8, Lemma 2.3], it follows that h is a polynomial. Then it is direct to check that

order h ≤ s. Write h(z) =
∑s

k=0 ckz
k.

If 0 ≤ |c0| < α
p
, then by [8, Lemma 2.3] and [8, Theorem 1.1], exp(h) is a cyclic

vector in Lp,s
a,α(C). If |c0| > α

p
, then by direct computations exp(h) is not in Lp,s

a,α(C).
It remains to consider the case of |c0| = α

p
. In this case, if s ≥ 5, then by Lemma

2.2 and Corollary 2.2, f is not cyclic. If 1 ≤ s ≤ 4, the comments above Corollary

2.2 show that f is not in Lp,s
a,α(C). Therefore, f is a cyclic vector in Lp,s

a,α(C) if and
only if f = exp(h), where h(z) =

∑s
n=0 cnz

n, with an ∈ C and |cs| < α
p
.

In addition, as above it has been shown that for 1 ≤ s ≤ 4, f is a cyclic vector in

Lp,s
a,α(C) if and only if fC ⊆ Lp,s

a,α(C). By Corollary 2.2, this is valid for s ≥ 5. The

proof is complete. �
The proof of Theorem 1.2 also shows that for s = 1, 2, 3, 4, each non-vanishing

function in Lp,s
a,α(C) is always a cyclic vector.
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