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GENERALIZED CENTERS AND
CHARACTERIZATIONS OF INNER PRODUCT

SPACES

HIROSHI ENDO AND RYOTARO TANAKA

Abstract. In this paper, we present new Garkavi-Klee type characterizations of

inner product spaces using the notion of generalized centers of three points sets

introduced by using absolute normalized norms.

1. Introduction

Throughout this paper, the term “normed space” always means a real normed space.

It is well-known, as a result due to Jordan and von Neumann, that a normed space

X satisfies the parallelogram law

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2)

for each x, y ∈ X if and only if the norm of X is induced by an inner product (that

is, X is an inner product space). Inspired by this simple characterization of inner

product spaces, many mathematicians have been provided several hundreds of results

on this research area, based on various geometric ideas such as norm inequalities,

generalized orthogonality types in normed spaces, and so on. The celebrated book

of Amir [1] contains many of classical and major results in such topics.

In 1960’s, Garkavi [6] and Klee [8] gave a characterization of inner product spaces

using the notion of Chebyshev centers. For each non-empty bounded subset A of a

normed space X and each element x ∈ X, let

r(x,A) = sup{∥x− y∥ : y ∈ A},
r(A) = inf{r(x,A) : x ∈ X},

respectively. Then the value r(A) is called the Chebyshev radius of A, and an

element z ∈ X is called a Chebyshev center of A if r(z, A) = r(A). Let Z(A) denote

the set of all Chebyshev centers of A. The result of Garkavi and Klee is as follows:
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A normed space X with dimX ≥ 3 is an inner product space if and only if the

condition (GK) holds, that is, for each u, v, w ∈ X,

Z({u, v, w}) ∩ co({u, v, w}) ̸= ∅.

Using the notion of ∞-direct sum of normed spaces, the notion of Chebyshev

centers is interpreted as follows: Let X be a normed space, and let u, v, w ∈ X.

Then an element z ∈ X is in Z({u, v, w}) if and only if

∥(z − u, z − v, z − w)∥∞ = inf{∥(x− u, x− v, x− w)∥∞ : x ∈ X}.

From this, we can immediately generalize the notion of Chebyshev centers. Let

1 ≤ p ≤ ∞, let X be a normed space, and let z, u, v, w ∈ X. Then z is called a

p-center of the three points set {u, v, w} if

∥(z − u, z − v, z − w)∥p = inf{∥(x− u, x− v, x− w)∥p : x ∈ X}.

Let Zp(u, v, w) denote the set of all p-centers of u, v, w. It is apparent from the

definition that the notions of Chebyshev centers and ∞-centers coincide for any

three points set, that is, Z({u, v, w}) = Z∞(u, v, w) for each u, v, w ∈ X. The case

of p = 1, the set Z1(u, v, w) is often called the Felmat center of {u, v, w}.
In terms of p-centers of three points sets, Beńıtez, Fernández and Soriano [2, 3]

provided characterizations of inner product spaces analogous to that of Garkavi and

Klee, which also gave an answer to the problem proposed by Durier [5] in 1997.

Namely, they showed that for 1 ≤ p < ∞, a normed space X with dimX ≥ 3 is an

inner product space if and only if it satisfies the condition (GKp) which states that

Zp(u, v, w) ∩ co({u, v, w}) ̸= ∅

for each u, v, w ∈ X. Furthermore, in this direction, Mendoza and Pakhrou [9]

presented in 2005 the following improvement of results mentioned above: Let 1 ≤
p ≤ ∞. Then a normed space X with dimX ≥ 3 is an inner product space if and

only if Zp(u, v, w) ∩ co({u, v, w}) ̸= ∅ for each u, v, w ∈ SX , where SX is the unit

sphere of X. They called this condition (GKs
p).

The purpose of this paper is to generalize the above result of Mendoza and

Pakhrou using absolute normalized norms on R3. Recall that a norm ∥ · ∥ on R3

is said to be absolute if ∥(a, b, c)∥ = ∥(|a|, |b|, |c|)∥ holds for each (a, b, c) ∈ R3, and

normalized if ∥(1, 0, 0)∥ = ∥(0, 1, 0)∥ = ∥(0, 0, 1)∥ = 1 holds. The ℓp-norm ∥ · ∥p
satisfies these conditions for each 1 ≤ p ≤ ∞. This allows us to consider natural

generalizations of the notion of p-centers of three points sets using absolute norms.

In terms of these generalized centers, we show the same characterization of inner

product spaces as that of Mendoza and Pakhrou, for a certain class of absolute nor-

malized norms on R3 containing symmetric, strictly convex and smooth ones as well

as the ℓp-norms for 1 < p <∞.
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2. Notation and preliminaries

Let AN3 denote the set of all absolute normalized norms on R3, and let Ψ3 be the

set of all convex functions ψ on

∆3 = {(r, s, t) : r, s, t ≥ 0, r + s+ t = 1}

satisfying ψ(1, 0, 0) = ψ(0, 1, 0) = ψ(0, 0, 1) = 1 and

ψ(r, s, t) ≥ (1− r)ψ

(
0,

s

1− r
,

t

1− r

)
,

ψ(r, s, t) ≥ (1− s)ψ

(
r

1− s
, 0,

t

1− s

)
,

ψ(r, s, t) ≥ (1− t)ψ

(
r

1− t
,

s

1− t
, 0

)
for each (r, s, t) ∈ ∆3 (with r < 1, or s < 1, or t < 1 in the corresponding case). For

each ψ ∈ Ψ3, let ∥(a, b, c)∥ψ be 0 or

(|a|+ |b|+ |c|)ψ
(

|a|
|a|+ |b|+ |c|

,
|b|

|a|+ |b|+ |c|
,

|c|
|a|+ |b|+ |c|

)
according as (a, b, c) = 0 or (a, b, c) ̸= 0. Then we have the following correspondence

between AN3 and Ψ3.

Theorem 2.1 (Saito, Kato and Takahashi [11]). The mapping ψ → ∥ · ∥ψ : Ψ3 →
AN3 is a bijection.

We recall a simple but important characterization of absolute norms from [4,

Proposition IV.1.1] (or [11, Lemma 4.1]). A norm ∥ · ∥ on R3 is said to be monotone

if ∥(a1, b1, c1)∥ ≤ ∥(a2, b2, c2)∥ whenever |a1| ≤ |a2|, |b1| ≤ |b2| and |c1| ≤ |c2|.

Proposition 2.2. A norm on R3 is absolute if and only if it is monotone.

We remark, in particular, that every absolute normalized (hence monotone) norm

∥ · ∥ on R3 satisfies the inequality

∥(a, b, c)∥∞ = max{|a|, |b|, |c|} ≤ ∥(a, b, c)∥ ≤ |a|+ |b|+ |c| = ∥(a, b, c)∥1

for each (a, b, c).

Now let X be a normed space, and let ψ ∈ Ψ3. Then the equation

∥(x, y, z)∥ψ = ∥(∥x∥, ∥y∥, ∥z∥)∥ψ

defines a norm on the cartesian product X×X×X. Indeed, the triangle inequality

follows from the preceding proposition, while the other properties required of norms

are apparent. The space X ×X ×X endowed with this norm is called the ψ-direct

sum of X, and is denoted by (X ⊕X ⊕X)ψ ([7]).
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Using the notion of ψ-direct sums, we can consider natural generalizations of

the notion of p-centers of three points sets. It should be noted that the following

definition is a special case of the corresponding notion considered in [5].

Definition 2.3 (Durier [5]). Let X be a normed space, and let ψ ∈ Ψ3. Then an

element z ∈ X is called a ψ-center of a three points set {u, v, w} in X if

∥(z − u, z − v, z − w)∥ψ = inf{∥(x− u, x− v, x− w)∥ψ : x ∈ X}.

The set of all ψ-center of {u, v, w} is denoted by Zψ(u, v, w).

Needless to say, the ℓp-norm is in AN3 for each 1 ≤ p ≤ ∞ with the corresponding

function ψp ∈ Ψ3 given by

ψp(r, s, t) =

{
(rp + sp + tp)1/p (1 ≤ p <∞),

max{r, s, t} (p = ∞),

for each (r, s, t) ∈ ∆3. Hence we have Zψp(u, v, w) = Zp(u, v, w) for each u, v, w. This

shows that Definition 2.3 provides natural generalizations of the notion of p-centers

of three points sets.

We close this section with some auxiliary results on absolute norms and their

direct sums. For each ψ ∈ Ψ3, let ψ
∗ be the function given by

ψ(s) = max
t∈∆3

⟨s, t⟩
ψ(t)

for each s ∈ ∆3, where ⟨·, ·⟩ denotes the usual inner product on R3. Then the dual

space of (R3, ∥ · ∥ψ) can be associated with ψ∗ defined above.

Proposition 2.4 (Bhatia [4]; Mitani, Oshiro and Saito [10]). Let ψ ∈ Ψ3. Then

ψ∗ ∈ Ψ3, and generalized Hölder’s inequality

|⟨x, y⟩| ≤ ∥x∥ψ∥y∥ψ∗

holds for each x, y ∈ R3. Moreover, the dual space (R3, ∥ · ∥ψ)∗ of the normed space

(R3, ∥·∥ψ) is isometrically isomorphic to the normed space (R3, ∥·∥ψ∗). In particular,

ψ∗∗ = ψ holds.

We recall that if X is a normed space, then the dual space of the p-direct sum

(X⊕X⊕X)p of X is isometrically isomorphic to the q-direct sum (X∗⊕X∗⊕X∗)q
of the dual space X∗ of X, where 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. The following

result is a natural generalization of this fact to absolute direct sums.

Proposition 2.5 (Mitani, Oshiro and Saito [10]). Let X be a normd space, and let

ψ ∈ Ψ3. Then the dual space of the ψ-direct sum (X⊕X⊕X)ψ of X is isometrically

isomorphic to the ψ∗-direct sum (X∗ ⊕ X∗ ⊕ X∗)ψ∗ of the dual space X∗ of X.

Moreover, if F ∈ (X ⊕ X ⊕ X)∗ψ is identified with (f, g, h) ∈ (X∗ ⊕ X∗ ⊕ X∗)ψ∗,

then F (x, y, z) = f(x) + g(y) + h(z) for each x, y, z ∈ X.
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3. Characterizations of inner product spaces

We start this section with the following lemma.

Lemma 3.1. Let ψ ∈ Ψ3. Then ψ takes the minimum at (1/3, 1/3, 1/3) if and only

if ψ∗ does, and in which case, the equation

ψ

(
1

3
,
1

3
,
1

3

)
ψ∗

(
1

3
,
1

3
,
1

3

)
=

1

3

holds.

Proof. Let c = (1/3, 1/3, 1/3). We first note that the inequality

1

3
= ⟨c, (r, s, t)⟩ ≤ ∥c∥ψ∥(r, s, t)∥ψ∗ = ψ(c)ψ∗(r, s, t)

holds for each (r, s, t) ∈ ∆3 by generalized Hölder’s inequality, and hence

1

3ψ(c)
≤ min

(r,s,t)∈∆3

ψ∗(r, s, t)

Now suppose that ψ takes the minimum at c, then we have

ψ∗(c) = max
(r,s,t)∈∆3

⟨c, (r, s, t)⟩
ψ(r, s, t)

= max
(r,s,t)∈∆3

1

3ψ(r, s, t)
=

1

3ψ(c)
,

which shows the equation stated in the lemma; and by the preceding paragraph,

1

3ψ(c)
= min

(r,s,t)∈∆3

ψ∗(r, s, t)

Thus ψ∗ also takes the minimum at c. Since ψ∗∗ = ψ, the converse immediately

follows from the fact just proved above. □

We next present two auxiliary results as variations of [3, Lemma 1]. The first one

is an easy consequence of the Hahn-Banach theorem. We include its proof for the

sake of completeness.

Lemma 3.2. Let X be a normed space, and let u, v, w ∈ SX . Suppose that ψ ∈ Ψ3.

Then 0 ∈ Zψ(u, v, w) if and only if there exists an element (f, g, h) in (X∗ ⊕X∗ ⊕
X∗)ψ∗ such that ∥(f, g, h)∥ψ∗ = 1, f(u)+g(v)+h(w) = ∥(u, v, w)∥ψ and f+g+h = 0.

Proof. Let M be the closed subspace {(x, x, x) : x ∈ X} of (X ⊕ X ⊕ X)ψ. From

the definition, 0 ∈ Zψ(u, v, w) if and only if

∥(u, v, w)∥ψ = inf{∥(x− u, x− v, x− w)∥ψ : x ∈ X}
= inf{∥m− (u, v, w)∥ψ : m ∈M} = d((u, v, w),M).
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Now suppose that 0 ∈ Zψ(u, v, w). We note that d((u, v, w),M) = ∥(u, v, w)∥ψ > 0;

so (u, v, w) ̸∈ M . Then, by the Hahn-Banach theorem, there exists an element

F = (f, g, h) in (X ⊕X ⊕X)∗ψ(= (X∗ ⊕X∗ ⊕X∗)ψ∗) such that ∥(f, g, h)∥ψ∗ = 1,

f(u) + g(v) + h(w) = F (u, v, w) = ∥(u, v, w)∥ψ

and M ⊂ kerF . This last inclusion shows that f + g + h = 0.

Conversely, if we have an element (f, g, h)(= F ) of (X∗ ⊕ X∗ ⊕ X∗)ψ∗ with the

stated properties, it follows that

∥(u, v, w)∥ψ = F (u, v, w) = |F (u, v, w)− F (x, x, x)|
≤ ∥F∥∥(u− x, v − x,w − x)∥ψ
= ∥(f, g, h)∥ψ∗∥(u− x, v − x,w − x)∥ψ
= ∥(u− x, v − x,w − x)∥ψ.

for each x ∈ X. Thus ∥(u, v, w)∥ψ = inf{∥(x− u, x− v, x− w)∥ψ : x ∈ X}, that is,
0 ∈ Zψ(u, v, w). □

For each x ∈ X, let Jx = {f ∈ X∗ : f(x) = ∥f∥2 = ∥x∥2}. The mapping

J : X → X∗ is called the (normalized) duality mapping. The second lemma provides

a rather algebraic interpretation of the statement that 0 ∈ Zψ(u, v, w).

Lemma 3.3. Let X be a normed space, and let u, v, w ∈ SX . Suppose that ψ ∈ Ψ3,

and that ψ∗ takes the minimum only at (1/3, 1/3, 1/3). Then 0 ∈ Zψ(u, v, w) if and

only if there exist f ∈ Ju, g ∈ Jv and h ∈ Jw such that f + g + h = 0.

Proof. Suppose that 0 ∈ Zψ(u, v, w). Then, by the preceding lemma, there exists an

element (f, g, h) in (X∗⊕X∗⊕X∗)ψ∗ such that ∥(f, g, h)∥ψ∗ = 1, f(u)+g(v)+h(w) =

∥(u, v, w)∥ψ and f + g + h = 0. Put

k = 3ψ

(
1

3
,
1

3
,
1

3

)
=

1

ψ∗(1/3, 1/3, 1/3)
.

(This last equality follows from Lemma 3.1.) From generalized Hölder’s inequality,

we have

∥(u, v, w)∥ψ = ∥(1, 1, 1)∥ψ = k

= f(u) + g(v) + h(w)

≤ ∥f∥+ ∥g∥+ ∥h∥
≤ ∥(1, 1, 1)∥ψ∥(f, g, h)∥ψ∗ = k.

It follows that f(u) = ∥f∥, g(v) = ∥g∥, h(w) = ∥h∥ and ∥f∥+ ∥g∥+ ∥h∥ = k. Since

1 = ∥(f, g, h)∥ψ∗ = kψ∗
(
∥f∥
k
,
∥g∥
k
,
∥h∥
k

)
,

— 34 —



we obtain

ψ∗
(
∥f∥
k
,
∥g∥
k
,
∥h∥
k

)
=

1

k
= ψ∗

(
1

3
,
1

3
,
1

3

)
.

However, the function ψ∗ takes the minimum only at (1/3, 1/3, 1/3), the last equality

implies that ∥f∥ = ∥g∥ = ∥h∥ = k/3. Thus putting f ′ = (3/k)f , g′ = (3/k)g, and

h′ = (3/k)h yields f ′ ∈ Ju, g′ ∈ Jv, h′ ∈ Jw and

f ′ + g′ + h′ =
3

k
(f + g + h) = 0.

Conversely, let f, g, h be the functionals with the stated properties. We note that

∥f∥ = ∥g∥ = ∥h∥ = 1. Put f0 = (k/3)f , g0 = (k/3)g, and h0 = (k/3)h, respectively.

Then it follows that

∥(f0, g0, h0)∥ψ∗ = k∥(1/3, 1/3, 1/3)∥ψ∗ = kψ∗
(
1

3
,
1

3
,
1

3

)
= 1,

that

f0(u) + g0(v) + h0(w) = k = 3ψ

(
1

3
,
1

3
,
1

3

)
= ∥(u, v, w)∥ψ,

and that f0 + g0 + h0 = (k/3)(f + g + h) = 0. This, together with the preceding

lemma, implies that 0 ∈ Zψ(u, v, w). □

Using Lemmas 3.1 and 3.3, we have the following lemma corresponding to [3,

Lemma 2].

Lemma 3.4. Let X be a normed space, and let u, v, w ∈ SX . Suppose that both

ψ ∈ Ψ3 and its dual function ψ∗ take the minima only at (1/3, 1/3, 1/3), and that

0 ∈ Zψ(u, v, w). If z ∈ Zψ(u, v, w), then

∥u− tz∥ = ∥v − tz∥ = ∥w − tz∥ = 1

for each t ∈ [0, 1].

Proof. By the preceding lemma, there exist f ∈ Ju, g ∈ Jv and h ∈ Jw such that

f + g+ h = 0. Put k = ψ(1/3, 1/3, 1/3), f ′ = kf , g′ = kg and h′ = kh, respectively.

Then we have ∥f ′∥ = ∥g′∥ = ∥h′∥ = f ′(u) = g′(v) = h′(w) = k and

∥(f ′, g′, h′)∥ψ∗ = 3k∥(1/3, 1/3, 1/3)∥ψ∗ = 1

by Lemma 3.1. Let Φ be the convex function on R given by

Φ(t) = ∥(u− tz, v − tz, w − tz)∥ψ.

Then Φ(0) = Φ(1) = ∥(u, v, w)∥ψ = 3k since 0, z ∈ Zψ(u, v, w), which and the

convexity of Φ imply that Φ(t) ≤ 3k for each t ∈ [0, 1]. However, since

Φ(t) ≥ inf{∥(u− x, v − x,w − x)∥ψ : x ∈ X} = ∥(u, v, w)∥ψ = 3k
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for each t ∈ R, it follows that Φ(t) = 3k for each t ∈ [0, 1]. From the fact that

f ′ + g′ + h′ = 0, generalized Hölder’s inequality guarantees that

3k = f ′(u) + g′(v) + h′(w) = f ′(u− tz) + g′(v − tz) + h′(w − tz)

≤ ∥f ′∥∥u− tz∥+ ∥g′∥∥v − tz∥+ ∥h′∥∥w − tz∥
≤ ∥(f ′, g′, h′)∥ψ∗Φ(t) = 3k

for each t ∈ [0, 1]. Hence one obtains, for each t ∈ [0, 1],

∥u− tz∥+ ∥v − tz∥+ ∥w − tz∥ = 3

and

3k = Φ(t) = 3ψ

(
∥u− tz∥

3
,
∥v − tz∥

3
,
∥w − tz∥

3

)
;

and therefore

ψ

(
1

3
,
1

3
,
1

3

)
= ψ

(
∥u− tz∥

3
,
∥v − tz∥

3
,
∥w − tz∥

3

)
.

Since the function ψ takes the minimum only at (1/3, 1/3, 1/3), we have

∥u− tz∥ = ∥v − tz∥ = ∥w − tz∥ = 1

for each t ∈ [0, 1], as desired. □

Our next result generalizes [9, Proposition 2], and is a key ingredient for the proof

of the main theorem.

Lemma 3.5. Let X be a normed space, and let u, v, w ∈ SX .

(i) If the dual function ψ∗ of ψ ∈ Ψ3 takes the minimum only at (1/3, 1/3, 1/3),

then 0 ∈ Zψ(u, v, w) if and only if 0 ∈ Z1(u, v, w).

(ii) If the functions ψ and ψ∗ both take the minima only at (1/3, 1/3, 1/3) and

0 ∈ Z1(u, v, w), then Zψ(u, v, w) ⊂ Z1(u, v, w),

Proof. We note that (ψ1)
∗ = ψ∞ takes the minimum 1/3 only at (1/3, 1/3, 1/3). This

and Lemma 3.3 together show that 0 ∈ Zψ(u, v, w) if and only if 0 ∈ Z1(u, v, w) pro-

vided that the dual function ψ∗ of ψ ∈ Ψ3 takes the minimum only at (1/3, 1/3, 1/3).

This proves (i).

Next we assume that the functions ψ and ψ∗ both take the minima only at

(1/3, 1/3, 1/3) and 0 ∈ Z1(u, v, w). Let z ∈ Zψ(u, v, w). Since 0 ∈ Zψ(u, v, w)

by (i), the preceding lemma assures that ∥u − z∥ = ∥v − z∥ = ∥w − z∥ = 1, which

implies that

∥(u− z, v − z, w − z)∥1 = 3 = ∥(u, v, w)∥1.
Since 0 ∈ Z1(u, v, w), it follows that z ∈ Z1(u, v, w); and therefore Zψ(u, v, w) ⊂
Z1(u, v, w). Hence (ii) holds. □
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Another key ingredient for our characterizations of inner product spaces is the

following result of Mendoza and Pakhrou [9, Lemma 3].

Lemma 3.6 (Mendoza and Pakhrou [9]). Let X be a normed space with dimX ≥ 3.

Suppose that X is not an inner product space. Then there exists a subspace Y of X

and u, v, w ∈ SY such that 0 ∈ Z1,Y (u, v, w) and Z1,Y (u, v, w) ∩ co({u, v, w}) = ∅,
where Z1,Y (u, v, w) is the set of Felmat centers of u, v, w considered with respect to

Y .

We now introduce new conditions that characterize inner product spaces. For

ψ ∈ Ψ3, we say that a normed space X satisfies the condition (GKs
ψ) if Zψ(u, v, w)∩

co({u, v, w}) ̸= ∅ for each u, v, w ∈ SX . As the following result of Durier [5, Propo-

sition 3.2] shows, inner product spaces satisfy (GKs
ψ) for each ψ in a stronger sense.

The proof is given for the sake of completeness.

Lemma 3.7 (Durier [5]). Let X be an inner product space, and let u, v, w ∈ X.

Suppose that ψ ∈ Ψ3. Then ∅ ̸= Zψ(u, v, w) ⊂ co({u, v, w}).

Proof. We first note that the set co({u, v, w})(= K) is norm compact since it is

the image of the compact subset ∆3 of the Euclidean space under the continuous

mapping (r, s, t) → ru + sv + tw. Since X is an inner product space, we have the

metric projection P from X onto K, that is, ∥x− Px∥ = min{∥x− y∥ : y ∈ K} for

each x ∈ X. (The uniqueness of such a point easily follows from the parallelogram

law.) We recall that P satisfies the inequality ⟨x − Px, Py − Px⟩ ≤ 0 for each

x, y ∈ X. In particular, for each x ∈ X and each y = Py ∈ K, we obtain

∥x− y∥2 = ∥x− Px+ Px− y∥2

= ∥x− Px∥2 + 2⟨x− Px, Px− Py⟩+ ∥Px− y∥2

≥ ∥x− Px∥2 + ∥Px− y∥2.

Now take an arbitrary x ∈ X\K. Then x ̸= Px, and the above inequality guarantees

that

k = max
y∈K

∥Px− y∥
∥x− y∥

< 1.

In particular, since u, v, w ∈ K, it follows that

∥(x− u, x− v, x− w)∥ψ > k∥(x− u, x− v, x− w)∥ψ
≥ ∥(Px− u, Px− v, Px− w)∥ψ
≥ min{∥(y − u, y − v, y − w)∥ψ : y ∈ K}
≥ inf{∥(x− u, x− v, x− w)∥ψ : x ∈ X}.
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This shows that x ̸∈ Zψ(u, v, w); hence Zψ(u, v, w) ⊂ K. Furthermore, taking the

infimum over X in the last inequalities yields

inf{∥(x− u, x− v, x− w)∥ψ : x ∈ X}
= min{∥(y − u, y − v, y − w)∥ψ : y ∈ K}.

This proves the existence of y0 ∈ K ∩ Zψ(u, v, w). □

To prove the converse, we need some additional assumptions on ψ. The main

result in this paper is the following. In view of Lemma 3.5, the proof is essentially

the same as that of [9, Theorem 5].

Theorem 3.8. Let X be a normed space with dimX ≥ 3. Suppose that ψ ∈ Ψ3

and its dual function ψ∗ both take the minima only at (1/3, 1/3, 1/3). Then X is an

inner product space if and only if it satisfies (GKs
ψ).

Proof. By the preceding lemma, it is enough to show the if part. Suppose that X

is not an inner product space. Then, by Lemma 3.6, there exists a subspace Y of

X and u, v, w ∈ SY such that 0 ∈ Z1,Y (u, v, w) and Z1,Y (u, v, w)∩ co({u, v, w}) = ∅.
Since Zψ,Y (u, v, w) ⊂ Z1,Y (u, v, w) by Lemma 3.5 (ii), it follows that

Zψ,Y (u, v, w) ∩ co({u, v, w}) = ∅.

However, this means that

inf{∥(x− u, x− v, x− w)∥ψ : x ∈ X}
≤ inf{∥(y − u, y − v, y − w)∥ψ : y ∈ Y }
< min{∥(y − u, y − v, y − w)∥ψ : y ∈ co({u, v, w})},

that is,

Zψ(u, v, w) ∩ co({u, v, w}) = ∅.

Hence X does not satisfy (GKs
ψ). The proof is complete. □

A norm ∥ · ∥ on R3 is said to be symmetric if ∥(xπ(1), xπ(2), xπ(3))∥ = ∥(x1, x2, x3)∥
for every permutation π of {1, 2, 3}. We also recall that a norm ∥ · ∥ on a Banach

space is said to be strictly convex if ∥x + y∥ = ∥x∥ + ∥y∥ implies that x = ky for

some k ≥ 0. Combining these properties immediately yields the following lemma.

Lemma 3.9. Let ψ be such that ∥ · ∥ψ is symmetric and strictly convex. Then ψ

takes the minimum only at (1/3, 1/3, 1/3).
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Proof. For each (r, s, t) ∈ ∆3, we have

ψ(1/3, 1/3, 1/3) = ∥(1/3, 1/3, 1/3)∥ψ

=
1

3
∥(r, s, t) + (t, r, s) + (s, t, r)∥ψ

≤ 1

3
(∥(r, s, t)∥ψ + ∥(t, r, s)∥ψ + ∥(s, t, r)∥ψ)

= ∥(r, s, t)∥ψ = ψ(r, s, t)

since ∥ · ∥ψ is symmetric. Hence ψ takes the minimum at (1/3, 1/3, 1/3). Moreover,

if the equality occurs in the above inequality, the strict convexity of ∥ · ∥ψ assures

that (r, s, t) = k(t, r, s) = l(s, t, r) for some k, l ≥ 0. By taking the norms of each

vectors, we have k = l = 1, that is, r = s = t = 1/3. This proves the uniqueness. □

It is well-known, for a reflexive Banach space X, that X is smooth if and only

if the dual space X∗ is strictly convex. From this, ∥ · ∥ψ is smooth if and only if

∥ · ∥ψ∗ is strictly convex. Moreover, it is easy to check that ∥ · ∥ψ is symmetric if

and only if ∥ · ∥ψ∗ is. Thus the following result is now an immediate consequence of

Theorem 3.8 and the preceding lemma.

Corollary 3.10. Let ψ ∈ Ψ3 be such that ∥ · ∥ψ is symmetric, strictly convex and

smooth. Then a normed space X with dimX ≥ 3 is an inner product space if and

only if it satisfies (GKs
ψ).

Needless to say, the ℓp-norm satisfies the assumptions in the preceding corollary

for 1 < p <∞. Thus we obtain the result of Mendoza and Pakhrou [9, Theorem 5]

as a corollary.

Corollary 3.11 (Mendoza and Pakhrou [9]). Let 1 < p <∞. Then a normed space

X with dimX ≥ 3 is an inner product space if and only if it satisfies (GKs
p).

Finally, we recall that an inner product space satisfies the condition (GKs
ψ) for

any ψ ∈ Ψ3. Hence the following problem naturally arises. We remark that, in the

two-dimensional case, (GKs
ψ) is always satisfied even in non-inner product spaces

([5, Proposition 3.2]).

Problem 3.12. Let X be a normed space with dimX ≥ 3, and let ψ ∈ Ψ3. Does

(GKs
ψ) imply that X is an inner product space?
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[3] C. Beńıtez, M. Fernández and M. L. Soriano, Weighted p-centers and the

convex hull property, Numer. Funct. Anal. Optim. 23 (2002), 39–45.

[4] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.

[5] R. Durier, Optimal locations and inner products, J. Math. Anal. Appl. 207

(1997), 220–239.

[6] A. L. Garkavi, On the Chebyshev center and convex hull of a set, Uspehi Mat.

Nauk. 19 (1964), 139–145.

[7] M. Kato, K.-S. Saito and T. Tamura, On ψ-direct sums of Banach spaces and

convexity, J. Aust. Math. Soc. 75 (2003), 413–422.

[8] V. Klee, Circumspheres and inner products, Math. Scand. 8 (1960), 363–370.

[9] J. Mendoza and T. Pakhrou, Characterizations of inner product spaces by

means of norm one points, Math. Scand. 97 (2005), 104–114.

[10] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ-direct sums of Banach

spaces, Math. Inequal. Appl. 8 (2005), 147–157.

[11] K.-S. Saito, M. Kato and Y. Takahashi, Absolute norms on Cn, J. Math. Anal.

Appl. 252 (2000), 879–905.

(Hiroshi Endo) Creative Engineering Co., Ltd., 1853-3, Yoshidahokkedo, Tsubame-shi, Niigata

959-0214, Japan.

E-mail address: f12a043j@alumni.niigata-u.ac.jp

(Ryotaro Tanaka) Department of Mathematical Sciences, Graduate School of Science and Tech-

nology, Niigata University, Niigata 950-2181, Japan; (Current address) Faculty of Mathematics,

Kyushu University, Fukuoka, 819-0395, Japan.

E-mail address: ryotarotanaka@m.sc.niigata-u.ac.jp; (Current E-mail address)

r-tanaka@math.kyushu-u.ac.jp

Received December 15, 2015

Revised April 27, 2016

— 40 —


