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THE DUNKL-WILLIAMS CONSTANT OF
SYMMETRIC OCTAGONAL NORMS ON R? II

HIROYASU MIZUGUCHI

ABSTRACT. Recently, the author and two other researchers constructed a calcula-
tion method for the Dunkl-Williams constant DW (X)) of a normed linear space X.
Using the method, we determined the constant of R? with symmetric octagonal
norms. In this paper, we calculate the Dunkl-Williams constant of its dual space.
As the result, the space R? with symmetric octagonal norm becomes an example
for which the Dunkl-Williams constant of the own space and the dual space have

same value.

1. Introduction and preliminaries

This paper is a continuation of [18]. A norm || - || on R? is said to be absolute if
Il (a, )] = |I(Jal,[b])]| for all (a,b) € R? and normalized if ||(1,0)| = ||(0,1)]] = 1.
Let AN, be the family of all absolute normalized norms on R?, and let ¥, be the
set of all continuous convex functions on [0, 1] satisfying max{l —¢,t} < ¢(t) <1
for t € [0,1]. According to [3], AN, and ¥y are in a one-to-one correspondence with
W(t) = ||(1 —t,t)] for t € [0,1] and

(ol + 10w (i) i (@) # 0.0)

0 if (a,b) = (0,0)

(@, 0)[l =

(see also [20]).
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For each 8 € (1/2,1), let ¢5(t) = max{1l — t,t,8}. Then, ¢35 € V5. The norm
| - |4, associated with v is given by

(@, 0)[l, = max{|al, [b], 5(lal + [b])}

(1 (|b| <12f |a|> ,

1 —
=3 st + o) (el < < 2 lal).

i (1550 < 1)

Remark that the unit sphere of (R?, | - [|y,) is an octagon, and that the norm || - ||,
is symmetric, that is, ||(a, )|y, = [|(b,a)]|y, for all (a,b) € R
Throughout this paper, the term “normed linear space” always means a real

normed linear space which has two or more dimension. Let X be a normed linear
space, and let Bx and Sx denote the unit ball and the unit sphere of X, respec-
tively. In [12], the Dunkl-Williams constant DW (X)) of a normed linear space X
was introduced:

oW ) s { L2
le =yl

El quH oy € X0 “Ay}'

We collect some basic properties of the Dunkl-Williams constant:

(i) 2 < DW(X) < 4 for any normed linear space X ([5]).
(ii) X is an inner product space if and only if DW(X) = 2 ([5, 14]).
(iii) X is uniformly non-square if and only if DW (X) < 4 ([1, 12]).

However, it is very hard to calculate the Dunkl-Williams constant. It is not known
for almost all normed linear spaces.
In [18], we determined the Dunkl-Williams constant of R* with || - ||, for all

B e (1/2,1):

%{(1-@%52} (1/2 < B<1/V2),
1H{1-82+p  (1/V2<B<).

DW((R?, || - [ly,)) =

Our aim in this paper is to calculate the Dunkl-Williams constant of its dual
space. Finally, we obtain that the Dunkl-Williams constant of R* with |- ||, always
coincide with that of its dual space.
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2. The dual norm of || - ||y,
For ¢ € Wy, a function ¢* on [0, 1] is defined by
(1—1)(1—s) +ts

o) :te[O,l]}

for s € [0,1]. It was proved that ¢* € ¥, and that || - ||« € AN, is the dual norm
of || - ||y, that is, (R?,[ - ||4)* is identified with (R?, || - [l4) (cf. [15, 16, 17]). A
norming functional f of x = (x1,22) € (R?%,| - ||y) is identified with an element
(a1, a) € (R%|| - ||4+) such that

wWS)Isup{

[(r,a0)|l;, =1 and (21, 72), (1, az)) = [[(71, 22) || 4- (1)

We denote by D((R?, || [|4), 2) the set of all elements (a1, ap) € (R?,[|-||7,) satisfying
the condition (1).
For 8 € (1/2,1), we determine the convex function 15 € ¥, and the dual norm

I

Proposition 2.1. Let g € (1/2,1). Then

28 —1
B

1-— 28 —
s 28

B B

Proof. Fix s € [0,1]. We define the function f; from [0, 1] into R by

vy OF ||+ [l

1 —

s (0<s<1/2),
Y5(s) =

(1/2<s<1).

(1—1t)(1—s)+ts
Up(t) '

We note that 1j(s) = max{f,(t) : 0 <t < 1} and calculate the maximum of f, on
[0,1]. By the definition of g, we have

fs(t) =

r st
L(t) = 1—3—21—23)t 1—B<t<p),
\5+w (B<t<1).

If 0 < s < 1/2, then the function f,(t) is increasing on [0, 1 — ] and is decreasing
on [1 — (3,1]. Hence we have

28 — 1
B

S.

Vi) = f1-B) =1~
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Suppose that 1/2 < s < 1. Then the function f,(t¢) is increasing on [0, 5] and is
decreasing on [, 1]. Hence we have

1— 26 — 1
W) = £u(8) = ﬁﬁ+ % s

Thus we obtain this proposition. O

From this result, we easily obtain the following

Proposition 2.2. Let 5 € (1/2,1). Then

=5
E

lal + [0 (lal < [6)).

lal +

1-p
B

The Dunkl-Williams constant of (R, || - ||y,)* coincides with that of (R?,]| -
and so we calculate DW ((R?, || -

bl (la] = 1)),
1(a; b)[ly; =

;)

v3)) in the following sections.

3. The calculation method

In [19], we obtain a calculation method of the Dunkl-Williams constant. When
we make use of the calculation method, the notion of Birkhoff orthogonality plays
an important role. We recall that z € X is said to be Birkhoff orthogonal to y € X,
denoted by = Lp v, if ||z]| < ||l + Ay|| for all A € R. This notion has been studied
in [2, 6, 7,9, 10, 11] and so on.

To construct a calculation method, we introduced some notations related to
Birkhoff orthogonality (cf. [18, 19]): For each x € Sx, we define the subset V(x) of
X by V(z)={y € X : x Lgy}. Foreach 2 € Sx and each y € V(z), we put

A+ p
o) = {2524 30 ol = o+l

and m(x,y) = sup{||z+~y| : v € T'(z,y)}. We define the positive number M (x) by

M(z) = sup{m(z,y) : y € V(2)}.

Using these notions, we obtained a calculation method for the Dunkl-Williams
constant.

Proposition 3.1 ([19]). Let X be a normed linear space. Then,
DW(X) =2sup{M(z):x € Sx}.

For two-dimensional spaces, Proposition 3.1 has the following improvement.
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Proposition 3.2 ([19]). Let X be a two-dimensional normed linear space. Then,
DW(X) =2sup{M(x) : x € ext(Bx)},
where ext(By) denotes the set of all extreme points of Bx.

From Proposition 3.2 and [18, Proposition 2.5], we obtain the following result
concerning (R?, || - [|ys)-

Proposition 3.3. Let § € (1/2,1). Then
DW ((R? ]| - [l4)) = 2max{M((L,0)), M((8, 5))}-

Proof. 1t is easy to see that ext(B(Rz’H,”w)) is the set of all vertices of the octagon
5

S(R27H'”w§)’ that is,

eXt(B(R2,||~||%)) = {(£1,0), (0, £1)} U {(e18,€28) : |e1]| = |e2| = 1}

v 1 @ symmetric absolute normalized norm on R? the map (z1,z) —

Since || -

(—x9,71) is an isometric isomorphism from (R? || - vy) onto itself. Hence, by [18,

Proposition 2.5], we have
M((0,1)) = M((=1,0)) = M((0, -1)) = M((1,0))
and

M((e18,€28)) = M((B, B))-

Thus, we obtain

DW ((R?, || -

%)) =2sup{M(x):z € ext(B(R;H,”%))}
= 2max{M((1,0)), M((8, 8))}
by Proposition 3.2. O

For simplicity, we write || - [|5 for || - [|4; and let X5 = (R?, ]| - [[5). In addition,
we put e; = (1,0) and 23 = (5,0). Then, by the preceding lemma, we have
DW(Xj3) = 2max{M(e1), M(zp)}. To determine DW(X}), we calculate M (e;)
and estimate M (x3).

4. The calculation of M(e;)

In this section, we calculate M (e;) under the assumption 1/2 < 3 < 1/v/2. We
first determine the set V(ey).
The following is an important characterization of Birkhoff orthogonality.

Lemma 4.1 (James, 1947 [11]). Let X be a normed linear space, and let x and y
be two elements of X. Then, x Lg y if and only if there exists a norming functional
f of x such that f(y) = 0.
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From this lemma, one can easily have that

Vier) = {(w1,y2) : {((y1,42), (@1, a2)) = 0 for some (a1, az) € D(X;7el)}‘
Henceforth, let kg = % Then v2 — 1 < kg < 1 since 1/2 < g < 1/4/2, and
B=(1+4ks)™".
Lemma 4.2. V(e;) = {a(c(1+s),1):s € [-1,—(1 — kg)],|c| = 1,a € R}.

Proof. Tt is easy to see that (¢5)R(0) = —(1 — kg), where (¥5)(0) is the right
derivative of ¥ at t = 0. According to [3, 16], we have

D(Xg,el) ={(L,c(1+s)):se[-1,—(1—kg),|c| =1}.
Thus we have
Vier) = {(y1,92) : {(y1,92), (1, a2)) = 0 for some (o1, az) € D(X3,€1)}
={a(—c(l+s),1):se[-1,—(1 —ks)],|c| =1,a € R}
={a(c(l+s),1):se[-1,—(1 —kpg)],|c| =1, € R},
as desired. 0

To reduce the amount of calculation, we make use of some results used in [18] (cf.

[19]). We note that

_1+p 5

2+ ks = 3 > 1_5—1%

since 1/2 < B < 1/1/2.

Lemma 4.3. M(e;) = sup{m(e, (1,—t)) : t € (kﬁ’l,oo) \ {2+ ks}}.

Proof. By the preceding lemma, {a(c(1+5s),1) : s € (=1, —(1—kg)),|c| =1,a € R}
is a dense subset of V'(e1). On the other hand,

{a(c(1+5s),1):s € (=1, —(1 —kg)),|c| =1, € R}

:{a (1’1:9) :se(—1,—(1—k5)),|c|:1,ozER}.

Since the function s — 1/(1+s) is continuous and decreasing, it maps (—1, —(1—kg))

onto (kgl, o0). Thus one can have that

{a (1, 1;) is€ (=1, —(1—kg)),lel =1L,ae ]R}

={a(l,ct) : t € (k:ﬁ_l,oo), lc| =1, € R}.

From this, it follows that {a(1,ct) : t € (kz',00) \ {2+ kg},|e| = 1,0 € R} is
also a dense subset of V'(e1). Since the map (z1,z3) — (x1, —23) is an isometric

isomorphism from Xj onto itself, we have

M (ey) = sup{m(er, (1, —t)) : t € (kz',00) \ {2+ ks}, o € R}
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by [18, Proposition 2.5 and Lemma 2.7]. Finally, applying [18, Lemma 2.4], we
obtain M(ey) = sup{m(ey, (1, —t)) : t € (k5',00) \ {2+ ks}}. O

For each t € R, put y = (1,—t). We give the formula of [[e; + Ay for all
te (kgl, oo) and all A € R.

Lemma 4.4. Lett € (k/gl, 00), and let

a; = % and b, = _t—k%'
Then
(kg — (t+kg)\ (A< 1),
kg — (t—kg)A (=1 <X <b),
ler + Agell = ¢ 1= (kst = DA (b < A<0),
1+ (kgt+1DA (0 <A <a),
L kg + (t+ka)A  (a < N).

Proof. First we note that e; + Ay; = (1 + A, —tA) and that

1 1
—l<—=b<0< — =aq,.
1 F—1 "

By the definition of || - ||, we have

. 1+ M+ ksl —tA] (JL+A>]—tA]),
A =
ler + Ayells { kall + X 4| =t (1A < | —1tA).

On the other hand, one has
T+ A= (=tAN2 ==t + 1)t — DA —ar) (A = by).
Thus, we obtain this lemma. [l
By the preceding lemma, we immediately have the following

Lemma 4.5. Let t € (krﬁ_l,oo). Then the function X\ w— [lex + Ayl ds strictly
decreasing on (—o0,0] and strictly increasing on [0, 00).

We consider the relationship among |le1 + a:y:||5, [lex + biyel[5 and [ler — yell-

Lemma 4.6. Lett € (k’[;l, 00) \ {2+ kg}. Then the following hold:

(i) Ift e (k;l, 2+ kg), then [ler + byl < ller — wells < llex + awyells-
(ii) Ift € (2+ kg, 00), then |le; + beyells < ller + atyt||; <|ler — yt||g.
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Proof. By Lemma 4.4, we have

kgt +1
lev —wills = and lex +awelly =1+
which implies that
. \ kgt + 1 t
lex = wells — llex +auelly =t =1 = === = ——{t = (2 + ky)}.

Thus, [le1 + awyells > llex — wells if t < 2+ kg, and [ler + awyells < ller — welly if
t>2+ k‘/g.
Suppose that t € (kﬁ_l, 2+kg). Then, as was mentioned above, [le; — || < [lex +
arye|5- Moreover, since —1 < b; < 0, by Lemma 4.5, we have [|e1+b:y:[|%5 < [|er—y[5-
Next we assume that ¢ € (2 + kg, 00). Then we have |le; + a:ysl[5 < [ler — el
Further, by Lemma 4.4, we obtain
kgt — 1 1
5 <1 kst +
t+1 t—1
This shows (ii). O

ler + buyellz = 1+

= |lex + awy:l|5-

Let t € (kz',00)\{2+ks}. Then, the intermediate value theorem guarantees that
the function A = [le; +Ay:[|’; maps (—o0, 0] onto [1, 00) and [0, c0) onto [1, o0). Thus,
for any p € [0, 00), there exists A € (—o0,0] such that [le; + Ays[[5 = [ler + pyell3-
Furthermore, by Lemma 4.5, this gives a one-to-one correspondence between [0, 00)
and (—o0,0]. Let py, q;, 7, be real numbers such that p, < 0 < ¢, 14, ||er + atyt||g =
Jex + Pl les +buanlls = llex + s, and flex — gl = lle + reell3- Then we
have the following

Lemma 4.7. Lett € (k’/gl, 00) \ {2 + ks}. Then the following hold:
(i) Ift € (k§1,2+/fﬁ), thenp, < =1 <b; <0< q <71 <ay and

2ks kgt — 1 t—1
= —q — ——— = — b d = .
Dt Qy k:g—i—t’ qt kgt—kl t, and Ty k?gt—f—l
(ii) Ift € (24 ks, 00), then —1 <p, < b <0< q < a; <r and
t+ kg kgt — 1 t— kg
- _ —— b d = .
Dbt t—k‘ﬁat’ qt kﬁt+1 ¢, and T t—l—k’@

Proof. Suppose that t € (/{:51,2 + kg). Then we clearly have —1 < b < 0 < ay.
Using Lemma 4.6 (i), we have the following diagram:

+o e tawlls < llev+rulls < ller + awells
[ [ [

= e +bells < et —wlls < ller + peells-
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Thus, by Lemma 4.5, it follows that p, < —1 < b, <0 < q; < r; < a;. Then we have
—kg — (t+kp)pe = llex +pevelly = ller + awyelly = ks + (¢ + kg)ay,
14 (k'gt + l)qt = ||61 + qtyt||2 = ||€1 + btyt||;§ =1- (k’gt — 1)bt and
1 + (l{?ﬁt + 1)7} = ||61 + Ttytng = ||61 — yt”E =t.
Thus one can obtain (i). One can show (ii) similarly, so we omit the proof. O

Next, we consider the set I'(e1,y;). As was mentioned, for each u € [0, 00) there
exists a unique A, € (—o0, 0] such that |le; + Ay y:l[5 = [ler + pyel[5. Then it follows
that

) = { 52 e oo}

Lemma 4.8. Let t € (k;',2+ kg). Then,

-1+
F<€17yt> - |: 2 t70:| .

Proof. By Lemma 4.7 (i), we have p; < —1 < b, <0 < ¢ <1 < ay.
Suppose that 0 < pu < ¢;. Then b, < A, <0, and so we have

1 — (kgt — 1))‘M = |le; + )\uytHE = |le; + ,MytHZ) =14 (kgt +1)p.

Thus we have

kgt + 1
Ay =—
: kﬂt—lﬂ
and
Aatp p
2 kgt — 1
Au

Since t € (k‘ﬂ_l, 2+ kg), the function p —

Au+ by +
(st e - o]

Next, we suppose that ¢ < p < r,. Then —1 < A, < b, and so we have

£ is decreasing on [0, ¢;]. Thus we have

kg — (t = kg)Ay = ller + Auwells = ller + pyells = 1+ (kgt + 1)

From this we have
1— ]{Zg kgt +1

A S
and
)\,ﬂ—,u__ 1—]{5 (1—k5)t—(1+k‘5)
2 2(t—kp) 2(t — kg)
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Since t € (k;',2 + kg), we have (1 — k)t — (1 4+ k) < 0 and hence the function
B B B B

Autp

5+ is decreasing on [g, 7], and hence

Ayt 1t bt
{ 9 -MG[Qt,Tt]}—[ 5 ' 9 1

In the case of r; < u < a;, we have p, < Ay < —1. Then we have

>

g = (t+ ks)h = llen + Auaalls = llea + pugelly = 1+ (ot + D

It follows that
14+ ks kgt +1

BT ks btk

and
)\M—F,u_ 1+/€,3 (1—kg>(t—1)

2 Tt + k) 2(t + kg)
Since 1 < k;l < t, the function p — A“—;“ is increasing on [ry, a;]. Thus we have
A+ —14+7r a+p
{MTM:/‘LG[That]}: [ 2 t7 t2 t:|'

Finally, we assume a; < p. Then A, < p, and hence

—kg — (L +ka) Ay = llex + Nl = llex + pell5 = ks + (€ + ka)pe.
Thus we have
Aoty ks atp
2 t+ kg 2
Since the function p — ’\“% is continuous, one has that

e = {22 e 0.00)

o _bt+qt70} U |i—1+7"t bt+qt] U |:—1+7’t at—l-pt}

2 2 72 2 72
-—1+7“t
= 0
0
O
We remark that 148 . -
2—1—/{5: + < _ 5

B T 28—-1 1—kg
since 1/2 < 5 < 1/\/§
Lemma 4.9. Let t € (2+ kg, 00). Then

—147r
F(elayt) = |: 9 ta0:| .
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Proof. By Lemma 4.7 (ii), we have —1 < p; < by < 0 < q; < a; < r;. Suppose that
0<pu<gqg. Thenbd <A, <0andso

1= (kgt — DA, = [ler + Nells = ller + pwell = 1+ (kgt + g
As in the proof of the preceding lemma, we have
Aut ___ M
2 kgt — 1’
which implies that the function p oy 2t g decreasing on [0, ¢;]. Thus we obtain

A+ b, +
oty ]

In the case of ¢; < p < ay, we have p, < A\, < b; and hence

kg — (t = k) A = llex + Auwells = ller + paelly = 1+ (gt + 1)p.
Thus, we have
)\u—l—,u__ 1—]{75 (1—k3)t—<1+k5)
2 2(t—kp) 2(t — kp)

This implies that the function g — 2 +“ is decreasing on [q;, a;] if t < (1 +kg)/(1 —

kg), and is increasing if ¢ > (1 + kg)/(l — kg). Hence we have

ar+pe by +q 1+ kg
2+ kg <t <

)‘M +u —1- k’ﬂ
UAS [Qt,at] =
2 be +qi ar + py 1+ kg
, <t<oo
2 2 1— kg
Assume that a; < o < r,. Then we have —1 < )\, < p; and so
kg = (6= ka)he = llex + Aaylls = llex + puells = ks + (L + kg)p.
Thus, we obtain
t+ kg
Ay = —
iz r_ kﬁ/i
and
At . ks
2tk
It follows that the function p — 22 is decreasing on las, 7], and hence
Ay + —1+r a+p
{uT'u:/le[atﬂ“t]}: { 5 3 t2 t}-

In the case of 7, < u, we have A\, < —1. Thus we have

—kg = (t+ k) A = llev + Nayellp = llex + pells = ks + (£ + kg
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and

)\u—l—,u _ kﬂ _ —1+Tt
2 t+ kg 2
Finally, if 2+ ks < t < (1+ kg)/(1 — kg), then

At

I'(er, ye) = { 5 p e |0, oo)}

_ -bt+Qt’0:| U {at‘i‘Pt bt+Qt:| U {—1‘1‘73 at‘f‘pt}

2 2 72 2 72
-_1+7’t
= 0] .
e
On the other hand, if (1 + kg)/(1 — k) <t < oo, then

Ayt

I'(er, y) = { 5 p e [0, OO)}

_ -bt+Qt7O:| U {bt‘i‘% at"—pt] U {—1‘1‘7} CLt‘f‘pt}

2 2 72 2 72
= -min bt —14m max < 0 Gt P
L 2 72 ’ T2 '
However, we have
CLt—l—pt kﬁ
= — 0
2 [kt
and
A t{k3t + ks(1 + kg) — 1}
2 2 (t+kg)(kgt —1)(t+1)
t(k% +2ks — 1
- (k5 + 2ks — 1) >0
(t+kg)(kst —1)(t+ 1)
since kgl <2+ kg <tand V2-1< ks < 1. Thus we obtain this lemma. O

Now, we calculate M (e1). We note that the formulas of =1 in Lemmas 4.8 and
4.9 are not the same.

Proposition 4.10. M(e;) = 1+ k3.

Proof. By Lemma 4.3, M(ey) = sup{m(e1,y;) : t € (kgl, 00)\{2+£kg}}. In the case
of t € (k’/;l, 2 + kg), we have b, < # < 0. Indeed, one has
—147r =24 (1 —kp)t

2 2kst+1)

0>
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and " "
-1 — — — —
+ 1y _ bt _ (1 5)15 2 i 1 _ (1 /3)(15 1)t < 0.
2 2(kst +1) 1+t  2(kgt + 1)(1+1)

It follows from 1 < kﬁ_l < t that

—1+7 " (kst — D){—(1—kg)t +2}
at3 th_H 2(kst + 1)
kgt — 1)(1+k
<14 st = D(1+ks)

2(kst + 1)
Since the function t — (kgt — 1)/(1 + kpt) is strictly increasing,
(kot —1)(L+kp) _ {hs(2+kg) —1}(1+ks) _ Kj+2ks — 1

< =
2<l€5t + 1) 2{1 + k5(2 + kﬂ)} 2(1 + kﬁ)
On the other hand, we have

ki 42ks -1 2K+ (1—kp)®

2
= > 0.
B 21+ kg) 2(1 + k)
Thus we obtain
—1+7 |
e+ tyt <1+ ]{Jg,
B
and hence
147 || .
m(er, yi) = maX{ et “y 7H€1Hﬁ} <14k
B

by [18, Lemma 2.6].
Let t € (2 + kg, 00). Since kg < 1, we have

1 k@ —1+7’t

by = — < - = <0,
YTt i+ kg 2
and so
~1+7r | kp(kat — 1)
=1+ —
€1+ 5 ytﬁ + e

From the fact that the function ¢ — (kgt —1)/(t+kp) is strictly increasing, it follows

that
kg(kgt — 1)

t+ /{/5
Hence, by [18, Lemma 2.6], we have

2
< krﬁ.

*

—1+Tt

er + 5

mier, ) = max{ " ,||e1||z} <L+ R,

B
Thus, by Lemma 4.3, we obtain M(e;) < 14 k3.
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Finally, since

kg(kgt — 1)
M >14 ——
(61> =1 t+ ]fg
for each t € (2 + kg,00), we have M(e;) > 1+ k3. This implies that M(e;) =
1+ k3. O

5. The estimation of M (xzp)

As in the above section, we suppose that 1/2 < 8 < 1/4/2. We prove M (z5) <
1+ k3. To do this, we start with determining the set V(z3).
Lemma 5.1. V(z3) = {ay, : t € [ks, k'], € R},
Proof. First we note that
1 11
Tp = ﬁ?/B = (_7_) .
o =55 U5(1/2) \272
One can have (v3)7(1/2) = —(1—kg) and (¢5)3(1/2) = 1—kg, where (13)},(1/2) and
(¥5)r(1/2) are respectively the left and right derivative of 13 at t = 1/2. According
to [3, 16], we have

1
D(X;,l’ﬁ) = {5(1+k5—8,1+k5+8) ENS [—(1—]{5),1—]{}5}}.

Thus,
Vizg) ={a(l+ksg+s,—(1+ksg—39)):s€[—(1—ks),l—ks,a R}
1 + kﬁ — S

= {a (17_1+k—5+3) 1S € [—(1—k5),1—kﬁ],aeR}.

Since the function s — (1 + kg — s)/(1 + kg + s) is continuous and decreasing, it
maps [—(1—kg), 1 —kg] onto [k, k:gl] Therefore one can obtain V' (zs) = {ay; : t €
ks, k5'],a € R} O

As in Lemma 4.3, we reduce the amount of calculation.
Lemma 5.2. M(z3) = sup{m(zs,4) : t € (1,k5")}

Proof. By Lemma 5.1, it is clear that {ay, : t € (kg, k') \ {1}, @ € R} is the dense
subset of V(zg). Since an isometric isomorphism (x1,x2) — (22, 21) maps ay; to
a(—=t,1) = —aty,, we have

M(xg) = sup{m(xs,ay;) : t € (1, k‘gl),a € R}
by [18, Proposition 2.5 and Lemma 2.7]. Thus we obtain
M(zg) = sup{m(xp,y;) : t € (1,kﬂ’1)}
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by [18, Lemma 2.4]. O
Next we give the formula of |25 + Ay for all ¢ € (1,k5") and all A € R.

Lemma 5.3. Lett € (1,/{51), and let

C_; and d; = 2
C (L ket YT (k) (t— 1)
Then
( 1_k18
— (k tA A< —(14+kg) !
1+]€5 (ﬂ_{_) (—(+/3) )7
1= (t = kg)A (—(1+ k)"t <A <0),
5 + Agels = 1+ (1 —kgt)A 0< A< ),
1— kg
1+kﬁ+(1+kﬁt)>\ (. < X< dy),
1= kg
- + (kg + X (de < N).
| T, TR OA (dsA)

Proof. First we note that
rg + Ay = ((1 + /{5)71 + A, (1 + kg)il — t)\)

and that
2

T+ ko)t~ (Lt kg)(t—1)
It follows from the definition of || - || that
[ [(1+ k)™t + A+ Ekgl(1+ kg) ™t =t

(1L + k)™ + A > [(L+ kp) ™" = tA]),
kgl(1+kg) ™t + AN+ |(L+kg) ™t —tAl
(I(1+ k)™ + AL < (1 +kg) ™t = 2A)).

== dt'

—(1+kg) '<0<c =

s + Avell =

\

On the other hand, we have
[+ k) + A = {1+ k) =AY = (E+ 1)(t = 1)(d, — M.
From this, one can obtain this lemma. O

The following lemma is an easy consequence of Lemma 5.3.

Lemma 5.4. Let t € (1,kg'). Then the function X — |lxg 4+ Myl is strictly
decreasing on (—o0,0] and strictly increasing on [0, c0).

We clarify the relationship among |zg + ciyslls ,llvs + degelly and ||z — (1 +
ka) "'yl -
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Lemma 5.5. Lett € (1,k;§1). Then
lzs + conlly < llws — (L + ko) "welly < llws + donll-

Proof. By Lemma 5.3, we have

141 1+t
s+ eyl = ———— and |lwg— (1+kg) tyellly = ———.
|25 + oyl A+ ko)t |zs — (14 ks) ™ yell3 Tk

Since t > 1, we have |25 4+ caplls < lzg — (1 + kg) w4l Moreover,
1 2(1 + kgt)
Ayl = —— 31—y 4 2180
oo + dinlls = T 1 ko + 2

and so

{_(kﬂ+t)+ 2(1+k5t)}

I+ daally = llzs — (1+ ) all; = —

1—{—]{75

(24 k=)t +1)
(14 kg)(t—1)

On the other hand, since t < k‘gl, we have
24 ks —t>2+ks—kg' >0.
Thus we obtain [|zg — (14 kg) " 'wlls < [l + deyell- O
Let t € (1,]{51)‘ Then, the function A = |z + Ay[|; maps (—oo, 0] onto [1,00)
and [0,00) onto [1,00). Thus by Lemma 5.4, for any p € [0,00), there exists a
unique A € (—o0, 0] such that ||zs + Ayl = [z + pyslls. Now, let py, 0y, 7 be real
numbers such that p,, 7 < 0 < oy, ||zg+clls = |va+pyells, ||x,3—(1+k:5)_1yt||2 =

|25+ owelly, and ||z + diyills = [l + Tyel[5- Then, we have the following lemma.
The proof is similar to that of Lemma 4.7 (i) and so we omit it.

Lemma 5.6. Let t € (1,k5'). Then 7, < —(14kg) ™' < p; <0< ¢, <0y < dy and

ket ks +t 2(1 — kg)
t—kg (1+ kgt)(1 + kg)’ (1+ kg)(ks + 1)
We consider the set I'(xg, ;). As was mentioned, for each pu € [0, 00) there exists

a unique A, € (—oo,0] such that ||z + A\y:lls = [[25 + pwel|5. Then it follows that

Pt = and Tt — — dt.

A+
F(xﬁayt):{ M2 a ME[07OO>}
We remark that
ks(1+k 1-—

3ks—1  BB3—4B) " 1-0
since 1/2 < B < 1/4/2.
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Lemma 5.7. Lett € (1,k;§1). Then

(s 2 3k — 1

xg, =

e 0 Ct + P ks(1+ ks) <t <t
T2 3kg—1 — S

Proof. By Lemma 5.6, we have 1, < —(1 + kg)’l < p <0< ¢ <oy <dg. Suppose
that 0 < pt < ¢;. Then Lemma 5.4 guarantees that p, < A, <0, and so

L (¢ ks)h = g+ Auanlls = s+ gl = 1+ (1 — kst

Hence we have
1 — kgt

N —

which implies that

Mt p_ (L+kg)(t—1)
2 2(t—kp)

Since t € (1, k;l), the function pu — Agﬂ is increasing on [0, ¢;], and hence

A
(o2 wena) oo

Next, we suppose that ¢; < u < 0. Then we have —(1 + kﬁ)*l < Ay < pr, and so

1— kg
1= (= k) = Il + Ay = s + pelly = T (L+ kst
I rItHB tig 1+k,8
From this, we have
N - 2kg B 1+ kgt
T k)t — k) t—Fy
and
At ks (1 —kp)t — (1 + kp)
2 (1 + kﬁ)(f — /{5) Q(t — kﬁ)

Since t € (1,k§1), (1 — kg)t — (1 + kg) < 0 and hence the function p — ’\"% is
decreasing on [c;, 0y]. Thus we have

A —(1+kg) !
{—“_'_u;,ue[ct,at]}_{ ( i 'B> 19 Gt p

2 2 )
In the case of oy < p < dy, we have 7, <\, < —(1+ kg)~'. Then we have
1 — kg 1 — kg
— (k A, = A 5= 5= 1+ Ekgt)u.
T s (kg + A = llzg + A\uelly = [l + pyells 1+k5+( + kgt)p
It follows that
1+ kgt
p— k’ H
g+t
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and
Notn (L=k)(E—1)

2 2kg+t)

Autp
2

{)‘u;_u L pE [Ut,dt]} - [_(1 + ké) ' +Ut’ dt‘QFTt

Finally, we assume that d; < p. Then it follows from A, < 7; that
1—kg
1+ ks

Thus we have

This shows that the function p — is increasing on [0y, d;], and hence

— (kg + A = llwg + Auwellp = llws + pwells = —

k t) 1.
1+kﬂ+<ﬁ+ )1t

)\M+,u 1—]55 _dt+7—t

2 (1+ kg)(ks + 1) 2

. . A ) . .
Since the function p — “TJF“ is continuous, we obtain

{A”%:MG[O,OO)}

OCt+Pt U —(1+kg) "o o+
) 2 T2

F(x,37 Z/t)

U —(1—}—]?/3)71—‘—0} dt_l_Tt
2 2

. 1
:lmin{(), (1+k2) +at},max{ct;pt,dt;—ﬁ}].

However, one has

—(L4kg) 4o (1—kg)(t—1)

— 0
2 ks + 1) 0
and
di+7  atp (1+¢)(3ks — 1) ks(1+ks)
2 2 2t(1+kp)(t+ k)t —kg) | 3ks—1 '

Thus, we have this lemma.

Now we estimate M (xg).
Proposition 5.8. M(xg) <1+ k3.
Proof. By Lemma 5.2, we have M (z3) = sup{m(zs,y:) : t € (1, kgl)}
First we suppose that t € (1, kg(1 + kg)/(3ks — 1)]. Since
dt + Tt _ 1-— l{B 1

2 At kst 0) - At ko)l

Ct,
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we have 0 < % < ¢;. Hence we obtain

dt +Tt
2

' (1 — kg)(1 — kgt)

6_1+ (1+kg)(kg+1)

From the fact that the function ¢ — (1—kgt)/(kg+1) is strictly decreasing, it follows
that

zg+ Yt

(1 —kg)(1 — kgt) _ (1 —kp)?
(1 + kﬁ)(k’g + t) (1 + k’g)27

which implies

dt + Tt ¥ (]_ — ]{?5)2 2
<1+ —55 <14k
2 5 (1 + k)2 A

since (1 — kg)/(1 + kg) < kg. Thus for each ¢ € (1, kg(1 + kg)/(3ks — 1)], we have

}<1+k§
3

g+ Yt

dy + 7
2

zg+ Yt

m(zg, 1) = max {||$5||Z§7

by [18, Lemma 2.6].
Let t € [ks(1+ kg)/(3ks — 1), k5"). Then we obtain

ct—i-pt_ t—1 <l< 1

V<3 T At —kg) 2t (L+kg)t

Ct.

By Lemma 5.4, we obtain

a:+ct+pt *<x+i *
B 9 ytﬁ B 2tyt5
P
N 2t
1 —Kk2(1+ kg)(3kg — 1)1
14 2(1+kg)(3ks — 1)

2/65(1 + k’ﬁ)(gk[g — 1>_1

(1-— k;g)(k’% +2ks — 1)
2ks(1 + kp)

Since V2 -1 < ks < 1, we have

(1= k) (K + 2ks — 1) _ 2k3 (k3 + 2ks — 1) + (1 — kp)®

k2
p 2kg(1 + k) 2kg(1 + kg)

> 0,

and so
a+p |

<1+kj.
8

zg + Yt
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Hence, by [18, Lemma 2.6], we have

Ct + Pt

g+ Yt

}<1+k§.
3

Thus we obtain M(zg) <1+ k3. O

m(zg,y:) = max {H%HZ,

6. The Dunkl-Williams constant of (R?, | - ||,,)*

As was mentioned in Section 2, the equality DW ((R?, ||-||y,)*) = DW ((R?, ||-
holds for all g € (1/2,1). From this fact, we obtain the main result.

)

Theorem 6.1. Let § € (1/2,1). Then the following hold:
() 17 6 € (1/2,1/v/3), then

DW (R, ]| lus)™) = DW (R, || - luy)) = % {A-p)7+5"}.

(i) 1/ B € [1/3/2.1), then
DW (R, ]| - [ly,)") = DW (R, || - [ly5)) = 4{(1 = B)* + 5*}.
Proof. As in the above sections, we write X} for (R?, || - ||y ).
(i) Suppose 3 € (1/2,1/+/2]. Then by Proposition 3.3, we have

DW(X5) = 2max{M (xs), M(e1)}.

Thus, by Propositions 4.10 and 5.8, we obtain
DW((R?, || l4,)") = DW(X5) = 2(1 + k) = 7 { ‘457,

as desired.
(ii) For each 8 € (1/2,1), it is easy to check that X} is isometrically isomorphic
to X7, under the identification

X353 (21, 22) +— (xl + X9, 11 — T9) € X795

2p
since max{|z; + s, |r1 — 22|} = |z1| + |22 for all 1,25 € R. If B € [1/4/2,1), then
1/28 € (1/2,1/+/2] and hence by (i)

DW ((R?, || - [l4,)") = DW (X3) = DW (X7 55)

=4{<1—6)2+62}.

Therefore we obtain this theorem. O
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Remark 6.2. From Theorem 6.1 and [18, Theorem 3.1], DW ((R?, |- ||y,)) coincide
with DW((R?, || - [ly,)*) for all 8 € (1/2,1).

Let X* denote the dual space of a Banach space X. It is known that Cn;(X) =
Cny(X™*), where Cny(X) is the von Neumann-Jordan constant of X [4, 13]. On
the other hand, the equality J(X) = J(X*) does not necessarily hold for the James
constant J(X) [8, 21]. It will be interesting to wonder if the equality DW (X) =
DW (X*) holds for any Banach space X.
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