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THE BOUNDARY OF THE Q-NUMERICAL RANGE
OF SOME TOEPLITZ NILPOTENT MATRIX

PENG-RUEI HUANG AND HIROSHI NAKAZATO

Abstract. In this note we compute the boundary of some generalized numerical

range Wq(A) of a 4 × 4 Toeplitz nilpotent matrix A. We also provide a program

to plot Wq(A) by using “Mathematica”.

Celebrating the contribution of Professor Kichi-Suke Saito to Mathematics in long years.

1. Introduction

Let A be a bounded linear operator on a complex Hilbert space H. The numerical

range of A is defined and denoted by

W (A) = {⟨Aξ, ξ⟩ : ξ ∈ H, ||ξ|| = 1} (1.1)

(cf. [7], page 93, [10]). In 1919, Hausdorff [11] proved the convexity of this range.

The numerical radius w(A) of A is defined as

sup{|⟨Aξ, ξ⟩| : ξ ∈ H, ||ξ|| = 1}.

The various interesting results are known for the radius w(A) and the numerical

radius norms on the operator spaces (cf. [12], [16], [21]). In this note we mainly

treat the caseH is a finite-dimensional space Cn of column vectors with the standard

inner product ⟨ξ, η⟩ = η∗ξ. In this setting, the numerical range satisfies

σ(A) = {λ ∈ C : det(λIn − A) = 0} ⊂ W (A),

W (A+ λIn) = {λ+ z : z ∈ W (A)},

W (A) = ∩0≤θ≤2π{z ∈ C : ℜ(ze−iθ) ≤ λ1(ℜ(e−iθA))},

where ℜ(B) = (1/2)(B + B∗) and λ1(G) is the largest eigenvalue of a Hermitian

matrix G.
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Goldberg and Strauss [9] introduced the C-numerical range WC(A) of A as

WC(A) = {tr(CU∗AU) : U∗U = In} (1.2)

where C is an arbitrary n × n matrix. Cheung and Tsing [5] proved the star-

shapedness of WC(A) with respect to the point 1/n tr(C)tr(A). By using this prop-

erty Glaser et al [8] developed a numerical algorithm to plot the boundary of WC(A)

and applied it to NMR techniques. If C is a rank one orthogonal projection, the

range WC(A) is reduced to the classical numerical range W (A). In the case A,C

are normal matrices, the range WC(A) is characterized as

WC(A) = {
n∑

i,j=1

aicjwij : (wij) ∈ Ωn},

where σ(A) = {a1, a2, . . . , an}, σ(C) = {c1, c2, . . . , cn} and

Ωn = {(|uij|2 : (uij) is ann× n unitarymatrix}.

The above Ωn is a typical set of entrywise nonnegative matrices. In the paper [18],

nonnegative square roots of entrywise nonnegative matrices are closedly studied.

By using the above characterization, the boundary of the range WC(A) for 3 × 3

normal matrices are closely analyzed (cf. [15]). Tsing [19] proved the convexity of

WC(A) in the case C is a rank one matrix. We consider the 2-dimensional space V

containing the ranges C(Cn), C∗(Cn).We assume that ||C|| = 1. Then the operator

C restricted to V is unitarily similar to[
q

√
1− |q|2

0 0

]
for some q ∈ C with |q| ≤ 1. Using this characterization, the range WC(A) for a

rank-one matrix C is characterized as

Wq(A) = {η∗Aξ : ξ, η ∈ Cn, ξ∗ξ = η∗η = 1, η∗ξ = q}. (1.3)

This range satisfies Wcq(A) = cWq(A) for any |c| = 1. So we usually assume that

0 ≤ q ≤ 1. If q = 1, the range W1(A) is reduced to W (A). For 0 ≤ q < 1, the range

Wq(A) satisfies

qσ(A) ⊂ Wq(A), Wq(A+ λIn) = {qλ+ z : z ∈ Wq(A)}.

Boundary points of the range W (A) of an n × n matrix A lie on an algebraic

curve of degree ≤ n(n − 1) or its bitangents. Boundary points of Wq(A) also lie

on an algebraic curve. But its degree is supposed to be so high. In [6] Duan

points out that the notion of numerical range and many of its variants such as local

numerical range and q-numerical range play crucial role in characterizing the perfect

distinguishability of quantum operations. Such applications bear new motivation to
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study the q-numerical range. For some more properties of the q-numerical range, we

refer [1, 2, 3, 4]. We would expect some relation between the q-numerical ranges and

the formula [n]q = 1+q+q2+q3+ . . .+qn−1 = (1−qn)/(1−q) for −1 < q < 1. Some

relations with the numerical radii and the series [n]q are known (cf. [20]). However

no direct relation is known for Wq(A) and [n]q.

We also remark that Wq(A) is a compact convex set of C ∼= R2. The convexity

of this set is useful to analyze this range. The boundary of the unit ball of the

2-dimensional real vector space R2 with the ℓp-norm

||{x1, x2}||p = (|x1|p + |x2|p)1/p

for 1 < p < ∞ lies on an algebraic curve if and only if p is a rational number. So

the boundary curve is transcendental if p is irrational. Recently exact study of finite

dimensional Banach space is developed extensively (cf. [17]). Some techniques used

there would be useful to study the range Wq(A). In 1984, Tsing [19] provided the

following formula

Wq(A) = {qξ∗Aξ +
√

1− q2w
√

ξ∗A∗Aξ − |ξ∗Aξ|2 : w ∈ C, |w| ≤ 1

ξ ∈ Cn, ξ∗ξ = 1}. (1.4)

The function

ϕ(z) = max{
√

ξ∗A∗Aξ − |ξ∗Aξ|2 : ξ ∈ Cn, ξ∗ξ = 1, ξ∗Aξ = z}

(z ∈ W (A)) is concave on W (A). By using these properties, Tsing proved the con-

vexity of Wq(A). Based on Tsing’s formula, C. K. Li [13] provides a Matlab program

to plot Wq(A) numerically. In Section 3, we provide a Mathematica program to plot

Wq(A). Its algorithm is basically same with Li’s program. A performable algorithm

to generate the polynomial g(x, y) for which

{(x, y) ∈ R2 : x+ iy ∈ ∂Wq(A)} ⊂ {(x, y) ∈ R2 : g(x, y) = 0},

{(x, y) ∈ R2 : g(x, y) = 0} ⊂ {(x, y) ∈ R2 : x+ iy ∈ Wq(A)},

Wq(A) = Conv({x+ iy : (x, y) ∈ R2, g(x, y) = 0})
is given in [2] (cf. [4]). We introduce a compact convex sets Γ0(A), Γ(A) by

Γ0(A) = {(x1, x2, u) ∈ R3 : x1 + ix2 ∈ W (A), u2 ≤ ϕ(x1 + ix2)
2},

and

Γ(A) = {(x1, x2, u1, u2) ∈ R4 : x1 + ix2 ∈ W (A), u2
1 + u2

2 ≤ ϕ(x1 + ix2)
2}.

In a generic case the boundaries of Γ0, Γ are algebraic hypersurfaces of degree

N = 2n(n− 1)2. Define an orthogonal projection Πq of R4 onto C ∼= R2 by

Πq(x1, x2, u1, u2) = (qx1 +
√

1− q2u1) + i(qx2 +
√
1− q2u2). (1.5)
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Then Tsing’s formula is rewritten as

Wq(A) = Πq(Γ(A)).

A general theory of algebraic varieties tell us that the degree of the boundary of

Wq(A) is ≤ N(N − 1)2 (cf. [3]). This upper bound is not sharp for n = 3. The

above formula provides a principle to compute the equation g(x, y) = 0 of the

boundary Wq(A). The q-numerical range of some typical 3 × 3 matrices are given

in [3]. Numerical experiments suggest us that the degree of the boundary equation

g(x, y) for a generic 3 × 3 unitarily irreducible matrix is 24. It is rather hard to

compute the polynomial g(x, y) for a generic unitarily irreducible 4× 4 matrix A by

using a standard personal computer. As a first step to treat a generic 4× 4 matrix,

we treat the following Toeplitz nilpotent matrix

N =


0 1 0 1

0 0 1 0

0 0 0 1

0 0 0 0

 . (1.6)

2. Equation of the boundary

The standard method to generate the function ϕ = ϕA on the numerical range W (A)

for an n× n matrix is given by the formula

ϕA(z) =
√
h(z)− |z|2,

h(z) = max{s : (z, s) ∈ W (A,A∗A)}

where

W (A,A∗A) = {(z, s) ∈ C× R : z = ξ∗Aξ, s = ξ∗A∗Aξ, ξ ∈ Cn, ξ∗ξ = 1}.

We shall generate a real polynomial L0,A(X, Y, Z) for which the equation L0,A(X, Y, Z) =

0 holds for a generic point (X+ iY, Z) of the boundary of W (A,A∗A). As it is men-

tioned in [2], the algebraic surface L0,A(X, Y, Z) = 0 is characterized as the dual

surface of the algebraic surface GA(x, y, z, 1) = 0 defined by

GA(x, y, z, t) = det(xℜ(A) + yℑ(A) + zA∗A+ tIn),

where ℜ(A) = (A + A∗)/2, ℑ(A) = (A − A∗)/(2i). By using Sylvester’s resultant,

we can compute the polynomials GN and L0,N for the Toeplitz matrix N defined by

(1.6).
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Theorem 2.1. Suppose that N is the 4 × 4 Toeplitz matrix given by (1.6). Then

the polynomials GN and L0,N are given by the following:

4GN(x, y, z, 1) = x2y2 + y4 − x2z2 − y2z2 − 4x2z − 8y2z

+4z3 − 4x2 − 4y2 + 16z2 + 16z + 4,

L0,N(X,Y, Z) = 256(20X12 + . . .+ 20X2Y 10 + . . .

+116X2Y 8Z2 + . . .+ 4Z12) + . . .− 52X2Z − 16Y 2Z

+X2 + Y 2 + 12Z2 − Z.

The above degree 12 polynomial L0,N(X, Y, Z) has 135 terms.

Proof. By direct computations (by using some computer software), we can obtain

the explicit expression of the polynomial GN(x, y, z, 1). For every non-zero vec-

tor (x0, y0, z0) ∈ R3, we consider the support plane Π(x0, y0, z0) of the convex set

W (N,N∗N) ⊂ C× R2 ∼= R3 defined by

Π(x0, y0, z0) = {(x, y, z) ∈ R3 : x0x+ y0y + z0z = M(x0, y0, z0)},

M(x0, y0, z0) = max{x0x+ y0y + z0z : (x+ iy, z) ∈ W (N,N∗N)}.
The value M(x0, y0, z0) is the maximum of the eigenvalues of the Hermitian matrix

x0ℜ(N) + y0ℑ(N) + z0N
∗N . Thus the boundary of W (N,N∗N) is obtained as the

convex hull of the dual surface of the algebraic surface GN(x, y, z, 1) = 0. This

polynomial satisfies

GN(−x0,−y0,−z0,M(x0, y0, z0)) = 0.

The defining polynomial L0,N(X, Y, Z) = 0 of the dual surface of the algebraic

surface GN(x, y, z, 1) = 0 is obtained by the elimination of the indeterminates x, y

from the equations

H(X, Y, Z, x, y) = Z3GN(x, y,−
xX

Z
− yY

Z
− 1

Z
, 1) = 0,

Hx =
∂H

∂x
= 0, Hy =

∂H

∂y
= 0.

We can elimate the indeterminates x, y by successive usage of Sylvester’s determi-

nants. We take the simple factor J(X,Y, Z, y) of the resultant of H(X, Y, Z, x, y)

and Hx. Then we take the simple factor L0,N of the resultant of J(X,Y, Z, y) and

Jy(X, Y, Z, y) with respect to y. In this way we obtain the equation of the dual

surface of GN(x, y, z, 1) = 0. To perform this process, Lagrange’s interpolation is

effective, especially in the second elimination. □

By using the equation L0,A(X,Y, Z) = 0 of the boundary of the simultaneous

numerical range W (A,A∗A), the equation of the boundary of the convex set Γ(A)

is given by

L0,A(x1, x2, x
2
1 + x2

2 + u2
1 + u2

2) = 0.
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We use the orthogonal projection Πq of R4 onto the plane C ∼= R2 given by (1.5).

The algorithm to compute the equation of the boundary of Wq(A) is given by the

following. We substitute

x1 =
1

q
(x−

√
1− q2u1), x2 =

1

q
(y −

√
1− q2u2)

into the polynomial

L(x, y, u1, u2) = L0,A(x1, x2, x
2
1 + x2

2 + u2
1 + u2

2).

The polynomial g(x, y) vanishing on the boundary of Wq(A) is obtained by the

successive eliminations of u1, u2 from the equations

M(x, y, u1, u2) = L(1/q(x−
√

1− q2u1), 1/q(y −
√

1− q2u2), u1, u2),

Mu1(x, y, u1, u2) = 0,Mu2(x, y, u1, u2) = 0.

We provide the equation of the boundary of Wq(N) for q = 1599/1601,
√

1− q2 =

80/1601. This value of q is obtained by a Pythagorean triple (1599, 80, 1601) for

which 80/1601 is rather small.

Theorem 2.2. Suppose that N is the 4 × 4 nilpotent matrix given by (1.6) and

q = 1599/1601. Then every point x + iy of the boundary of Wq(N) ((x, y) ∈ R2)

satisfies the equation g(x, y) = 0 for the following degree 40 polynomial with 253

terms

g(x, y) = 226 · 160140 (x2 + y2)14 (2563201x2 + 6400y2)2 (6400x2 + 2563201y2)4

+225 · 13 · 160138 (x2 + y2)12 (2563201x2 + 6400y2)(6400x2 + 2563201y2)2

·(33016876270813180851200x8 − 13265483673351338869369108x6y2

−36739819845825250742768247x4y4 − 43289705700663118508524801x2y6

−124358510381267802592000y8) + . . .

+214 · 346 · 54 · 1336 · 4136 · (811 · 2473 · 120721 · 284689)2.

Proof. The equation g(x, y) = 0 of the boundary of W1599/1601(N) is obtained by the

successive eliminations of u1, u2 from the equations M(x, y, u1, u2) = 0 and Mu1 = 0,

Mu2 = 0. We take the simple factor K(x, y, u2) of the resultant of M(x, y, u1, u2)

and Mu1(x, y, u1, u2) with respect to u1. The total degree of m(x, y, u2) with respect

to x, y is 40. The polynomial g(x, y) is obtained as a simple factor of the resultant of

K(x, y, u2) and Ku2(x, y, u2) with respect to u2. These processes essentially coincide

with those in [2]. □

By using the above polynomial g(x, y), we shall determine some characteristic in-

variants ofWq(N) for q = 1599/1601. We determine the least rectangle R containing

W1599/1601(N) with edges parallel to the real and imaginary axes. Since N is a real
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matrix, the range Wq(N) is symmetric with respect to the real axis. The numeri-

cal range W (A) is symmetric with respect to the imaginary axis and the function

ϕ(x + iy) satisfies ϕ(−x + iy) = ϕ(x + iy). Hence the range Wq(N) is symmetric

with respect to the imaginary axis. So the values

Mx = max{ℜ(z) : z ∈ Wq(A)}, My = max{ℑ(z) : z ∈ Wq(A)}

are attained respectively on half-lines {x : x > 0}, {iy : y > 0}. The value Mx for

q = 1599/1601 is the maximum real root of a simple factor

p(x) = 172659566698038165790771204x8 − 690638266792152663163084816x7

+1035526290327212459458841624x6 − 689344937209103057305728016x5

+214154580429043752468444805x4 − 85145576767093849784275202x3

+42707913371929841638385601x2 + 80429942125350896644800x

−53599042276569074563200

of the polynomial g(x, 0). The polynomial p(−x) is also a simple factor of g(x, 0).

The value My for q = 1599/1601 is the maximum real root of a simple factor

q(y) = 1381276533584305326326169632y8 + 1381276533584305326326169632y7

−1383863192750404538040883232y6 − 1388174291360569890898739232y5

+511297035462706296012556812y4 + 343702202310090276474886408y3

−172120143173202689945619204y2 − 482579652752105379868800y

+42735167843788382245107201

of the polynomial g(0, y). The polynomial q(−y) is also a simple factor of g(0, y).

The values Mx,My are approximately given by

Mx ∼ 1.0350266, My ∼ 0.75321029.

In Figure 1, we provide a graphic of the curve g(x, y) = 0. The outer arc of this

figure represents the boundary of W1599/1601(N).
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Figure 1: ∂Wq(N) and its related envelope curve

Figure 2

3. Numerical Approximation

We shall provide some codes to plot the q-numerical range of a complex matrix A

by using “Mathematica”. Our codes depend on Tsing’s formula (1.4). We expect

numerical experiments will be useful for further study. A program to plot the q-

numerical range using “Matlab” was provided by [13]. Our program is viewed as its

“Mathematica” version. For instance, we treat the matrix (1.6).

A = {{0, 1, 0, 1}, {0, 0, 1,0}, {0, 0, 0, 1}, {0, 0, 0, 0}};
A1 = Conjugate[Transpose[A]];

H = (1/2)(A+A1); G = (-I/2)(A-A1); K = A1.A

M1 = 200 ; M2 = 20; q = 1599/1601;

For [ k = 1, k < M1 + 1, k ++, t = k*2 Pi/M1;

T = Cos[t]*H + Sin[t]*G;

For[ m = 0, m < M2 + 1, m++, s = m*Pi/(2 M2);

— 162 —



TT = Cos[s]*T + Sin[s]*K + 5.0 IdentityMatrix[4];

MM = N[Eigenvectors[TT]][[1]];

M = Abs[MM]∧2; W = Sqrt[Sum][M[[j]], {j, 1, 4 }]];
v = MM/W; u = Conjugate[v];

UU = {u}; LL = Transpose[{v}];
p = Re[UU.H. LL]; r = Re[UU. G. LL]; S = Re[UU. K. LL];

X = p[[1]][[1]]; Y = r[[1]][[1]]; Z = S[[1]][[1]]

ZZ = Sqrt[1 - q∧2]*Sqrt[Z-X∧2-Y∧2];

XX = q*X; YY = q*Y]];

Q = Table[{XX[k,m],YY[k, m],ZZ[k,m]}, {k, 1, M1},{m, 0, M2}];
Q0 = Flatten[Q, 1];

Show[Table[ParametricPlot[ {Q0[[e]][[1]] +Q0[[e]][[3]]*Cos[x], Q0[[e]][[2]] +Q0[[3]]*Sin[x]

}, {x,0, 2Pi}, PlotRange → All, {e, M1*(M2+1) }]

In these codes, we may replace M1,M2 by other numbers. For finer approxima-

tions, we need longer computation time. In Figure 2, we merge the graphic produced

by these codes and the graphic of the curve in Figure 1. In the above codes, we use

the eigenvector of a Hermitian matrix cos s(cos tH+sin tG)+sin sK. In Mathemat-

ica’s convention, a non-normalized eigenvector corresponding to the eigenvalue of a

matrix with the largest modulus is chosen as the first eigenvector. We may meet a

case the eigenvalues of the matrix satisfy

λ1(cos s(cos tH + sin tG) + sin sK) ≥ 0 > λn(cos s(cos tH + sin tG) + sin sK),

−λn(cos s(cos tH + sin tG) + sin sK) ≥ λ1(cos s(cos tH + sin tG) + sin sK) ≥ 0,

where λn(G) is the least eigenvalue of a Hermitian matrix G. We can avoid this

inconvenience by adding some positive scalar matrix to the matrix

cos s(cos tH + sin tG) + sin sK.

In the definition of the vector W , the summation is done for 1 ≤ j ≤ n, where

the size of the matrix A is n× n, in the above case n = 4.
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