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THE SPLIT COMMON FIXED POINT PROBLEM
WITH FAMILIES OF MAPPINGS AND STRONG
CONVERGENCE THEOREMS BY HYBRID METHODS
IN BANACH SPACES

WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split common fixed point problem with
families of mappings in Banach spaces. Then using the hybrid method and the
shrinking projection method, we prove strong convergence theorems for finding
a solution of the split common null point problem with families of mappings in
Banach spaces.

1. Introduction

Let H; and Hy be two real Hilbert spaces. Given mappings T : H; — H; and
U : Hy, — H,, respectively, and a bounded linear operator A : H; — Hs, the split
common fized point problem is to find a point z € H; such that z € F(T)NAT'F(U),
where F/(T') and F'(U) are fixed point sets of 7" and U, respectively. Let D and @ be
nonempty, closed and convex subsets of H; and Hs, respectively. Let A : H; — H,
be a bounded linear operator. Then the split feasibility problem [8] is to find z € H;
such that 2 € DN A™'Q. Defining T = Pp and U = Py, where Pp and P are
the metric projections of H; onto D and H, onto @), respectively, we have that
z € DN A7'Q is equivalent to z € F(T) N A7'F(U). Furthermore, given set-
valued mappings G : H; — 21 and B : Hy — 22 respectively, and a bounded
linear operator A : Hy — Hs, the split common null point problem [7] is to find
a point z € H; such that z € G7'0N A~ (B~10), where G7'0 and B0 are null
point sets of G and B, respectively. Defining 7' = Jy and U = @,,, where J) and
@), are the resolvents of G for A > 0 and B for 1 > 0, respectively, we have that
z € GTTONATYB710) is equivalent to z € F(T)NA™F(U). Thus, the split common
fixed point problem generalizes the split feasibility problem and the split common
null point problem. If U = A*(I — Py)A in the split feasibility problem, then we
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have that U : Hy — H, is an inverse strongly monotone operator [2], where A* is the
adjoint operator of A and P is the metric projection of Hy onto (). Furthermore,
if DN A7Q is nonempty, then 2 € D N A71Q is equivalent to

2= Pp(I — MA*(I — Po)A)z, (1.1)

where A > 0 and Pp is the metric projection of H; onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem, the split common null point problem and the split common
fixed point problem in Hilbert spaces; see, for instance, [2, 7, 9, 19, 35]. Recently,
Takahashi [30] and [32] extended such an equivalent relation (1.1) in Hilbert spaces
to Banach spaces and then he obtained strong convergence theorems for finding
a solution of the split feasibility problem in Banach spaces. Very recently, using
the hybrid method [21, 22, 24|, Alsulami, Latif and Takahashi [1] prove a strong
convergence theorem for finding a solution of the split feasibility problem in Banach
spaces; see also [31].

Theorem 1 ([1)). Let H be a Hilbert space and let F' be a strictly convex, reflexive
and smooth Banach space. Let Jr be the duality mapping on F. Let C' and D be
nonempty, closed and convexr subsets of H and F', respectively. Let Po and Pp be
the metric projections of H onto C and F onto D, respectively. Let A: H — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that CNA™'D # 0. Let vy € H and let {x,} be a sequence generated by

p

zn = Po (acn —rA*Jp(Ax, — PDAa:n)>,
Yn = Opdp + (1 - an)2n7

Co={z€ H :|lyn — 2[| < llzn — 2I},
Qn={z€ H:{(x,— 2z —x,) >0},

\xn-i-l = PCnﬂanh Vn € N7

where 0 < a,, < a < 1 for some a € R and 0 < r||A||* < 2. Then {z,} converges
strongly to a point zo € C N A™LD, where zg = Poqa-1pT1.

Takahashi [32] also obtained the following result from the idea of the shrinking
projection method by Takahashi, Takeuchi and Kubota [34].

Theorem 2 ([32]). Let H be a Hilbert space and let F' be a uniformly conver Banach
space whose norm is Fréchet differentiable. Let Jp be the duality mapping on F.
Let C' and D be nonempty, closed and convex subsets of H and F, respectively. Let
Po and Pp be the metric projections of H onto C' and F' onto D, respectively. Let
A: H — F be a bounded linear operator such that A # 0 and let A* be the adjoint



operator of A. Suppose that C N A™'D # 0. Let {u,} be a sequence in H such that
U, — u. Let vy € H, C; = H, and {x,} be a sequence generated by

zn = Pro (xn —rA*Jp(Ax, — PDAxn)>,
Cov1={z€H:||z—z| <||zn — 2||} N Cy,

$n+1 = PCn+1un+1, \V/n - N,

where 0 < r||A||> < 2. Then {z,} converges strongly to a point zo € C N A™'D,
where zg = Poaa-1pu.

In this paper, motivated by these problems and results, we consider the split
common fixed point problem with families of mappings in Banach spaces. Then
using the hybrid method and the shrinking projection method, we prove two strong
convergence theorems for finding a solution of the split common fixed point problem
with families of mappings in Banach spaces. We also apply these results to obtain
new results for the split common fixed point problem with families of mappings in
Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set
of real numbers. Let H be a real Hilbert space with inner product (-, -) and norm
|| - ||, respectively. For z,y € H and A € R, we have from [28] that

lz+yl* < llzll* +2{y, = + y); (2.1)

Az + (1= Nyl = Alz]* + (1 = Nlyll* = AL = V)= — yI* (2.2)
Furthermore we have that for x,y,u,v € H,

2z —yu—v) =z — o> + ly —ul® = lz = ul* — [ly - v|*. (2.3)

Let C' be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C' is denoted by P, that is, ||z — Poz|| < ||z — y]| for
all x € H and y € C'. Such a mapping P is called the metric projection of H onto
C. We know that the metric projection P is firmly nonexpansive, i.e.,

|Pox — Pey||* < (Pox — Poy,x — y) (2.4)

for all ,y € H. Furthermore (x — Pox,y — Pcxz) < 0 holds for all x € H and y € C;
see [26].

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at © € E by (x,y*). When {z,} is a sequence



in E, we denote the strong convergence of {x,} to « € E by x,, — x and the weak
convergence by x, — z. The modulus ¢ of convexity of F is defined by

) r+y
ot = int {1 = P20 o < 1) < 1 - 2

for every e with 0 < € < 2. A Banach space E is said to be uniformly convex if
d(e) > 0 for every € > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {x,} and {y,} in E such that

lim ||z, = lim ||y,|| =1 and lim ||z, + y.| = 2,
n—oo n—oo n—oo

limy, 00 |2 —Yn|| = 0 holds. A uniformly convex Banach space is strictly convex and
reflexive. We also know that a uniformly convex Banach space has the Kadec-Klee
property, i.e., x, — u and ||z, || — ||u|| imply z, — u; see [10, 23].

The duality mapping J from E into 2" is defined by

Jo={a" € E": {w,2") = |l2]|* = |2"|*}
for every x € E. Let U = {z € E : ||z|| = 1}. The norm of F is said to be Gateaux
differentiable if for each x,y € U, the limit

Ll iyl o]
t—0 t

(2.5)

exists. In the case, F is called smooth. We know that F is smooth if and only
if J is a single-valued mapping of E into E*. We also know that E is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J, on E*. For more details, see [26] and [27]. We know the
following result.

Lemma 3 ([26]). Let E be a smooth Banach space and let J be the duality mapping
on E. Then, (x —y,Jx — Jy) > 0 for all x,y € E. Furthermore, if E is strictly
convezr and (x —y, Jr — Jy) =0, then © = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x € E, there exists a unique element
z € C such that ||z — z|| < ||z — y|| for all y € C. Putting z = Pox, we call such a
mapping Po the metric projection of £ onto C.

Lemma 4 ([26]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C' be a nonempty, closed and convex subset of E and let x1 € E and z € C.
Then, the following conditions are equivalent:

(1) z = Pcilfl,’



(2) (z—y,J(x1—2)) >0, VyeC.

Let E be a Banach space and let B be a mapping of E into 2%, The effective
domain of B is denoted by dom(B), that is, dom(B) = {x € E : Bx # 0}. A
multi-valued mapping B on F is said to be monotone if (x — y, u* — v*) > 0 for all
z,y € dom(B), u* € Bx, and v* € By. A monotone operator B on F is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [5]; see also [27, Theorem
3.5.4].

Theorem 5 ([5]). Let E be a uniformly convex and smooth Banach space and let J
be the duality mapping of E into E*. Let B be a monotone operator of E into 27" .
Then B is mazimal if and only if for any r > 0,

R(J+rB) =FE",
where R(J + rB) is the range of J + rB.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let B be a maximal monotone operator of E into 2. For all z € E and r > 0,
we consider the following equation

0 € J(z, —x) + rBz,.

This equation has a unique solution x,. We define J, by x, = J.x. Such J,.,r > 0
are called the metric resolvents of B. The set of null points of B is defined by
B7'0={z€ E:0 € Bz}. We know that B~'0 is closed and convex; see [27].

Let B be a maximal monotone operator on a Hilbert space H. In a Hilbert space
H |, the metric resolvent J,. of B is simply called the resolvent of B. It is known that
the resolvent J,. of B for r > 0 is firmly nonexpansive, i.e.,

||J7"I - JTy||2 < <l’ - Y er - er>7 vx7y € H.

It is also known that ||Jyz — Jux| < (| —p] /A) ||z — Jyz|| holds for all A, pp > 0
and x € H; see [26, 11] for more details. As a matter of fact, we know the following
lemma from Takahashi, Takahashi and Toyoda [25].

Lemma 6 ([25]). Let H be a Hilbert space and let B be a mazimal monotone operator
on H. Forr >0 and x € H, define the resolvent J.x. Then the following holds:
s—1t

(Jox — Jyx, Jex — x) > ||z — Juz|?
forall s,t >0 and z € H.

Let E be a smooth, strictly convex and reflexive Banach space, let C' be a
nonempty subset of E and let n be a real number with n € (—o00,1). Then a



mapping U : C — E with F(U) # 0 is called n-demimetric [33] if, for any z € C
and g € F(U),

Ui 2
-U

(x —q,J(x —Ux)) >

where F'(U) is the set of fixed points of U.

Example. (1) Let H be a Hilbert space, let C' be a nonempty subset of H and let
k be a real number with 0 < k < 1. A mapping U : C' — H is called a k-strict
pseudo-contraction [6] if

Uz — Uy|]® < ||z —y||* + kllz — Uz — (y — Uy)|”

for all z,y € C. If U is a k-strict pseudo-contraction and F(U) # ), then U is
k-demimetric; see [33].

(2) Let H be a Hilbert space and let C' be a nonempty subset of H. A mapping
U:C — H is called generalized hybrid [14] if there exist «, 5 € R such that

a|Uz = Uy* + (1 = a)||z = Uy||* < BIUz —y|I* + (1 = B)|lz —ylI*  (2.6)

for all x,y € C. Such a mapping U is called (o, [5)-generalized hybrid. If U is
generalized hybrid and F(U) # (), then U is O-demimetric. In fact, setting z = u €
F(U) and y =z € C in (2.6), we have that

allu— Uzl + (1 = a)llu - Uz|* < Bllu — 2| + (1 = B)lu — 2|
and hence
Uz —ul* < ||z —ul*.
From ||[Uz — x + x — ul* < ||z — u||?, we have that
2(r —u,x — Uz) > ||z — Uz|]?

for all z € C and w € F(U). This means that U is 0-demimetric. Notice that the
class of generalized hybrid mappings covers several well-known classes of mappings.
For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading
[15, 16] for a« =2 and 8 =1, i.e.,
2|7z = Ty|* < |ITx —y|* + 1Ty — 2|, Va,yeC.
It is also hybrid [29] for « = 2 and 8 = 3, i.c.,
3ITw — Tyl < |lo =yl + T2 =yl + [Ty — 2, Va,y e C.

In general, nonspreading and hybrid mappings are not continuous; see [13].

(3) Let E be a strictly convex, reflexive and smooth Banach space and let D be

a nonempty, closed and convex subset of E. Let Pp be the metric projection of E
onto D. Then Pp is (—1)-demimetric; see [33].



(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal
monotone operator with B~'0 # (). Let A > 0. Then the metric resolvent J is (—1)-
demimetric; see [33].

The following lemma is crucial in the proofs of our main theorems.

Lemma 7 ([33]). Let E be a smooth, strictly convex and reflexzive Banach space and
let p be a real number with n € (—oo,1). Let U be an n-demimetric mapping of E
into itself. Then F(U) is closed and convex.

For a sequence {C,,} of nonempty, closed and convex subsets of a Banach space
E, define s-Li, C),, and w-Ls, C,, as follows: x € s-Li,, (), if and only if there exists
{r,} C FE such that {z,} converges strongly to = and z, € C, for all n € N.
Similarly, y € w-Ls, C,, if and only if there exist a subsequence {C,,} of {C,} and
a sequence {y;} C FE such that {y;} converges weakly to y and y; € C,,, for all i € N.
If Cy satisfies

Co= S-I;Li C, = W—I;LS Ch, (2.7)

it is said that {C,} converges to Cj in the sense of Mosco [18] and we write Cy =
M-lim,, oo Cy,. It is easy to show that if {C),} is nonincreasing with respect to
inclusion, then {C,} converges to (.-, C, in the sense of Mosco. For more details,
see [18]. The following lemma was proved by Tsukada [38].

Lemma 8 ([38]). Let E be a uniformly convex Banach space. Let {C,} be a sequence
of nonempty, closed and convexr subsets of E. If Cy =M-lim, _,, C,, exists and
nonempty, then for each v € E, {Pc,x} converges strongly to Pe,x, where Pg, and
Pe, are the mertic projections of E onto C,, and Cy, respectively.

3. Main results

In this section, using the hybrid method by Nakajo and Takahashi [21], we first prove
a strong convergence theorem for finding a solution of the split common fixed point
problem with families of mappings in Banach spaces. Let E be a Banach space and
let {U,} be a sequence of mappings of E into itself such that N2, F(U,) # 0. The
sequence {U,, } is said to satisfy the condition (I) [3] if for any bounded sequence {z, }
of F' such that lim, , ||z, — U,z,|| = 0, every weak cluster point of {z,} belongs
to N, F(U,) # 0.

Theorem 9. Let H be a Hilbert space and let F' be a smooth, strictly convex and
reflexive Banach space. Let Jp be the duality mapping on F and let {n,} be a
sequence of real numbers with n, € (—oo,1). Let {T,,} be a sequence of nonexpansive
mappings of H to H satisfying the condition (I) and let {U,} be a sequence of n,-
demimetric mappings of F' to F satisfying the condition (I). Let A: H — F be a



bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that G := N F(T,)NA™ N2, F(U,) # 0. Let x, € H and let {x,} be a

sequence generated by
)

z, =T, (xn — MA*Jp(Ax, — UnAa:n)),
Yn = Qndy + (]- - O./n)Zn,

Cn={2€H :|yn — 2| < [lzn — 2]|},
D,={z€ H: (x, — z,x1 —x,) >0},

\anrl = PC'nﬂanb Vn € N7

where {n,} C (=00, 1), {a,} C [0,1] and {\,} C (0,00) satisfy the conditions:
0<a,<a<l and 0<b<M\JAIP<c<d<1-n,

for some a,b,c,d € R. Then {z,} converges strongly to zo € G, where zo = Pgx;.

Proof. Since
lyn = 21l < llzn = 2l <= llyn — 2)1* < 2 — 27
= [yl = llwnll® = 2(yn — 20, 2) <0,

it follows that C,, are closed and convex for all n € N. It is obvious that D,, are
closed and convex. Then C,, N D,, are closed and convex for all n € N. Let us show
that G C C, for alln € N. Let z € G. Then z =T,z and Az = U,Az. Since T,, is

nonexpansive, we have that for z € G,
20 = 2117 = 1T (w0 = A" T (Azy = UpAzy) ) = Tz
< |z — A\ A* I (A, — U, Azy,) — 2||?
= ||z — 2 — \A* Jp(Ax, — U, Az,)|)?
= |2, — 2||* = 2z, — 2, \pA* Jp(Az,, — U, Ax,,))

+ | A\ A* Tp(Azy, — U, Azy)||?
<o, — 2||* = 2\ (Az,, — Az, Jp(Ax, — U, Ax,))

+ NAIPTp(Azy — Up Az || (3.1)
<z = 2l1* = M1 = mo)[| Az — UnAza||* + AN AP | Azn — Up Az, ||?
=z = 2l + Ml AIF* = (1 = 9a)) | A2y — Un Az ®
< ||z — 2|7

and hence
[y — 2l = llanzn + (1 — an)zn — 2|

< O‘nHIn - ZH +(1— O‘N)Hzn - Z”



Therefore, G C C), for all n € N. Let us show that G C D,, for all n € N. It is
obvious that G C D;. Suppose that G C Dy, for some k£ € N. Then G C Cj, N Dy.
From zy4+1 = Po,np, 71, we have that

(g1 — 2,01 — Tp1) >0, Vz e CpN Dy

and hence
(g1 — 2,01 — Tp1) >0, VzeG.
Then G C Dgy1. We have by induction that G C D, for all n € N. Thus, we have
that G C C,, N D, for all n € N. This implies that {x,} is well defined.
Since F'(U,) is nonempty, closed and convex from Lemma 7, G is also nonempty,
closed and convex. Thus, there exists zy € G such that zyp = Pgz;. From x,.; =
Pe,np, r1, we have that

||1'1 - xn-i-l” < ||:L“1 - Z/H, ‘v’y € Cn N Dn~
Since zy € G C C,, N D,,, we have that
|21 = g || < [lz1 = 20l]- (32)

This means that {x,} is bounded.
Next we show that lim, o |2, — Zns1|| = 0. From the definition of D,,, we have
that z,, = Pp,xy. From x,,11 = Pc,np,x1 we have x, 11 € D,. Thus

[ = 21|l < flens = 2]

for all n € N. This implies that {||z; — z,,||} is bounded and nondecreasing. Then
there exists the limit of {||x; — z,||}. From x,.; € D,, we have that

(Ty, — Tpy1, 1 — Tp) > 0.
This implies from (2.3) that
0 < flznrs — z1l* = llzn — 21ll” = lznrn — 2l
and hence
n+1 = 2all® < onin — 21l* = [Jon — 2.
Since there exists the limit of {||x; — z,||}, we have that

Tim |z — e | =0 (3.3)

From z,4, € C,, we also have that ||y, — zp41]| < ||2n — 2ny1]|. Then we get from
(3.3) that ||y, — x,41]] — 0. Using this, we have that

190 = @nll < lyn = Znpall + 1201 = 2]l = 0. (3-4)



We have from (3.1) that for any z € G,
1y = 217 = llanzs + (1 = an)za — 2|
< an |z = 2|* + (1 = an) [z — 2||°
< o [l — 2]+ (1= o) [l — 2|
+ (1= @)X [|AI = (1= )| Ay — Up Ay
= [l — 21" + (1 = @) A [|AIIP = (1 = ) | Az — UnAn®
Thus we have that
(1= an)ha(l = m=Aa |AIP) | Azy = UpAwa|]® < o = 21 — [lya — 2II”
= (lzn =2l + llyn = 2l Ulzn = 2l = llyn — 2[])
< ([on = 2l + llyn = 2D ll2n = wall-
From ||y, — 2,]| = 0,0<a, <a<land 0 <b< )\ |AIP<c<d<(1—-mn,), we

have that
lim ||Az, — U,Az,|* = 0. (3.5)

n—oo
We also have that ||y, — .|| = [|anzn + (1 — o) zn — || = (1 — o) || 20 — 24| From
lyn — zn|l = 0 and 0 < o, < a < 1, we have that

lim ||z, — z,|| = 0. (3.6)
n—oo

Since {z,} is bounded, there exists a subsequence {z,, } of {z, } converging weakly
to w. Since A is bounded and linear, we also have that {Az,,} converges weakly to
Aw. Since lim,, o || Az, — U, Az,|| = 0 and the family {U,,} satisfies the condition
(I), we have that Aw € N, F(U,) and hence w € At N>, F(U,). We also have
that

|20 — Taznll = 2o — 20 + 20 — Tnn|
= ||xn — 20+ Ty (.Tn — A Jp(Ax, — UnAxn)) — Tny||
< |zp = zol|| + |20 — MA* Jp(Az,, — U, Ax,) — 24|
= |lzn — zull + [ M A" TP (Az, — Un Axy) ||
< zn = zo|| + M| Al Ay, — Uy Az, || — 0.

Since z,,, — w and {7} satisfies the condition (I), we have w € N>, F(7,,). This
implies that w € G. From zy = Pgz1, w € G and (3.2), we have that

|21 — 20l < [|z1 — w|| < liminf ||z, -z,
71— 00

< Timsup 1 — 2, | < 71 — 2]l

1— 00



Then we get that

lim [[2) — || = |21 — w|| = [J21 — 2.
11— 00

Since H satisfies the Kadec-Klee property, we have that z; —x,, — 21 —w and hence
ZTn, — W = zg. Therefore, we have z,, - w = 2y. This completes the proof. O

Next, using the shrinking projection method introduced by Takahashi, Takeuchi
and Kubota [34], we prove a strong convergence theorem for finding a solution of
the split common fixed point problem with families of mappings in Banach spaces.

Theorem 10. Let H be a Hilbert space and let F' be a smooth, strictly convex
and reflexive Banach space. Let Jp be the duality mapping on F and let {n,} be a
sequence of real numbers with n, € (—oo,1). Let {T,,} be a sequence of nonexpansive
mappings of H to H satisfying the condition (I) and let {U,} be a sequence of ny,-
demimetric mappings of F' to F' satisfying the condition (I). Let A : H — F be a
bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that G := N, F(T,) N A~ e, F(U,) # 0. Let {u,} be a sequence in H
such that u, — u. Let 1 € H and Cy = H. Let {x,} be a sequence generated by

(20 =T, <xn A Tp( Az, — UnA:z:n)>,
Yn = QpTy + (1 - an)zna
Cor1={2€ H: |yp — 2|| < |lzn — 2[I} N Ch,

\xn-i-l = Pcn+1un+1, Vn € N,

where {n,} C (—o0,1), {an} C [0,1] and {\,} C (0,00) satisfy the conditions:
0<ap,<a<l and 0<b< M\|A|P<c<d<1-n,
for some a,b,c,d € R. Then the sequence {x,} converges strongly to a point zy € G,

where xo = Pgu.

Proof. We first show that the sequence {x,} is well defined. It is obvious that
G C (). Suppose that G C C} for some k£ € N. To show G C Cjy1, let us show
that ||yx — 2|| < ||lzx — 2| for all z € G. From 0 < b < M|A|I? < c<d < (1 —my),
as in the proof of Theorem 9, we have that for z € G,
||Zk — Z”2 == ||Tk (ZL’k - /\kA*JF(AZEk - UkAZEk)> - TszQ
S ||£Ek — )\kA*JF(A[L'k — UkA[Ek) — ZH2

<ok — 2))* = Me(1 = mi) | Az — UpAzy||” + N || A| || Ay, — Uy Az |)?
(3.7)

= [lz — 2|I” + Ml AP = (1 = mp))[| Az — UpAzye||?

< llow — 2”



and hence
lyr — 2l = llagzy, + (1 — ax)zi, — 2|
< agllzr — 2| + (1 — o)z — 2]
< opllze — 2] + (1 = o) [z — 2|
= ||lzx — 2]|.

Then G C Cyy1. We have by mathematical induction that G C C,, for all n € N.
Moreover, since

2 2
{zeH:lyn =2l < llwn =2} ={z € H: |lyn — 2[I” < [lzn — 2]}
={z € H: [lyal® = llal® < 2 (g — 20, )},

it is closed and convex. Applying these facts inductively, we obtain that C,, are
nonempty, closed, and convex for all n € N, and hence {z,} is well defined.

Let Cy = (.~; Cpn. Then since Cy D G # 0, Cy is nonempty. Let w, = Pc,u
for every n € N. Then, by Lemma 8, we have w,, = wy = Pg,u. Since a metric
projection on H is nonexpansive, it follows that

[ = wol| < [l — wall + l[wn — wol
= [|Poyun = Po,ull + [[wn — woll
< lun = ul| + fJwn = wol

and hence x,, — wy.
Since wy € Cy C Cpy1, we have ||y, — wo|| < ||z, — wpl| for all n € N. Tending
n — oo, we get that y, — wy. Then we have that

[0 = ynll < [l2n — wol| + [Jwo — ynl = 0. (3.8)

From y, — z, = apx, + (1 — ay)z, — 2, = (1 — ay) (2, — x,,), we also have that
[y — 2l = (1 — o)z — @]l = (1 = an)|zn — 24
and hence
|zn — xn|| — 0. (3.9)
On the other hand, from (3.7) we know that for z € G,
120 = 211 < Nz — 2l + Ml A* = (1 = 9a) | A2y — Un Az .
Then we get that
M1 =10 = Ml A[P) Ay, — Up Az ||* < [l — 2]* = (12 — 2]
= (lzn = 2l = llzn — 2[DUlzn = 2l + 120 — =)

< l#n = zall(llzn = 21| + 120 = 2[])-



Since 0 < b < \||A|* <e<d < (1 —mn,) and ||z, — 2,|| — 0, we have that
lim || Az, — U,Ax,|| = 0. (3.10)
n—oo

Since z, — wp and A is bounded and linear, we have that {Az,} converges
strongly to Awg and hence {Ax,} converges weakly to Awy. Since a family {U,}
satisfies the condition (I) and lim, . ||Az, — UAz,|| = 0, we have that Aw €

> F(U,) and hence w € A= N>, F(U,). We also have that

|20 = Town|| = lon — 20 + 20 — Ton|
= ||z, — 2o+ Ty (a:n — MA e (Ax, — UnA:cn)) — Tna||
< |zn = zol|| + |20 — MA* Tp(Az, — U, Ax,,) — x,]|
= ||z, — zo|| + || M A" Tp(Az,, — U, Axy,)|| — 0.
Since x,, — wg and {T,,} satisfies the condition (I), we have wy € N°°; F(T,,). This
implies that wy € G.

Since F'(U,,) is nonempty, closed and convex from Lemma 7, G is also nonempty,
closed and convex. Then there exists zy € G such that zyp = Pgu. From z,,, =
Pc, . unt1, we have that

[unt1 = Tppa]] < fluns =y

for all y € C,,+1. Since zg € G C ()11, we have that

[ttnt1 = Zps1 ]| < [[ungr — 2oll. (3.11)

From zy = Pgu, wy € G and (3.11), we have that

lu = 2ol < [Ju—woll = lm Jjun 4y — 204
n—oo
< Tim funes — 70l = lu— 7o].
n—oo
Then we get that ||u — wy|| = ||u — 20| and hence zy = wy. Therefore, we have
T, — wo = z9. This completes the proof. O

We do not know whether a Hilbert space H in Theorems 9 and 10 is replaced by
a Banach space E or not.

4. Applications

In this section, using Theorems 9 and 10, we get new strong convergence theorems
which are connected with the split common fixed point problem with families of
mappings in Banach spaces. We know the following result obtained by Marino and
Xu [17]; see also [36].



Lemma 11 ([17]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let k be a real number with 0 < k <1 and let U : C'— H be a
k-strict pseudo-contraction. If x, — z and x, — Uz, — 0, then z € F(U).

We also know the following result from Kocourek, Takahashi and Yao [14].

Lemma 12 ([14]). Let H be a Hilbert space, let C' be a nonempty, closed and convex
subset of H and let U : C'— H be generalized hybrid. If x, — z and x,, — Uz, — 0,
then z € F(U).

Theorem 13. Let Hy and Hy be Hilbert spaces. Let k be a real number with k €
[0,1). Let T : Hi — H; be a nonexpansive mapping and let U : Hy — Hy be
a k-strict pseudo-contraction such that F(U) # 0. Define T,, = %Zz:ol T and
Up = vd + (1 —7,)U for all n € N. Assume that 0 <, < 1 and sup,,cy o < 1.
Let A : Hi — Hy be a bounded linear operator such that A # 0 and let A* be the
adjoint operator of A. Suppose that F(T)NA 'F(U) # (0. Let x, € Hy and let {z,}

be a sequence generated by
(

2n =T, <azn — MA*(Az, — UnAa:n)>,
Yn = QpnTy + (1 - Oén)Zn,
Co={2€ Hy: |lyn — 2l < |lzn — 2|},
D, ={z€ H, : (v, — z,x1 — x,) > 0},

\anrl = pC’nﬂDnmla Vn € N7

where {a, } C [0,1] and {\,} C (0,00) satisfy the conditions:
0<a,<a<1l and 0<b<M\JAP<c<(1-k)

for some a,b,c € R. Then {z,} converges strongly to zo € F(T)N A~ F(U), where
20 = PF(T)mA—lF(U)flfl-

Proof. Since T is nonexpansive, T,, is nonexpansive and N>, F(T,,) = F(T). We
also have from [20, Lemma 3.10] that {7} satisfies the condition (I). On the other
hand, since U is a k-strict pseudo-contraction of Hj into itself such that F(U) # 0,
from (1) in Examples, U is k-demimetric. We also have that for p € F(U,) = F(U)
and x € H,,

(x—p,x—Uyx)=(x —p,x— (Wz + (1 —7)Ux))

= (1 =) {x —p,z—Uxzx)
= (1_771)1;
1

-k
2(1 - %)

k
lo — Uz|?

=(1—7)° lv — Uz|?



1—-k
”$ - (7nx + (1 - Vn)U$)|’2

B 2(1 _’Yn)
1—-k 9
2 —5—llz = (mz + (1 = 7))
1—k
= & — Unz|?

and hence {U,} is a family of k-demimetric mappings of Hy into Hs such that
F(U) =N, F(U,). Furthermore, let {u,} be a bounded sequence of Hy such that
u, — Upu, — 0. Then we have

(1 — ) (up — Uuy) = up, — Upuyy, — 0

and hence u,, — Uu,, = 0 from sup,,cy v, < 1. It follows from Lemma 11 that every
weak cluster point of {u,} belongs to F(U) = N>, F(U,). This means that the
family {U,} satisfies the condition (I). Therefore, we have the desired result from
Theorem 9. U

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of
H. A family S = {T'(t) : t € [0,00)} of mappings of C into itself satisfying the
following conditions is said to be a one-parameter nonexpansive semigroup on C"

(1) For each t €]0,00), T(t) is nonexpansive;
(2) T(0) =

(3) T(t+ 5) T(t)T(s) for every t,s € [0, 00);
(4) for each z € C, t — T'(t)x is continuous.

Theorem 14. Let H, and Hy be Hilbert spaces. Let S = {T'(t) : t € [0,00)} be
a one-parameter nonexpansive semigroup on Hy with the common fized point set
F(S) = Nicpo,o) F(T(t )) # 0 and let U : Hy — Hy be a generalized hybrid mapping.
Define T,x = 1 fo s)xds for all x € Hy and n € N with t, — oo. Define
Uyt = Y2 + (1 — ’yn)Ux for all x € Hy and n € N such that 0 < 7, < 1 and
SUP,eny Yo < 1. Let A Hy — Hy be a bounded linear operator such that A # 0 and
let A* be the adjoint operator of A. Suppose that F(S)NAF(U) # 0. Let x, € H,
and let {x,} be a sequence generated by

2z, =T, (xn — \A*(Az, — UnAxn)),
Yn = QpTp + (1 - &n)zna

1 Cn ={z € Hy: |lyn — 2|| < |lwn — 2]|},
D, ={z € H; : {(xr, — z,x1 — x,) > 0},

\xn—i-l = PcannZL‘l, VTL & N,




where {a, } C [0,1] and {\,} C (0,00) satisfy the conditions:
0<a,<a<1l and 0<b< )\ AP <c<1

for some a,b,c € R. Then {x,} converges strongly to a point zy € F(S)NA~LF(U),
where zy = Ppg)na-1rw)T1-

Proof. Since T,, is a nonexpansive mapping of H; into itself, from (1) in Examples,
T, is 0-demimetric. We also know from [26] that N2>, F/(7,,) = F(S). Furthermore,
let {u,} be a bounded sequence of H; such that w, — T,u, — 0. Then we have
from [20] that u, — T(s)u, — 0 for all s € [0,00). Sinve T(s) is nonexpansive,
every weak cluster point ug of {u,} belongs to F(T'(s)); see [28]. Then, we have
uy € NS, F(T,,) = F(S). This means that the family {7, } satisfies the condition
(I). On the other hand, since U is a generalized hybrid mapping of H, into itself
such that F(U) # (), from (2) in Examples, U is 0-demimetric. As in the proof of
Theorem 13, we have that for x € Hy and p € F(U,,) = F(U),

(z —p,x—Unz) = (& —px— (uz + (1 — )Ux))
=(1—){x —p,z—Uxzx)
> (1= ) lle — U
1

- sl — b+ (=)D

1
> —|lz — Upx||?
> Sl = U

and hence {U,} is a family of 0-demimetric mappings of Hy into H, such that
F(U) =N, F(Uy,). Furthermore, let {u,} be a bounded sequence of Hy such that
U, — Uyu, — 0. Then we have

(1 — ) (up — Uuy) = upy, — Upuiyy, — 0

and hence u,, — Uu,, = 0 from sup,,cy v, < 1. It follows from Lemma 12 that every
weak cluster point of {u,} belongs to F(U) = N>, F(U,). This means that the
family {U,} satisfies the condition (I). Therefore, we have the desired result from
Theorem 9. U

Using Theorem 9, we have the following strong convergence theorem for the split
common null point problem in Banach spaces; see also Takahashi and Yao [37].

Theorem 15. Let H be a Hilbert space and let F' be a uniformly convex and smooth
Banach space. Let Jp be the duality mapping on F. Let G and B be maximal
monotone operators of H and F', respectively. Let J,. and QQs be the metric resolvents
of G forr >0 and B for s > 0, respectively. Let A : H — F be a bounded linear



operator such that A # 0 and let A* be the adjoint operator of A. Suppose that
G0N A YB7'0) # 0. Let x1 € H and let {x,} be a sequence generated by

'zn =J, (a:n — MA*Jp(Ax, — QSnAxn)),
Co={z€ H:|lyn — 2| <llen — 2|},
D,={z€ H:{(x,—z,x1—x,) >0},

\xn—i-l = PCnﬂanla Vn € N7

where 0 < a < \||A|? <b< 1,7, >¢c>0 and s, >d >0 for some a,b,c,d € R.
Then the sequence {x,} converges strongly to a point zg € G-'0NA~Y(B10), where

20 = Pg-10na-1(B-10)21-

Proof. Since @, is the metric resolvent of B for s, > 0, from (4) in Examples,
Qs, is (—1)-demimetric. We also have that if {u,} is a bounded sequence in F
such that u, — Qs,u, — 0, then every weak cluster point of {u, } belongs to B~10 =
N> F(Qs,). In fact, suppose that {u,,} is a subsequence of {u, } such that u,, — p.
Since (), is the metric resolvent of B, we have that

JF(“n - anun>/3n S Banun

for all n € N; see [4, 27]. From the monotonicity of B, we have

Jr (Un; — ani Un)>

Sn,

(3

0< <u — Qs Un,, V7 —

for all (u,v*) € B and ¢ € N. Taking i — oo, we get that (u — p,v*) > 0 for all
(u,v*) € B. Since B is a maximal monotone operator, we have

pc B7'0 = ﬂiole(QSn)-

This means that the family {Q;,} satisfies the condition (I). On the other hand,
since J,, is the metric resolvent (the resolvent) of G on a Hilbert space H, it is
nonexpansive. Furthermore, as in the proof of {Qs, }, {J, } satisfies the condition
(I). Therefore, we have the desired result from Theorem 9. O

Similarly, using Theorem 10, we have the following results.

Theorem 16. Let H, and Hy be Hilbert spaces. Let k be a real number with k €
[0,1). Let T : Hi — H; be a nonexpansive mapping and let U : Hy — Hy be
a k-strict pseudo-contraction such that F(U) # 0. Define T, = %Z?:_ol T and
Uy =l + (1 —,)U for alln € N. Assume that 0 < v, < 1 and sup,cnyn < 1.
Let A : H — Hs be a bounded linear operator such that A # 0 and let A* be the
adjoint operator of A. Suppose that F(T) N AYF(U) # 0. Let {u,} be a sequence



in H such that u, — u. For xy € Hy and Cy = Hy, let {x,} be a sequence generated
by

(

2, =T, (xn — WA Az, — UnACL'n)>,

Yn = Qnlp + (1 - an>zn>

Cnt1={z € Hy : [lyn — 2[| < [|zn — 2]} N O,
Kanrl = PCn+1un+1> vn S N7

where {a,} C [0,1] and {\,} C (0,00) satisfy the conditions:

0<a,<a<1l and 0<b<\JAP<c<(1—k)

for some a,b,c € R. Then {z,} converges strongly to zo € F(T) N A YF(U), where

20 = PF(T)nAle(U)xl-

Theorem 17. Let Hy and Hy be Hilbert spaces. Let S = {T'(t) : t € [0,00)} be
a one-parameter nonexpansive semigroup on Hy with the common fized point set
F(8S) = Nicp,oo) F(T'(t)) # 0 and let U : Hy — Hy be a generalized hybrid mapping
Define T,x = ifon T(s)xds for all x € Hy and n € N with t, — oo. Define
Upx = ypx + (1 — v)Uzx for all z € Hy and n € N such that 0 < ~, < 1 and
SUp,en Y < 1. Let A : Hy — Hy be a bounded linear operator such that A # 0 and
let A* be the adjoint operator of A. Suppose that F(S) N A'F(U) # 0. Let {u,}
be a sequence in Hy such that u, — u. For xy € Hy and Cy, = Hy, let {x,} be a
sequence generated by

(zn =T, <xn — M A*(Az, — UnAxn)),
Yn = QnTy + (1 - Oén)Zn,
Crnt1 =1z € Hi :[Jyn — 2| < [lzn — 2[|} N Cy,

\:EnJrl = PCn+1uTL+17 Vn € Na

where {a, } C [0,1] and {\,} C (0,00) satisfy the conditions:
0<a,<a<l and 0<b< )\ AP <c<1
for some a,b,c € R. Then {x,} converges strongly to a point zy € F(S)NA 'F(U),

where 20 — PF(S)QAflp(U)Il.

Using Theorem 10, we also have the following theorem for the split common null
point problem in Banach spaces; see also Hojo and Takahashi [12].

Theorem 18. Let H be a Hilbert space and let F' be a uniformly convexr and smooth
Banach space. Let Jp be the duality mapping on F. Let G and B be maximal
monotone operators of H and F', respectively. Let J, and Qs be the metric resolvents
of G forr > 0 and B for s > 0, respectively. Let A : H — F be a bounded linear
operator such that A # 0 and let A* be the adjoint operator of A. Suppose that



G0N A=Y(B710) # 0. Let {u,} be a sequence in H such that u, — u. For x; € H
and Cy = H, let {x,} be a sequence generated by

p
Zn = Jp, (:cn — MA*Jp(Ax, — anAxn)),
Yn = QpTyp + (1 - an)zna
Cor1={2€ H:|lyp — 2|| < |lzn — 2[I} N Ch,

\l‘n-i-l = Pcn+1’un+1, Vn € N,

where 0 < a < M\ ||A|? <b< 1,7, >c>0and s, >d >0 for some a,b,c,d € R.
Then the sequence {x,} converges strongly to a point zg € F(G)NA~Y(B~10), where

20 =

Pr@yna-1(-10)%1-
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