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ONE DIMENSIONAL PERTURBATION OF
INVARIANT SUBSPACES IN THE HARDY SPACE

OVER THE BIDISK II

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

Abstract. This paper is a continuation of the previous paper [9]. Let M1 be

an invariant subspace of H2 over the bidisk. Then there exists a nonzero f0 in

M1 such that M2 := M1 ⊖ C · f0 is also an invariant subspace. A relationship is

given the ranks of the cross commutators [R∗
z , Rw] on M1 and M2. We also give

a relationship of the ranks of the cross commutators [Sw, S
∗
z ] on H2 ⊖ M1 and

H2 ⊖M2.

1. Introduction

Let H2 = H2(D2) be the Hardy space over the bidisk D2 with two variables z and

w. Let Tz and Tw be the multiplication operators on H2 by z and w, respectively. A

nonzero closed subspaceM ofH2 is said to be invariant if TzM ⊂M and TwM ⊂M .

We write RM
z = Tz|M and RM

w = Tw|M . Let N = H2 ⊖M . Then T ∗
zN ⊂ N and

T ∗
wN ⊂ N , where T ∗

z , T
∗
w are adjoint operators of Tz, Tw, so N is called a backward

shift invariant subspace of H2. We denote by SN
z , S

N
w the compression operators of

Tz, Tw on N , that is, SN
z = PNTz|N and SN

w = PNTw|N , where PN is the orthogonal

projection from H2 onto N . We note that RM∗
z = PMT

∗
z |M and SN∗

z = T ∗
z |N .

In [12], Mandrekar showed that [RM∗
w , RM

z ] := RM∗
w RM

z −RM
z R

M∗
w = 0 if and only

if M = φH2 for an inner function φ (see also [1, 2, 4, 8, 13]). In [10], Nakazi, Seto

and the first author proved that [SN
w , S

N∗
z ] = 0 if and only ifM = φ(z)H2+ψ(w)H2,

where φ(z), ψ(w) are either one variable inner functions or 0 (see also [3, 5, 6, 7, 11]).

So it is considered that the cross commutators [RM∗
w , RM

z ] on M and [SN
w , S

N∗
z ] on

N are important operators to study the structure of invariant subspaces H2. We

denote by rankT the rank of the operator T , that is, rankT is the dimension of the

range of T .
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LetM1 be an invariant subspace of H2. Then there is f0 ∈M1 with ∥f0∥ = 1 such

that M2 :=M1⊖C · f0 is an invariant subspace. To study the structure of invariant

subspaces of H2, one of the basic questions is what kind of changes of properties

occur under the one dimensional perturbation. Let Nj = H2 ⊖Mj for j = 1, 2. In

the previous paper [9], we described the spaces

M2 ⊖ (zM2 + wM2) and
{
h ∈ N2 : zh ∈M2, wh ∈M2

}
using the words of f0,

M1 ⊖ (zM1 + wM1) and
{
h ∈ N1 : zh ∈M1, wh ∈M1

}
,

respectively and studied some related topics, and see the references given in [9] for

the study of invariant subspaces of H2. In this paper, we shall concentrate on the

study of the relationship of the ranks of the cross commutators on M1,M2 and on

N1, N2, respectively.

In Section 2, we shall show that

rank [RM1∗
w , RM1

z ]− 1 ≤ rank [RM2∗
w , RM2

z ] ≤ rank [RM1∗
w , RM1

z ] + 1.

Since M2 is one dimensional perturbation of M1, this is an expectable fact.

In Section 3, we shall show that

rank [SN1
w , SN1∗

z ]− 1 ≤ rank [SN2
w , SN2∗

z ] ≤ rank [SN1
w , SN1∗

z ] + 3.

The authors think that this is a remarkable fact.

We shall give examples of M1 and f0 ∈ M1 which satisfy the cases in the above

inequalities.

2. Invariant subspaces

For an invariant subspace M of H2, it is not difficult to see that

(2.1) [RM∗
w , RM

z ]M = PwMz(M ⊖ wM).

We note that

(2.2) rank [RM∗
w , RM

z ] = rank [RM∗
z , RM

w ].

Let M1 be an invariant subspace of H2 and f0 ∈ M1 with ∥f0∥ = 1 such that

M2 := M1 ⊖ C · f0 is an invariant subspace. The following is given in Lemmas 3.2

and 4.2 in [9].

Lemma 2.1. If f0 ∈M1 ⊖ wM1, then

M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0.
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Suppose that f0 /∈M1 ⊖wM1. Since M1 =M2 ⊕C · f0 and RM1∗
w f0 ∈ C · f0, there

is a nonzero β ∈ D such that f0 = PM1⊖wM1f0 + βwf0. The following is given in

Lemmas 5.1 and 5.2 in [9].

Lemma 2.2. Suppose that f0 /∈M1 ⊖ wM1 and f0 /∈M1 ⊖ zM1. Then we have the

following.

(i) Either PM1⊖wM1f0 /∈M1⊖(zM1+wM1) or PM1⊖zM1f0 /∈M1⊖(zM1+wM1).

(ii) If PM1⊖wM1f0 /∈M1 ⊖ (zM1 + wM1), then

M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · PM1⊖wM1f0

)
⊕ C · g0,

where

g0 = f0 −
1

1− |β|2
PM1⊖wM1f0.

.

Theorem 2.1.

rank [RM1∗
w , RM1

z ]− 1 ≤ rank [RM2∗
w , RM2

z ] ≤ rank [RM1∗
w , RM1

z ] + 1.

Proof. Step 1. Suppose that f0 ∈M1 ⊖ wM1. By Lemma 2.1, we have

(2.3) M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0.

Then

(2.4) wM2 = wM1 ⊖ C · wf0.

We have

rank [RM2∗
w , RM2

z ] = dimPwM2z(M2 ⊖ wM2) by (2.1)

≤ dimPwM1z(M2 ⊖ wM2) because of M2 ⊂M1

≤ dimPwM1z
(
(M1 ⊖ wM1)⊖ C · f0

)
+ 1 by (2.3)

≤ dimPwM1z(M1 ⊖ wM1) + 1

= rank [RM1∗
w , RM1

z ] + 1 by (2.1).

Let

A =
{
h ∈ (M1 ⊖ wM1)⊖ C · f0 : zh ⊥ wf0

}
.

By (2.4), PwM1zh = PwM2zh for every h ∈ A. Then we have

rank [RM2∗
w , RM2

z ] = dimPwM2z(M2 ⊖ wM2)

= dimPwM2z
((
(M1 ⊖ wM1)⊖ C · f0

)
⊕ C · wf0

)
by Lemma 2.1

= dim
(
PwM2z

(
(M1 ⊖ wM1)⊖ C · f0

)
+ C · PwM2zwf0

)
≥ dim

(
PwM2zA+ C · PwM2zwf0

)
.
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For every h ∈ A, we have⟨
PwM2zh, PwM2zwf0

⟩
= ⟨PwM2zh, zwf0⟩ = ⟨PwM1zh, zwf0⟩

= ⟨zh, PwM1zwf0⟩ = ⟨zh, zwf0⟩ = ⟨h,wf0⟩ = 0.

Since PwM2zwf0 = wPM2zf0 ̸= 0, we have

rank [RM2∗
w , RM2

z ] ≥ dimPwM2zA+ 1 = dimPwM1zA+ 1.

By the definition of A, there is h1 ∈ (M1 ⊖ wM1)⊖ C · f0 (may be zero) such that

A = (M1 ⊖ wM1)⊖ (C · f0 ⊕ C · h1).

Hence

rank [RM2∗
w , RM2

z ] ≥ dimPwM1zA+ 1

≥ dimPwM1z(M1 ⊖ wM1)− 2 + 1

= rank [RM1∗
w , RM1

z ]− 1.

Step 2. Suppose that f0 /∈ M1 ⊖ wM1. If f0 ∈ M1 ⊖ zM1, then by Step 1

(exchanging variables z and w) we have

rank [RM1∗
z , RM1

w ]− 1 ≤ rank [RM2∗
z , RM2

w ] ≤ rank [RM1∗
z , RM1

w ] + 1.

Hence by (2.2), we get the assertion. So, we may assume that f0 /∈ M1 ⊖ zM1.

By Lemma 2.2 (i), either η0 := PM1⊖wM1f0 /∈ M1 ⊖ (zM1 + wM1) or PM1⊖zM1f0 /∈
M1 ⊖ (zM1 +wM1). So, further we may assume that η0 /∈M1 ⊖ (zM1 +wM1). For

the latter case, we may prove it similarly. By Lemma 2.2 (ii), we have

(2.5) M2 ⊖ wM2 =
(
(M1 ⊖ wM1)⊖ C · η0

)
⊕ C · g0,

where

g0 = f0 −
1

1− |β|2
η0.

In the same way as the first paragraph of Step 1, we have

rank [RM2∗
w , RM2

z ] ≤ rank [RM1∗
w , RM1

z ] + 1.

We have

wM2 = w(M1 ⊖ C · f0) = wM1 ⊖ C · wf0.

Since f0 = η0 + βwf0,

(2.6) wM2 = wM1 ⊖ C · (f0 − η0).
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We have

rank [RM2∗
w , RM2

z ] = dimPwM2z(M2 ⊖ wM2)

= dim
(
PwM2z

(
(M1 ⊖ wM1)⊖ C · η0

)
+ C · PwM2zg0

)
by (2.5)

≥ dimPwM2z
(
(M1 ⊖ wM1)⊖ C · η0

)
≥ dimPwM1z

(
(M1 ⊖ wM1)⊖ C · η0

)
− 1 by (2.6)

≥ dimPwM1z(M1 ⊖ wM1)− 2

= rank [RM1∗
w , RM1

z ]− 2.

By this fact, if rank [RM1∗
w , RM1

z ] = ∞, then we get the assertion. So, we may assume

that

k := rank [RM1∗
w , RM1

z ] <∞.

To show that

rank [RM2∗
w , RM2

z ] ≥ rank [RM1∗
w , RM1

z ]− 1,

assume that

(2.7) rank [RM2∗
w , RM2

z ] = rank [RM1∗
w , RM1

z ]− 2.

We shall lead a contradiction. By the above inequalities, we have

(2.8) PwM2zg0 ∈ PwM2z
(
(M1 ⊖ wM1)⊖ C · η0

)
,

(2.9) dimPwM2z
(
(M1 ⊖ wM1)⊖ C · η0

)
=

dimPwM1z
(
(M1 ⊖ wM1)⊖ C · η0

)
− 1

and

(2.10) dimPwM1z
(
(M1 ⊖ wM1)⊖ C · η0

)
=

dimPwM1z(M1 ⊖ wM1)− 1.

By (2.10), there are f1, f2, · · · , fk−1 in (M1 ⊖ wM1)⊖ C · η0 such that{
PwM1zf1, PwM1zf2, · · · , PwM1zfk−1

}
is a basis of PwM1z

(
(M1 ⊖ wM1)⊖ C · η0

)
.

First, suppose that PwM1zfj ⊥ f0 − η0 for every 1 ≤ j ≤ k− 1. Then by (2.6), we

have PwM1zfj = PwM2zfj for every 1 ≤ j ≤ k − 1. Hence

rank [RM2∗
w , RM2

z ] ≥ dimPwM2z
(
(M1 ⊖ wM1)⊖ C · η0

)
≥ dimPwM2z

k−1∑
j=1

C · fj = dimPwM1z

k−1∑
j=1

C · fj

= k − 1 = rank [RM1∗
w , RM1

z ]− 1.

This contradicts (2.7).
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Next, suppose that PwM1zfj ̸⊥ f0 − η0 for some 1 ≤ j ≤ k − 1. We may assume

that PwM1zf1 ̸⊥ f0 − η0 and PwM1zfj ⊥ f0 − η0 for every 2 ≤ j ≤ k − 1. Then

PwM1zfj = PwM2zfj for every 2 ≤ j ≤ k − 1. We divide the proof into two cases.

Case 1. Suppose that

PwM2zf1 /∈
k−1∑
j=2

C · PwM2zfj =
k−1∑
j=2

C · PwM1zfj.

Then

rank [RM2∗
w , RM2

z ] ≥ dimPwM2z
(
(M1 ⊖ wM1)⊖ C · η0

)
≥ dim

k−1∑
j=1

C · PwM2zfj

= dim
(
C · PwM2zf1 +

k−1∑
j=2

C · PwM2zfj

)

= dim
k−1∑
j=2

C · PwM2zfj + 1 = dim
k−1∑
j=2

C · PwM1zfj + 1

= k − 2 + 1 = k − 1.

This contradicts (2.7).

Case 2. Suppose that

PwM2zf1 ∈
k−1∑
j=2

C · PwM2zfj =
k−1∑
j=2

C · PwM1zfj.

Then

PwM2zf1 =
k−1∑
j=2

cjPwM2zfj

for some cj ∈ C, 2 ≤ j ≤ k − 1. Replacing f1 by f1 −
∑k−1

j=2 cjfj, we may assume

that PwM2zf1 = 0. Since PwM1zf1 ̸= 0, by (2.6) we have

(2.11) C · PwM1zf1 = C · (f0 − η0).

In this case, we note that (2.7) holds by (2.8), (2.9) and (2.10).

For every h ∈M1 ⊖ wM1, since f0 − η0 ∈ wM1 we have

0 = ⟨f0 − η0, h⟩ = ⟨z(f0 − η0), zh⟩

=
⟨
PwM1z(f0 − η0), zh

⟩
=

⟨
PwM1z(f0 − η0), PwM1zh

⟩
.

Then

PwM1z(f0 − η0) ⊥ PwM1z(M1 ⊖ wM1).
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By (2.11), f0− η0 ∈ PwM1z(M1⊖wM1). Then PwM1z(f0− η0) ⊥ f0− η0, so by (2.6)

we have

PwM1z(f0 − η0) = PwM2z(f0 − η0).

Hence

PwM2z(f0 − η0) ⊥ PwM1z(M1 ⊖ wM1),

so that we get

(2.12) PwM2z(f0 − η0) ⊥ PwM2z(M1 ⊖ wM1).

Therefore

0 =
⟨
PwM2z(f0 − η0), PwM2zg0

⟩
by (2.8)

=
⟨
PwM2z(f0 − η0), PwM2z

(
f0 −

1

1− |β|2
η0

)⟩
=

⟨
PwM2z(f0 − η0), PwM2z

(
f0 − η0 −

|β|2

1− |β|2
η0

)⟩
=

∥∥PwM2z(f0 − η0)
∥∥2

by (2.12).

This shows that z(f0 − η0) ⊥ wM2. Since f0 − η0 ∈ wM1, we have z(f0 − η0) ∈
wM1 and by (2.6) we have z(f0 − η0) = c(f0 − η0) for some c ∈ C. Thus we get

f0 = η0. Since η0 ∈ M1 ⊖ wM1, f0 ∈ M1 ⊖ wM1, and this contradicts the starting

assumption. □

Example 2.1. Let

M1 = z3H2 + z2wH2 + w2H2.

Then

rank [RM1∗
w , RM1

z ] = dimPwM1z(M1 ⊖ wM1)

= dimPwM1z
(
z3H2 + C · z2w + C · zw2 + C · w2

)
= dim (C · z3w + C · z2w2) = 2.

We shall take a nonzero f0 inM1 such thatM2 =M1⊖C ·f0 is an invariant subspace

and rank [RM2∗
w , RM2

z ] = 1, 2, 3, respectively.

(i) Let f0 = z2w ∈M1. Then M2 = z3H2 + w2H2 and

rank [RM2∗
w , RM2

z ] = dimC · PwM2z
3w2 = 1.

(ii) Let f0 = z3 ∈M1. Then M2 = z4H2 + z2wH2 + w2H2 and

rank [RM2∗
w , RM2

z ] = dim (C · z3w + C · z2w2) = 2.

(iii) Let f0 = w2 ∈M1. Then

M2 = z3H2 + z2wH2 + zw2H2 + w3H2
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and

rank [RM2∗
w , RM2

z ] = dim
(
C · z3w + C · z2w2 + C · zw3

)
= 3.

□

3. Backward shift invariant subspaces

Let M be an invariant subspace of H2 and N = H2 ⊖M .

Lemma 3.1. We have the following.

(i) [SN
w , S

N∗
z ] = PNT

∗
z PMTw|N .

(ii) rank [SN
w , S

N∗
z ] = dimPNT

∗
z PMwN .

Proof. (i) We have

[SN
w , S

N∗
z ] = SN

w S
N∗
z − SN∗

z SN
w

= PNTwPNT
∗
z |N − PNT

∗
z PNTw|N

= PNT
∗
z Tw|N − PNT

∗
z PNTw|N

= PNT
∗
z (I − PN)Tw|N = PNT

∗
z PMTw|N .

(ii) follows from (i). □

Let M1 be an invariant subspace of H2 and f0 ∈ M1 with ∥f0∥ = 1 such that

M2 := M1 ⊖ C · f0 is an invariant subspace. Let Nj = H2 ⊖Mj for j = 1, 2. We

have M1 =M2 ⊕ C · f0 and N2 = N1 ⊕ C · f0.

Theorem 3.1.

rank [SN1
w , SN1∗

z ]− 1 ≤ rank [SN2
w , SN2∗

z ] ≤ rank [SN1
w , SN1∗

z ] + 3.

Proof. We have

rank [SN2
w , SN2∗

z ] = dimPN2T
∗
z PM2wN2 by Lemma 3.1 (ii)

≥ dimPN1T
∗
z PM2wN1 because N1 ⊂ N2

≥ dimPN1T
∗
z PM1wN1 − 1 because M1 =M2 ⊕ C · f0.

= rank [SN1
w , SN1∗

z ]− 1.

On the other hand,

rank [SN2
w , SN2∗

z ] = dimPN2T
∗
z PM2wN2

≤ dimPN1T
∗
z PM2wN2 + 1 because N2 = N1 ⊕ C · f0

≤ dimPN1T
∗
z PM2wN1 + 2 because N2 = N1 ⊕ C · f0

≤ dimPN1T
∗
z PM1wN1 + 3 because M1 =M2 ⊕ C · f0.

= rank [SN1
w , SN1∗

z ] + 3.
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□

Example 3.1. Let

M1 = z4H2 + z3w2H2 + z2w4H2 + w5H2

and N1 = H2 ⊖M1. Then

rank [SN1
w , SN1∗

z ] = dimPN1T
∗
z PM1wN1

= dim (C · z2w2 + C · zw4) = 2.

We shall take a nonzero f0 inM1 such thatM2 =M1⊖C ·f0 is an invariant subspace

and rank [SN2
w , SN2∗

z ] = 1, 2, 3, 4, 5, respectively, where N2 = H2 ⊖M2. Note that

rank [RM1∗
w , RM1

z ] = 3.

(i) Let f0 = z2w4 ∈M1. Then

M2 = z4H2 + z3w2H2 + w5H2

and

rank [SN2
w , SN2∗

z ] = dimC · z2w2 = 1.

Note that rank [RM2∗
w , RM2

z ] = 2.

(ii) Let f0 = z3w2 ∈M1. Then

M2 = z4H2 + z3w3H2 + z2w4H2 + w5H2

and

rank [SN2
w , SN2∗

z ] = dim (C · z2w3 + C · zw4) = 2.

Note that rank [RM2∗
w , RM2

z ] = 3.

(iii) Let f0 = z4 ∈M1. Then

M2 = z5H2 + z4wH2 + z3w2H2 + z2w4H2 + w5H2

and

rank [SN2
w , SN2∗

z ] = dim
(
C · z3w + C · z2w2 + C · zw4

)
= 3.

Note that rank [RM2∗
w , RM2

z ] = 4.

(iv) Let f0 = z3w2 − w5 ∈M1. Then

M2 = z4H2 + z3w3H2 + z2w4H2 + zw5H2 + w6H2

+ C · (z3w2 + w5).
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We have

rank [SN2
w , SN2∗

z ] = dimPN2T
∗
z PM2wN2

= dimPN2T
∗
z PM2w

(
C · z3w + C · (z3w2 − w5) + C · z2w3

+ C · zw4 + C · w4
)

= dimPN2T
∗
z

(
C · (z3w2 + w5) + C · (z3w3 − w6)

+ C · z2w4 + C · zw5
)

= dimPN2

(
C · z2w2 + C · z2w3 + C · zw4 + C · w5

)
= dim

(
C · z2w2 + C · z2w3 + C · zw4 + C · (z3w2 − w5)

)
= 4.

Note that rank [RM2∗
w , RM2

z ] = 4.

(v) Let f0 = z4 − w5 ∈M1. Then

M2 = z5H2 + z4wH2 + z3w2H2 + z2w4H2

+ zw5H2 + w6H2 + C · (z4 + w5).

We have

rank [SN2
w , SN2∗

z ] = dimPN2T
∗
z PM2wN2

= dimPN2T
∗
z PM2w

(
C · (z4 − w5) + C · z3w + C · z2w3

+ C · zw4 + C · w4
)

= dimPN2T
∗
z

(
C · (z4w − w6) + C · z3w2 + C · z2w4

+ C · zw5 + C · (z4 + w5)
)

= dimPN2

(
C · z3w + C · z2w2 + C · zw4 + C · w5 + C · z3

)
= dim

(
C · z3w + C · z2w2 + C · zw4 + C · (z4 − w5) + C · z3

)
= 5.

Note that rank [RM2∗
w , RM2

z ] = 4. □

Remark 3.1. We shall give rank [S
Nj
w , S

Nj∗
z ], j = 1, 2, for Example 2.1. We have

rank [SN1
w , SN1∗

z ] = 1.

(i) rank [SN2
w , SN2∗

z ] = 0.

(ii) rank [SN2
w , SN2∗

z ] = 1.

(iii) rank [SN2
w , SN2∗

z ] = 2.

□
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