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A SPHERE THEOREM FOR RADIAL CURVATURE

NOBUHIRO INNAMI, KATSUHIRO SHIOHAMA, AND YUYA UNEME

Abstract. We introduce a new constant for the surfaces of revolution homeomor-

phic to the 2-sphere. We prove a sphere theorem for radial curvature, assuming an

inequality in the constant and the ratio of the difference of the maximal distance to

the base point from the diameter of the reference surface and the injectivity radius

of the base point. Namely, if a compact pointed Riemannian n-manifold which is

referred to a surface of revolution satisfies the inequality, then it is topologically

an n-sphere.

1. Introduction

We study the radial curvature and topology of pointed and compact Riemannian

n-manifolds. Many attempts have been made to extend the classical (diameter)

sphere theorems. The notion of radial curvature was first introduced by Klingen-

berg [7]. The topological sphere theorems for pointed manifolds with positive radial

curvature have been investigated in [13] and [12]. When the reference surface of a

compact pointed manifold is a compact surface of revolution, Lee [10], [11] proved

topological sphere theorems under certain restrictions on the diameter of M and

on the supremum of the distance from the base point. Indeed, the restriction on

the diameter was needed, since the Alexandrov-Toponogov comparison theorem for

spherical model surfaces was not established for every geodesic triangle but only for

narrow triangles. Kondo-Ohta [8] proved it under the assumptions that a compact

surface is a von Mangoldt surface of revolution and that there exists a point x ∈ M

such that the base point is a critical point of the distance function to x. Recently
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the Toponogov comparison theorem has been established in [4] under a certain re-

strictions on the cut locus and the critical points of distance function to the base

point.

The purpose of the present paper is to establish a new topological sphere theorem

for pointed compact manifolds whose reference surfaces are compact surfaces of

revolution. Here the Toponogov comparison theoprem established in [4] plays an

important role.

A compact model surface (M̃, õ) is by definition a compact Riemannian 2-manifold

whose metric ds2
M̃

is expressed in terms of the polar coordinates around the base

point õ as:

ds2
M̃

= dr2 + f(r)2dθ2, (r, θ) ∈ (0, ℓ)× S1, ℓ < ∞. (1.1)

Here, r : M̃ → R is the distance function to õ, and f : (0, ℓ) → R the warping

function which is positive smooth and satisfies the Jacobi equation:

f ′′ +Kf = 0, f(0) = f(ℓ) = 0, f ′(0) = −f ′(ℓ) = 1.

Here, K : [0, ℓ] → R is the Gaussian curvature of M̃ .

Let õ1 := (ℓ, 0) be the farthest point from õ in M̃ . For an arbitrary fixed point

p̃ ̸= õ, õ1 in M̃ , we set θ(p̃) := 0. We divide (M̃, õ) by a simple closed geodesic

consisting of two meridians θ−1({0}) ∪ θ−1({π}) into M̃+
p̃ and M̃−

p̃ , where M̃+
p̃ :=

θ−1([0, π]).

Let (M, o) be a pointed compact Riemannian n-manifold. A 2-plane Π ⊂ Mx at a

point x ∈ M is called a radial plane iff it contains a vector tangent to a minimizing

geodesic joining o to x. The sectional curvatureKM(Π) ofM with respect to a radial

plane is called a radial curvature of (M, o). A compact pointed manifold (M, o) is

said to be referred to a compact model surface (M̃, õ) if and only if all the radial

sectional curvatures of M satisfy

KM(Π) ≥ K(d(o, x)), x ∈ M. (1.2)

Let i : M, M̃ → R be the injectivity radius function of the exponential map on

M̃ and M respectively. Let B(x̃, a) ⊂ M̃ be the open metric a-ball with center at

x̃. Let Cut(p̃) denote the cut locus of p̃ ∈ M̃ .

For the statement of our theorem, we define some constants given on M̃ . Let c1
be the supremum of those c > 0 which satisfy

(1) f−1({t}) consists of two points for all t ∈ [0, c),

(2) [f−1]′(t) ̸= 0 for all t ∈ [0, c).

Let r1 and r1
∗ be such that 0 < r1 ≤ ℓ− r1

∗ < ℓ and f(r1) = f(ℓ− r1
∗) = c1. Then,

f ′(r) > 0 for r ∈ [0, r1) and f ′(r) < 0 for r ∈ (ℓ− r1
∗, ℓ].
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We define a constant c2(r), r > 0, by

c2(r)

:= sup{r∗ |Cut(p̃) ∩ Int(M̃+
p̃ ) ⊂ B(õ, r) for p̃ with r(p̃) > ℓ− r∗}.

Here Int(M̃+
p̃ ) is by definition the interior of the set M̃+

p̃ .

We say that a minimizing geodesic segment T is maximal if any extension of T is

not minimizing. Let Γ(p̃) be the maximal minimizing geodesic segment emanating

from p̃ and tangent to the parallel r−1({r(p̃)}) at p̃. The terminal point of Γ(p̃) is

denoted by Γ(p̃)e. For every r ∈ (0, r1), we define c3(r) by

c3(r) := sup{r∗ |Γ(p̃)e ∈ B(õ, r) for any p̃ with r(p̃) > ℓ− r∗}.

Both c2(r) and c3(r) are monotone and non-decreasing in r ∈ (0, r1). Finally, we

define the constant µ = µ(M̃) by

µ = inf
r∈(0,r1)

min{c2(r), c3(r)}
r

.

Notice that the constants c1, r1, c2(r), c3(r) and µ are determined by the metric on

M̃ . With this notation we state our theorem:

Theorem 1.1. Assume that a compact pointed n-dimensional Riemannian manifold

(M, o) is referred to (M̃, õ) with µ > 0. Then, M is homeomorphic to an n-sphere,

if there exists a point p ∈ M such that

µ >
ℓ− d(o, p)

min{r1, i(o)}
. (1.3)

It has been proved in [5] that ifM is referred to M̃ , then ℓ ≥ max{d(o, x) |x ∈ M},
equality holding if and only if M is isometric to the warped product [0, ℓ]×f S

n−1(1)

with warping function f . Here Sn−1(1) denotes the unit sphere with dimension n−1.

Hence, we note ℓ− d(o, p) ≥ 0.

Our theorem is thought of as a new version of the classical diameter sphere the-

orem [3], in which two assumptions are settled. No further assumption is needed.

We will mention the difference of their assumptions in Remark 5.2.

The importance of injectivity radii in studying sphere theorems are seen in [1],

[2].

We would like to thank Professor M. Tanaka and Dr. K. Kondo for notifying

us of the cut loci in a surface of revolution which is symmetric with respect to the

equator (see Example 5.3).
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2. Preliminaries

2.1. Basic lemma

If p̃ and r2 ∈ (0, r1) satisfy d(õ, p̃) > ℓ − r∗1 and f(r2) = f(r(p̃)), then the geodesic

segment Γ(p̃) intersects r−1({r1}) at most once before it meets r−1({r2}). The ter-

minal point of Γ(p̃) is denoted by Γ(p̃)e. Notice that Γ(p̃) converges to the meridian

θ−1({π/2}) as p̃ → õ1. We then have

θ(p̃) < θ(Γ(p̃)e) ≤ θ(p̃) + π.

Lemma 2.1 (Basic Lemma). Let (M̃, õ) be a compact surface of revolution with

metric (1.1). Then, there exists for an arbitrary given r ∈ (0, ℓ) a point p̃ ∈ M̃ ,

p̃ ̸= õ1, such that the cut locus Cut(p̃) is contained in r-ball B(õ, r) centered at õ.

In particular, c2(r) > 0 for all r > 0.

Proof. It follows from the continuity of i and i(õ1) = ℓ that there exists for an

arbitrary given r ∈ (0, ℓ) a point p̃ ∈ M̃ such that

r + i(p̃)− d(p̃, õ1) > ℓ.

In fact, if p̃ is sufficiently close to õ1 then ℓ− i(p̃) + d(p̃, õ1) is arbitrary small. We

then have d(õ, q̃) < r for every cut point q̃ ∈ Cut(p̃). In fact, suppose contrary that

d(õ, q̃) ≥ r, namely d(õ1, q̃) ≤ ℓ− r, then

d(p̃, q̃) ≤ d(q̃, õ1) + d(p̃, õ1)

≤ ℓ− r + d(p̃, õ1) < i(p̃).

This implies that q̃ ̸∈ Cut(p̃), a contradiction.

□

2.2. The Toponogov comparison theorem

We have recently established in [4] the Toponogov comparison theorem for (M, o)

being referred to a general surface of revolution (M̃, õ) with its metric (1.1) for

ℓ ≤ ∞. Some notations are needed for the statement of it.

A geodesic triangle ∆(αβ γ) is by definition a triple of minimizing geodesics

α, β, γ : [0, 1] → M parameterized proportionally to arc-length such that α(0) =

β(0) = o, γ(0) = α(1) and γ(1) = β(1). Also ∆(αβ γ) is expressed by its corners

as ∆(αβ γ) = ∆(o α(1) β(1)). A geodesic triangle ∆(αβ γ) is said to be narrow iff

α[0, 1] is contained in the union of convex balls centered at points on β[0, 1].

Let (M, o) be referred to (M̃, õ). For an arbitrary fixed point p ∈ M , p ̸= o, we

set p̃ ∈ M̃ by p̃ = (d(o, p), 0). For a point q ∈ M , its reference point q̃ ∈ M̃ is
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defined so as to satisfy

d(õ, q̃) = d(o, q), d(p̃, q̃) = d(p, q).

The reference point always exists if ∆(o p q) is narrow (see [6]).

The pair of points o and p together forms a Lipschitz map

Fp : M → R2, Fp(x) := (d(o, x), d(p, x)), x ∈ M

F̃p̃ : M̃ → R2, F̃p̃(x̃) := (d(õ, x̃), d(p̃, x̃)), x̃ ∈ M̃.

Let E(o, p; r) := {x ∈ M | d(o, x)+ d(p, x) = r} be the ellipsoid with foci at o and

p and with radius r > d(o, p). Let dr : E(o, p; r) → R be the distance function to o

restricted to E(o, p; r), and Ep(r) ⊂ M the set of all points where dr attains local

maximum. We then have from Lemma 14 in [4],

E(p) :=
∪

r>d(o,p)

Ep(r) ⊂ Cut(o) (2.1)

With this notation we state (see Theorem 7 in [4]):

Theorem 2.2 (The Topopnogov comparison theorem for radial curvature). Let

(M, o) be referred to (M̃, õ). Assume that a point p ∈ M , p ̸= o, satisfies

Fp(E(p)) ∩ F̃p̃(Cut(p̃) ∩ Int(M̃+
p̃ )) = ∅. (2.2)

Then every geodesic triangle ∆(o p q) ⊂ M admits its corresponding geodesic triangle

∆(õ p̃ q̃) ⊂ M̃ such that

∠ o p q ≥ ∠ õ p̃ q̃, ∠ o q p ≥ ∠õ q̃ p̃, ∠ p o q ≥ ∠ p̃ õ q̃. (2.3)

Moreover, for every q ∈ M and every geodesic triangle ∆(õ p̃ q̃) ⊂ M̃ , there exists a

geodesic triangle ∆(o p q) ⊂ M satisfying (2.3).

3. Lemmas

From now on let (M, o) be a compact pointed Riemannian manifold which is referred

to (M̃, õ) with its metric (1.1). Let T (x, y) for x, y ∈ M , (T (x̃, ỹ) for x̃, ỹ ∈ M̃ ,

respectively) be a minimizing geodesic joining x to y, (x̃ to ỹ, respectively). The

following Lemmas are useful for the proof of our theorem.

Lemma 3.1 (ATCT). Assume that there exists a point p ∈ M such that d(o, p) >

ℓ − c2(i(o)). Then, every T (p, q) ⊂ M joining p to every point q ∈ M admits a

corresponding T (p̃, q̃) ⊂ M̃ satisfying (2.3). Moreover, there exists for every point

q ∈ M and for every T (p̃, q̃) a T (p, q) in M satisfying (2.3).
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Proof. It follows from the definition of c2(r) that Cut(p̃) ∩ Int(M̃+
p̃ ) ⊂ B(õ, i(o)),

namely d(õ,Cut(p̃) ∩ Int(M̃+
p̃ )) < i(o). Since E(p) ⊂ Cut(o) from (2.1) and since

Cut(o) ⊂ M ∖ B(o, i(o)), we have d(o, E(p)) ≥ i(o). Then (2.2) is satisfied for p.

We conclude the proof by Theorem 2.2. □

We say that M̃ is without conjugate points in half if all points p̃ ∈ M̃ have no

point conjugate to p̃ along geodesics from p̃ in Int(M̃+
p̃ ). If M̃ is without conjugate

conjugate points in half, then all geodesics contained in Int(M̃+
p̃ ) are minimizing,

and, in particular, c2(r) = ℓ for all r > 0. Any von Mangoldt surface is without

conjugate points in half (see [18]).

We say that Γ(p̃)e is cross-cutting if its turn angle is π around õ, namely

∠(p̃ õΓ(p̃)e) = θ(Γ(p̃)e) − θ(p̃) = π. Since any simply connected biangle domain

bounded by two minimizing geodesic segments has a point conjugate to its vertexes

in its interior, Γ(p̃)e is cross-cutting for any point p̃ other than õ and õ1 if M̃ is

without conjugate points in half.

Remark 3.2. If M̃ is without conjugate points in half, then Theorem 2.2 is true

for all points p̃ ∈ M̃ . Therefore, we do not need Lemma 3.1.

Since (M, o) is referred to (M̃, õ), there exists a unique point o∗ ∈ M such that

d(o, o∗) = max{d(o, x) |x ∈ M} ≤ ℓ, equality holding if and only if M is isometric

to the warped product manifold [0, ℓ]× Sn−1(1) with warping function f . Here, the

uniqueness of o∗ will be proved later.

Lemma 3.3. Let c = min{r1, i(o)}. Assume that a farthest point o∗ to o in M

satisfies d(o, o∗) > ℓ−min{c2(c), c3(c)}. Then, M is topologically an n-sphere.

Proof. Let õ∗ ∈ M̃ be a reference point of o∗, namely õ∗ = (d(o, o∗), 0). Since

d(õ, õ∗) > ℓ − c3(c), the endpoint Γ(õ∗)e of Γ(õ∗) is contained in B(õ, c). Set c′ =

(c + r(Γ(õ∗)e))/2. We then have c > c′ > r(Γ(õ∗)e). Let N = {p ∈ M | d(p, o) >

d(õ,Γ(õ∗)e) = r(Γ(õ∗)e)} and N ′ := {p ∈ M | d(o, p) > c′}. Then, we have B(o, c) ∪
N ′ = M and N ′ ⊂ N , since c > c′ > r(Γ(õ∗)e).

Obviously, there exists no critical point of the distance function to o inB(o, c)∖{o}
because of i(o) ≥ c. We will prove that there exists no critical point of the distance

function to o∗ in N ′. Then the proof of this lemma will complete.

Let D̃ denote the domain bounded by Γ(õ∗), T (õ, õ∗) and T (õ,Γ(õ∗)e). It follows

from the Clairault relation that r(T (õ∗, x̃)(t)), 0 ≤ t ≤ d(õ∗, x̃), is monotone de-

creasing for t if x̃ ∈ D̃ ∩ r−1([r(Γ(õ∗)e), ℓ]). In particular, we have ∠(õ∗ x̃ õ) > π/2

for all x̃ ∈ D̃ ∩ r−1([r(Γ(õ∗)e), ℓ]).

Let S(o, c′) := {p ∈ M | d(o, p) = c′}. We first claim that all the reference points

q̃ of q ∈ S(o, c′) are contained in the domain D̃.
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If θ(Γ(õ∗)e) = π, nothing is left to prove because of Lemma 3.1.

Suppose that θ(Γ(õ∗)e) < π. Suppose for indirect proof that there exists a point

q ∈ S(o, c′) such that q̃ ̸∈ D̃. Let q1 be a point in T (o, o∗) with d(o, q1) = c′. Since

c′ < i(o), we see S(o, c′) is diffeomorphic to an (n− 1)-sphere. Hence, there exists a

curve g(t), 0 ≤ t ≤ 1, in S(o, c′) connecting g(0) = q1 and g(1) = q. The reference

curve c̃(t) = F̃õ∗
−1(Fo∗(g(t))), 0 ≤ t ≤ 1, moves on the parallel r−1({c′}) = S(õ, c′)

in M̃+
p̃ from q̃1 to q̃. Hence, there exists a t0 ∈ (0, 1) such that θ(Γ(õ∗) ∩ S(õ, c′)) <

θ(g̃(t0)) < θ(Γ(õ∗)e) and T (õ∗, g̃(t0)) contains a point x̃ with r(x̃) > r(õ∗). In

fact, since r(Γ(õ∗)e) < c′, we have the point q̃2 where the parallel S(õ, c′) intersects

the meridian through Γ(õ∗)e. Then, all points g̃(t0) lying in the subarc of S(õ, c′)

between Γ(õ∗)∩S(õ, c′) and q̃2 satisfy this property. Actually, since Γ(õ∗) is tangent

to the parallel r−1({r(õ∗)}) at õ∗, we have T (õ∗, g̃(t0)) ̸⊂ r−1([0, r(õ∗)]). Then, it

follows from Lemma 3.1 that there exists a point x ∈ M such that d(o, x) > d(o, o∗),

contradicting the choice of o∗. Thus all the reference points for S(o, c′) is contained

in D̃.

We secondly claim that all the reference points q̃ of q ∈ N ′ are contained in

D̃ ∩ r−1((c′, ℓ]).

Suppose for indirect proof that there exists a reference point q̃ ̸∈ D̃ ∩ r−1((c′, ℓ])

of q ∈ N ′, namely r(q̃) > c′ but q̃ ̸∈ D̃. Let T̃ (o∗, q)(t), 0 ≤ t ≤ d(o∗, q), be the

reference curve of a minimizing geodesic T (o∗, q)(t). From the definition of o∗, there

exists a t0 > 0 such that T̃ (o∗, q)(t) ∈ D̃ ∩ r−1((c′, ℓ]) for t ∈ [0, t0].

There exists no t ∈ [0, d(o∗, q)] such that r(T̃ (o∗, q)(t)) = c′. In fact, suppose

contrary, then r(T (õ∗, q̃)(s)) = c′ for some s ∈ [0, d(o∗, q)] because of Lemma 3.1.

Recall that the strip bounded by two parallels r−1({r(õ∗)}) and r−1({r(Γ(õ∗)e)}) is
foliated by minimizing geodesic segments Rθ(Γ(õ

∗)), 0 ≤ θ ≤ 2π, where Rθ is the

rotation with angle θ of M̃ around õ. From the fact that the reference points for

S(o, c′) is contained in D̃, it is impossible that r(T (õ∗, q̃)(0)) > c′, r(T (õ∗, q̃)(s)) = c′

and r(T (õ∗, q̃)(d(o∗, q)) > c′, since, otherwise, T (õ∗, q̃) intersects Rθ(Γ(õ
∗)) twice for

some θ.

Thus, it follows that there exists t1 ≥ t0 such that T̃ (o∗, q)(t1) ∈ Γ(õ∗) and

r(T̃ (o∗, q)(t1)) > c′.

Then, as was seen before, the existence of a point T̃ (o∗, q)(t1+ε) ̸∈ D̃∩r−1((c′, ℓ])

for a sufficiently small ε and Lemma 3.1 implies that there exists an x ∈ N ′ such

that its reference point x̃ satisfies r(x̃) > r(õ∗), a contradiction. This completes the

proof of the second claim.

Let q ∈ N ′. Since, as was mentioned above, r(T (õ∗, q̃)(t)) is monotone decreasing

in t ∈ [0, d(o∗, q))], we have ∠(õ∗ q̃ õ) > π/2. From Lemma 3.1, we have ∠(o∗ q o) >
π/2. Thus there exists no critical point of the distance function to o∗ inN ′∖{o∗}. □
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Notice that, as was just seen, the reference points of N ′ are contained in the

domain D̃ ∖ r−1((0, r(Γ(õ∗)e))). In particular, the farthest point o∗ to o is unique,

since r(Γ(õ∗)(t)) is monotone decreasing in t ∈ [0, d(õ∗,Γ(p̃)e)].

Remark 3.4. If M̃ is without conjugate points in half, then the distance function

to o∗ has no critical point in N ′ := {p ∈ M | d(o, p) > r(Γ(õ∗)e)}.

In fact, the Toponogov comparison theorem is true from Remark 3.2. Under the

assumption, the domain D̃ is bounded by the meridians θ−1(0), θ−1(π) and the

minimizing geodesic Γ(õ∗), and, therefore, the reference points for S(o, r(Γ(õ∗)e)) is

always contained in D̃. This proves the argument in Remark 3.4.

4. Proof of Theorem 1.1

If i(o) ≥ r1, we then have

min{c2(r1), c3(r2)}
r1

≥ µ >
ℓ− d(o, o∗)

r1
.

Thus, we have min{c2(r1), c3(r1)} > ℓ−d(o, o∗), meaning d(o, o∗) > ℓ−min{c2(r1), c3(r1)}.
If i(o) < r1, we then have

min{c2(i(o)), c3(i(o))}
i(o)

≥ µ >
ℓ− d(o, o∗)

i(o)
.

From the similar argument, we have d(o, o∗) > ℓ−min{c2(i(o)), c3(i(o))}. Therefore,
Lemma 3.3 completes the proof of Theorem 1.1.

5. Examples

We first study the sphere with constant radius as a reference surface.

Example 5.1. We have r1 = π/(2
√
λ) and µ = 1 for the sphere with constant

radius 1/
√
λ.

Remark 5.2. The assumptions and the proof ideas of our theorem are compared

with those of the classical diameter theorem [3], which is stated: Let M be a con-

nected, complete Riemannian manifold with sectional curvature KM ≥ λ > 0 and

diameter diam(M) > π/(2
√
λ). Then M is homeomorphic to the n-sphere. The

most important point is that one endpoint of the diameter is a critical point of the

distance function to the other endpoint. From this point of view, Kondo and Ohta

[8] extended the diameter sphere theorem, assuming that the base point is a critical

point of the distance function to a certain point. In our theorem the base point o is

not a critical point of the distance function to o∗, in general.

More generally, the following example is remarkable.
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Example 5.3. Sinclair and Tanaka [17] determined the cut locus of a 2-sphere M̃

of revolution satisfying that K(t) is monotone and K(t) = K(ℓ− t) for t ∈ [0, ℓ/2].

When K(t), 0 ≤ t ≤ ℓ/2, is monotone non-decreasing, the cut locus of a point p̃

is a sub-arc of the parallel r−1({ℓ − r(p̃)}). Therefore, c2(r) = c3(r) = r for all

r ∈ [0, ℓ/2]. Thus we have µ = 1.

We have an estimate of µ for a von Mangoldt surface of revolution.

Example 5.4. Let M̃ be a von Mangoldt surface, namely the curvature function

K(r) is monotone non-increasing in r ∈ [0, ℓ]. Then there exists a unique r1 = ℓ−r1
∗

such that f ′(r1) = 0. Let p̃ be a point with r(p̃) > ℓ − min{r1, ℓ − r1}. Then,

f(r(Γ(õ∗)e)) ≥ f(r(p̃)) because of the Clairaut relation. Since K(r) ≥ K(r′) for all

0 ≤ r ≤ r1 ≤ r′ ≤ ℓ, we have f(r) ≤ f(ℓ− r) in r ∈ [0,min{r1, ℓ− r1}]. This implies

that ℓ− r(p̃) ≤ r(Γ(õ∗)e). Therefore, we have µ ≤ 1.

The following example suggests us that the constant µ defined from the curvature

function K and the assumption (1.3) are important to study a sphere theorem.

Example 5.5. Let 0 < a < b. Let S1 and S2 be circles whose lengths are 2a and

2b, respectively. Let T = S1 × S2 and õ ∈ T . Let o∗ be the furthest point to o in T .

Then, we have i(o) = a and d(o, o∗) =
√
a2 + b2 > b.

This example shows that for any small ε > 0 and large ℓ > 0 there exists a torus

T satisfying i(o) < ε and d(o, o∗) = ℓ.
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