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TRAPEZOIDAL TYPE INEQUALITIES FOR

RIEMANN-STIELTJES INTEGRAL VIA CEBYSEV
FUNCTIONAL WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR

ABSTRACT. Some new inequalities for the functional

Er (f’ u)

b b
— (b) (u(b)—b_la/ u(t)dt)—i—f(a) <b_1a/ u(t)dt—u(a))

- [ romo,

under various assumptions for the functions f and w are given. Applications for
functions of selfadjoint operators and unitary operators on complex Hilbert spaces
are also provided.

1. Introduction

For two Lebesgue integrable functions f, g : [a,b] — R, consider the Cebysev func-
tional:

Ctra) =y, [ s L [ a0
In 1935, Griiss [28] showed that
C(F0)] < 3 (M —m) (N ~n), &)
provided that there exists the real numbers m, M, n, N such that
m<f(t)<M and n<g(t) <N forae. tE€]a,b]. (3)

The constant i is best possible in (1) in the sense that it cannot be replaced by a
smaller quantity.
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Another, however less known result, even though it was obtained by Cebysev in
1882, [5], states that

1
CUH < S 1l llgll (0= ), (4)

provided that f’,¢" exist and are continuous on [a,b] and || f[|, = supe(, 4 [f* ()]
The constant 1—12 cannot be improved in the general case.

The Cebysev inequality (4) also holds if f,g : [a,b] — R are assumed to be
absolutely continuous and f',¢' € Lo [a, b] while ||f'|| , = esssup;epy [ (2]

A mixture between Griiss’ result (2) and Cebysev’s one (4) is the following in-
equality obtained by Ostrowski in 1970, [39]:

C(f9)] < 5 (b= a) (M = m) '] o)

provided that f is Lebesgue integrable and satisfies (3) while g is absolutely contin-
uous and ¢’ € Ly [a,b]. The constant g is best possible in (5).

The case of Fuclidean norms of the derivative was considered by A. Lupasg in [32]
in which he proved that

C (0] < = 111l (b~ a) (6

provided that f, g are absolutely continuous and f’,¢" € Ly [a,b]. The constant 7%2
is the best possible.
Recently, P. Cerone and S.S. Dragomir [3] have proved the following results:

pdt)p, (7)

16 - 5 [ £

1 b
<i — ], -
C (gl < intllg =, 7= (/

Wherep>1and§+$:10rp:1andq:oo,and

b
16 - 5 [ Fo)ds

: (8)

1
€ss sup

C(f, g) <inflg— .
€ (f,9)l < nfllg =l 5= Sup

provided that f € L,[a,b] and g € L,[a,b] (p > 1,
p=o00,q=1).
Notice that for ¢ = co,p = 1 in (7) we obtain

+>=1;p=1 g = o0 or

=
=

b
0 -5 [ Fodsja

1 b
< i _ S
C.ol<intly=le 7= |

1 b
<lgllee 35—

b
£0) = 2 [ Fds|a




and if ¢ satisfies (3), then

b b
CU<intlo =l 7= [ |f0=52 [ Fasle a0

n-—+ N 1 b

2 s =)
b b

<sW=n e [l —5= [ reas

The inequality between the first and the last term in (10) has been obtained by
1
29
for the abstract Lebesgue integral and the discrete version of it have been obtained
in [4].

For other recent results on the Griiss inequality, see [30], [35] and [40] and the

dt

16 -5 [ F)ds

dt.

Cheng and Sun in [6]. However, the sharpness of the constant 3, a generalization

references therein.
For some recent inequalities for Riemann-Stieltjes integral see [7]-[12] and [31].
In this paper some bounds for the functional

ET (f7 u)
b 1

- (b)(u(b)—ﬁ u(t)dt)+f(a)<m/abu(t)dt—u(a))

under various assumptions for the functions f and u are obtained. Applications for
functions of selfadjoint operators and unitary operators on complex Hilbert spaces
are also provided.

2. Some Preliminary Results

We start with the following representation:

Lemma 2.1. Let f : [a,b] — C be an absolutely continuous function and u : [a,b] —
C a function of bounded variation. Then we have the equalities

b W 2 (b
o [ [P R ) aue )
~ = Fr(f) = C ().



Proof. Integrating by parts, we have

b—a

1 b
b—a/

£ (®u) t——/f
rovwrt- [ 10 ]

_f(b[)):i:(a) b_a/au(t)dt

_ SO u®) = fla)ula) 1

w(t)dt

[ a

_f(bg)_g( ),bia/a u () dt

B 1
b—a

+/ (a) (

{f 0 (u e bu@) dt)

bia/b (t)dt —ufa >] b—a

which proves the second equality in (1).
Integrating again by parts, we have

u (b) —

1 b
7 / w (t)dt

—bia {u(t)tﬁ—/abtdu(t)]

/f t) du (t

(b—a) —u(d)b+u(a)a+ [ tdu(t)

b—a

b—a

L) el )L 4,

and

b—a

b
bia/ u(t)dt —u(a)

[u ()t - /ab tu (t)} —u(a)

u(b)b—u(a a—ftdu —u(a)(b—a)

b—a

b—a

_ bu(®) _“b@]a— Jotdu(®) _ 1 / (b—t)du(t).



Then

+f(a) <bia/abu(t)dt—u(a)>} —bia/abf(t)du(t)
b

+f(a)b_a/(b—t)du }——/f ) du (t

:bia/ab{f(bw—agfg( a) (b—1) f()}du()

and the first equality in (1) is also proved.

O

Now, for v, I' € C and [a, b] an interval of real numbers, define the sets of complex-
valued functions

sy (7,T) = {f : [a,b] — C|Re [(r @) (W—V)] >0 for each t € [a, b]}

and

Apay) (7,1) = {f:[a,b] — C| ‘f(t)—% < §|F—7] for each t € [a,b]}.

The following representation result may be stated.

Proposition 2.1. For anyy,I' € C, v # I, we have that U,y (7, 1) and Ay (7,1)
are nonempty, convex and closed sets and

Uiy (7, 1) = By (7. 1) -

(2)
Proof. We observe that for any z € C we have the equivalence
v+T 1
Tl < 2=
e EE L
if and only if
Re (I - 2) (2 = 7)] > 0.
This follows by the equality
1 v+ T 2 _
{0l = o - 35| =Rl - - 7)
that holds for any z € C.
The equality (2) is thus a simple consequence of this fact. U

On making use of the complex numbers field properties we can also state that



Corollary 2.1. For any v, € C, v # I",we have that

Uy (7.0) ={f :[a,b] = C | (ReT' —Re f (t)) (Re f (t) — Re~) (3)
+(ImT —TIm f (¢)) (Im f (¢) — Im~y) > 0 for each t € [a,b]}.

Now, if we assume that Re (I') > Re () and Im (I') > Im () , then we can define
the following set of functions as well:

Sia (. T) = {f  [a,6] = C | Re(T) = Re f (t) = Re () 0
and Im (T') > Tm f (¢) > Im () for each ¢t € [a,b]}.

One can easily observe that Sj, 4 (7, ') is closed, convex and

@ 7é 5([a,b} (’% F) - U[a,b] (’77 F) : (5)

Lemma 2.2. Let f,g: [a,b] — C be Lebesgue measurable functions. Then

C(f,9)

(

g€L1 [a,b],
f € Lyla,b]

. b
e lg =1l - esssuyeia [F(1) = 545 J7 1 () ds

gELq[avb]a
pdt>11’ feLp[an]7

p>1,

1,1

p q

—_

F&) — 2= [V f(s)ds

IN

. b
infec llg — I, - (fa

SN
|
S

g € Ly [a,b],

infrec 19—Vl - /. f € Ly[a,b]

\

b
a

£t =22 [P F(s) ds’ dt

(6)

Proof. The assertion follows by the Sonin’s identity for complex valued functions

ctr =5 [ -2 (10~ [ 1)@

and by the integral Holder inequality. U



Corollary 2.2. Let f, g : [a,b] — C be Lebesgue measurable functions. If v, 1" € C,
Y 7& Fa and g e A[a,b] (7? F) ) then

1C(f. 9)] (7)
[ ess SUD;e 0.4 ‘f(t) — = f:f (s) ds‘ f € Ly |a,b

1 p % Lp 7b7
< SI0=A18 (s L |70 = 5 L2 f () ds| ) ﬁil, {a]
L O - G dslae fe Lilay).

Another important corollary is as follows:

Corollary 2.3. Let f,g : [a,b] — C be Lebesgue measurable functions. If g is of

bounded variation, then

[C(f:9)] (8)

;

€55 SUDje o4 ‘f(t) - = fabf (s) ds‘ f € Ly a,b]
1y’ b b P Ny fE€Lyal],
<3V (o= Lol o)
L |0 = S (s)ds|dt e Lifat],
b
where \/ (g) is the total variation of g on |a,b].
Proof. Since g is of bounded variation, then
b 1
o) - 20 < S o) =901+ 190 - 9 0 )
L0
< 3 \a/ (9)
for any ¢ € [a,b] .
We have
gl@+gO| _ g(a)+g(b)
e I
L0
< 5 \/ (9)



and

H”)‘g(a);g(b)q _ (/abg(ﬂ_g<a>;g<b>th)”q
< %\i/@) ([w)" =L a>”q\i/<g>
for ¢ > 1.
Utilising (6) we get (8). O

For functions h that are Lipschitzian in the middle point with the constant Lats
2
and the exponent s > 0, i.e., satisfying the condition

a+b
G

for any ¢ € [a,b], we have the following result as well.

s

b
t_a+

Another important corollary is as follows:

Corollary 2.4. Let f,g : [a,b] — C be Lebesgue measurable functions. If g is
Lipschitzian in the middle point with the constant LaTH and the exponent s > 0,
then

1
‘(j (j: g)‘ f; ES;ZLE%E

r (bslal)s . es8 supte[avb] ‘f(t) — ﬁ fabf (S) ds f - Loo [CL, b]
_1 p 1 j)EE l;P klvb]’
) (S| = s L (s as| ) p > (10)
Sre=1
b—a) - [P r) = = [P f(s) ds‘ dt  feLiab].

\

Proof. We have, for ¢ > 1, that

B a+b
g—4g 5

o0 -9 (5] @) R

b sq 1/q

< ( / L, dt)
sq 1/q
L dt) .

[a,b].q

a+b

t—

a+b

— 54 —



Observe that

(L

b
t_a—i—

sq 1/q
ﬁ)

a+b

Then by (11) we have

b b o s+1/q
Hg_g<“+ ) < Lup i/
2 [a,b].q > 25 (sq+1)7"
Also .
0 a+b SLm(b_a)-
2 [a,b],00 2 2

By utilizing the inequality (6) we have

ath sq b s5q
- / (&er—t) dt+/ (t—a+b> dt)
a 2 ath 2

b—a)Sq+1 1/q sg+1 1/q
(= O R e e
sq+1 2% (sq + 1) 25 (sq + 1)1/q

f e L,la,b

1C(f,9)]
(1., o= 4 - LoP d I b
atb oster1) €99 5UPte[a ) f(t) b—a fa f(s)ds| f € Lyla,b]
1 _g)st1/a b b p
<= Lo ([ £0) = 555 [ £ () ds| )

dt

| Lo Ca)” . [N F(t) — 2 [0 f (s)ds

( b—a)s b
A ess s |10~ 4 1 () ds

£ — 22 [P (s) ds‘pdt>

1 s
o (b—a) 1 b
= giles | e (.

(b—a)™ - [P1F(t) = 5= [V f (s)ds| dt

and the corollary is proved.

\

B =

p>1,
1 1 _
sto=1

f < L1 [a, b]

f € Ly |a,b]

feLp[avb]a
p>1

1,1 _
5+E_1

f € Li]a,b



Remark 2.1. In the case when g is Lipschitzian with the constant L > 0, then

(9l < 5L
( 5 (b—a)-esssup,er,y )f(t) - = f;f (s) ds‘ f € Ly a,b]
1-1 P 1 f € Lp [aab]7
3 e (e - i L@ as] ) s, (12)
Lyl=1
S0 =5 S (s)ds| de f€Lifab).

3. Error Bounds for a Generalized Trapezoid Rule

In order to approximate the Riemann-Stieltjes integral fab f(t)du(t) by the gener-
alized trapezoid formula

£ (u(b)— bi@/ju(t)dt) + £ (a) (bia/abu(t)dt—u(a)>

we consider the error functional

For some recent results concerning this functional see [24] and [36].

Theorem 3.1. Let f : [a,b] — C be absolutely continuous and u : |a,b] — C of
bounded variation.



(i) Ifv,T € C, v #T, and u € Ay (v, 1), then

|Er (fu)l < 5 \F gl
( (b—a)ess SUDe o) () — w ' € Ly [a,b]
1 1 f € LP [CL, b] ’
xd (b—ays (f |7 - L9219 ar)’ (2)
1,1
p > 1, I_J + a = 1,
(t) — 1O=1@ € Lya,b].
f f( ) —a f 1 [,
(i) If o, ® € C, ¢ # D, and f' € Ay (p, ®), then
|Er (f,u)] < 5 |‘I> |
( (b — @) €55 SUDye(qy ‘u(t) — fabu( )ds‘ u € Ly [a, b]
1 7 u€ Lyla,b
x4 b=ayt (f2]uct) u(s)ds| dt) TS UG
\ fab u(t)—ﬁf;u S)ds‘dt u € Ly [a, ]
Proof. From Lemma 2.1 we have the representation
Er (f,u) = (b—a) C (/). @

(i) Iy, T €C,v#T, and u € Ay (v,T), then by Corollary 2.2 we have

1C(f,u)]
p €55 SUPye[q 4 F1(t) — w '€ Lo [a,b]
1 1 f € LP [CL, b] y
<SIt =19 (5 0] = 4L ar)”
p>1,
b - a
S-S feLat],

which implies the desired result (2).



(ii) If o, ® € C, o # @, and f' € Ay (¢, P), then by Corollary 2.2 we have

C(f )]
[ ess SUD; ¢ (q.5] ’u(t) — = f;u (s) ds‘ u € Ly [a, b
1 b b P Ny u€ Ly[a,b]
< Z o 1 _ 1 ) p L )
<3 |D — o (bfa Clu(t) — 5= [Ju(s)ds| dt D1,
ﬁf; u(t)—ﬁf;u(s)ds‘dt u € Ly [a,b],
which implies the desired result (3). O

The following result also holds:

Theorem 3.2. Let f : [a,b] — C be absolutely continuous and u : |a,b] — C of
bounded variation.

(i) We have
1 b
|Ep (f,u)] < §\a/
( (b= a)esssup,cy |F/(8) — 19| e Lofab]
1 fELP [Cb,b],
x4 —ay (7|1 - 1919 a)” (5)

1 1 _
p>1,5+5—1,

f F1(t) — f(b f(a)

(ii) If f" is of bounded variation, then
b

(b — a) esssupe(yy ’u(t) - L fbu (s) ds‘ u € Lo |a, b]

fELl [a,b].

|Er (f,u)] <

N | —

(

b—a Ja
<8 =t (oo - & fuasa) USRS )
S ) = 55 S (s) ds| we Ly [ab)




The proof follows by the identity (4) and from Corollary 2.3. We omit the details.
The case of Lipschitzian functions is as follows:

Theorem 3.3. Let f :

bounded variation.

[a,b] — C be absolutely continuous and u :

[a,b] — C of

(i) If u is Lipschitzian in the middle point with the constant L%b and the expo-
nent s > 0, then

1
Br (fu)] < 5

(

X

aT-!—b
b—a)* ! b)—f(a
ot —ess supyep | /(1) — L1 e Lo [, ]
(=a) 1 (b 0-1@[" 47\ Fe bt
s (2|70 - 2] )
p>1, 1% + % =1,
| b—a) [ 1) — L= feLifab].

(i) If f" is Lipschitzian in the middle point with the constant Ko and the
exponent v > 0, then

1

(b—

\

( (b—q)*t? 1 b
%655 Supte[a,b} ‘U(t) T b—a fa u

(b—a)"ti
(vg+1)"/4

(s) ds‘ u € Ly [a,b]

% ueLp[aab]a
1 1 _
p>1,5+a—1

u(t) — 7= f;u (s) ds‘p dt)

a)’ [

s)ds‘dt u € Lya,b].

The proof follows by Corollary 2.4.

Remark 3.1. If u is Lipschitzian with the constant L > 0, then

|Ex (f,u)] < 5L

N | —

(8)



p

L(b—a)®esssupyepay /(1) — JO-JD | e Lo [a,b]
1+l b p 1 f 6 Lp [a7 b] ’
b—a q b)—f(a P
< Ll (o ) - f0s ) (9

1 1 _
p>1,5+5—1,

10)-f(a)
f't) = ===

a

| b-a) )

If ' is Lipschitzian with the constant K > 0, then

dt f€Liab].

Br (f,u)| < 5K

¢

b—a Ja

T(b— a)’ess SUDjelq,5] ‘u(t) - fbu (s) ds‘ u € Ly [a,b]

u € Ly,la,b],
p>1,%+%:1

u(t) — 7= fabu (s) ds‘pdty

(10)

(b—a)f;‘u(t)—ﬁf:u(s)ds‘dt we Lifa,b.

\

4. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on a complex
Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be defined for all
A € R as follows
1, for —oo < s <A,
P (5) =
0, for A < s < 4o00.
Then for every A € R the operator

By = ¢y (4) (1)
is a projection which reduces A.
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [29, p. 256]:

Theorem 4.1 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let m = min {\ |A € Sp(A)} =: min Sp (A) and
M =max{A |\ € Sp(A)} = maxSp(A). Then there exists a family of projections
{E\}\er, called the spectral family of A, with the following properties

a) Ex < Ey for A <)



b) Em,() = O, EM =1 and E)\+O = E)\ fOT' all A € R,
c) We have the representation

M
A= / AdE).

m—0
More generally, for every continuous complezx-valued function ¢ defined on R there
exists a unique operator ¢ (A) € B (H) such that for every e > 0 there ezists a 6 > 0
satisfying the inequality

P(A) = o(N) [BEr, — By ]| <e

k=1

whenever
(N <m=XM\ < ... <A1 <\ =M,

M — A1 <6 for 1 <k <mn,

L AL € [N, A for1<k<n

this means that

o(A) = / o (\) dE,, 2)

m—0

where the integral is of Riemann-Stieltjes type.

Corollary 4.1. With the assumptions of Theorem 4.1 for A, Ex and ¢ we have the
representations

M
gp(A)x:/ (AN dE\x forallz € H

m—0
and
M
(¢ Wwg) = [ ¢ d(EBrny) foralaye I 3
m—0
In particular,
M
(p(A)z,x) = © (AN d(Exz,x) forallx € H.
m—0

Moreover, we have the equality

M
o (A) a]f? = / o OVEd|Extl? for all = € H

m—0

We need the following result that provides an upper bound for the total variation
of the function R 3 A — (E)z,y) € C on an interval [, 8], see [23].



Lemma 4.1. Let {E)}, g be the spectral family of the bounded selfadjoint operator
A. Then for any x,y € H and o <  we have the inequality

2

< ((Es — Eo)w,2) (Es — Ea) y,y) (4)

B

V (B

(67

B
where \/ (<E(.)w, y>) denotes the total variation of the function <E’(.)x, y> on |a, B].

[0}

Remark 4.1. Fora« =m —e withe > 0 and B = M we get from (4) the inequality

\/ ((Epz,y)) < (I - Em_a)x,x)l/2 (I — Em_a)y,y>1/2 (5)

m—eg

for any x,y € H.
This implies, for any x,y € H, that

\/ ((Eoya.y)) < lzlllyl, (6)

M M
where \/ (<E T y>) denotes the limit lim. 4 [\/ )T y>)]

m—0 m—e

We can state the following result for functions of selfadjoint operators:

Theorem 4.2. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min{\|A € Sp(A)} = minSp(A) and M = max{\|Ae€ Sp(A)}
=:max Sp (A). If {Ex} g is the spectral family of the bounded selfadjoint operator
A and f: I — C is absolutely continuous on [m, M] C I (the interior of I), then

([Fo0U i) im0t =) ], )
([ (M —m) ess supyean

f/(t) _ f(M)—f(m) ’

N)Ir—t

V (Eoz,v) § (M —m)s (f,,Af

m—0

7(t) = Lot )

M
S

7(t) = Lty



(
(M = m) €5 upyefy | /(1) — L=

(VAN
N | —

HZUH Hy” (M — m)% (frjr‘:[ f’(t) . %’de; (7)

M
e

f(M)—f(m)
for any x,y € H.

Proof. Utilising the representation (1) and the inequality (5) we have

/M [f(M)(t—ers)ﬂLf(m—e)(M—t)
M—-—m+e

- 1] a(Eie)

m—e

M)—f(m—
f/(t) — LOD=tm=s)

p N
dt)

(M —m + €) ess SUPyen—c )

<5 V (Boz)) § 01 —me+ o)t (120,

m—e&

f/<)_ M frETgE)

WRTORE = e
for small € > 0 and for any z,y € H.
Taking the limit over ¢ — 04 and using the continuity of f and the Spectral

Representation Theorem, we deduce the desired result (7). U

For recent results concerning inequalities for functions of selfadjoint operators, see
[1], [14], [15], [16], [17], [18], [19], [23], [33], [37], [38], [41] and the books [21], [22]
and [27].

5. Applications for Unitary Operators

A unitary operator is a bounded linear operator U : H — H on a Hilbert space H
satisfying

UU=U0U"=1yk
where U™ is the adjoint of U, and 15 : H — H is the identity operator. This property
is equivalent to the following:

(i) U preserves the inner product (-,-) of the Hilbert space, i.e., for all vectors
x and y in the Hilbert space, (Uz,Uy) = (x,y) and
(ii) U is surjective.

The following result is well known [29, pp. 275-276]:



Theorem 5.1 (Spectral Representation Theorem). Let U be a unitary operator on
the Hilbert space H. Then there exists a family of projections {P/\}Ae[o,zfr]; called the
spectral family of U, with the following properties

a) Py < Py for A<\,

b) Py =0, Poy =1 and Pyxyo = Py for all A € [0, 27);

c) We have the representation

2
U:/ exp (i\) dPy.
0

More generally, for every continuous complez-valued function ¢ defined on the
unit circle C (0,1) there exists a unique operator o (U) € B(H) such that for every
e > 0 there exists a 6 > 0 satisfying the inequality

% (U) - Z % (exp (Z)‘;g)) [P)\k - P)\kfl] <e¢
k=1
whenever
(0= < ... < A1 < A\ =2m,
A — A1 <0 for 1 <k <,
\ N € Mmi, M) for 1<k <n
this means that )
) = [ olexpN)dps, 1)
0

where the integral is of Riemann-Stieltjes type.

Corollary 5.1. With the assumptions of Theorem 5.1 for U, Py and ¢ we have the
representations

e (U)x = /0 ng(exp (1X))dPyx for allx € H
and .
(e W)a) = [ plesp@)dPay) forallaye I 2

In particular,

(o(U)x,z) = /0 ﬂgo(exp (iN)) d (Pyz,z) for all x € H.

Moreover, we have the equality
27
l|lo (U)QUH2 = / | (exp (i)\))|2d HP,\xH2 for all x € H.
0

The following result holds:



Theorem 5.2. Let U be a unitary operator on the Hilbert space H and {P,\}AE[O’%]
the spectral family of U. Let f be a differentiable complez-valued function defined on
an open disk containing the unit circle C (0,1). Then we have

(2 f (1) = £ (U)] %, y)] (3)

( 2mess SUPsegon | (7))

l\:)lr—t

\O; )T, y> (2@% ( 027T |f/(ez‘t)’p dt);

LS (e dt;

( 2mess SUPseoon |/ (€7)];

1 1 2w / 3 %
<5 lalllglh§ @me (571 )

LT ()] dt,
forall z,y € H.

Proof. Utilising the representation (1), the inequality (5) and the fact that f is
differentiable as a complex function, we have

/02“ {f (™) (t - 0)24;,1‘ (e”) (27 — 1)

y (e“)} d(P,\x,y>'

( et f(eit) — F(e)—f (")

27

2mess SUPye(o 2]

ieitf/(eit) _ f<ei27r)7f(eo)

2w

VAN
DN | —
o<§

(rom)§ eot (7 ’”dt)‘l’ N

Z'eitf/<eit> _ f(em)_f(eo)

2w

dt

f?ﬂ'
0

\

for all z,y € H.
The inequality (4) is equivalent with

/ T - (] d (P y>‘



( 2mess SUPegom |1 (€7)]
1

_\0; <P T y> (Qﬂ)i < 027r‘f/(eit)’pdt>5

L Jo 1) dt

and the desired result (3) is proved. O

NO| —

Remark 5.1. Consider the exponential function f : C— C, f(z) = expz =
Yol 2" Then f'(2) = expz and

|f (e”)| = lexp (cost +isint)| = exp (cost) |exp (isint)|
= exp(cost)
fort € 0,2 .
Observe that
sup ‘f ‘ =e
te[0,27]

and for p > 1

(/27r /(e ‘pdt)l = </027r exp (pcost) dt)é = 271, (p)]”

where Iy is the modified Bessel function of the first kind, 1.e., we recall that

Iy (2) := mio:o (;!)2 <§>2m, z € C.

Let U be a unitary operator on the Hilbert space H and {P/\}Ae[o,zn] the spectral
family of U. Then we have by (3)

[([2me — exp (U)] z, y)| ()

2w

<7\ ((Poz,y)) & (L (p)r; p>1

0

1
<zl { (Lo®)r; p>1

forall x,y € H.
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