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ON p-HYPONORMAL OPERATORS
MUNEO CH\={O} AND HIROHIKO JIN

Abstract
In this paper, we wil give some spectral properties of p-hyponormal operators and

two operators $T$ and $S$ on a complex Hilbert space as follows :
(1) $T$ is a p-hyponormal operator which is not quasi-hyponormal.
(2) $S$ is a quasi-hyponormal operator which is not p-hyponormal.

1. Introduction. Let $\mathcal{H}$ be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of
al bounded linear operators on $\mathcal{H}$ . An operator $T\in B(\mathcal{H})$ is said to be hyponormal if
$T^{*}T\geq TT^{*}$ . An operator $T\in B(\mathcal{H})$ is said to be $p$-hyponormal if $(T^{*}T)^{p}\geq(TT^{*})^{p}$ .
Especially, when $p=\frac{1}{2},$ $T$ is called semi-hyponormal. Throughout this paper, let $0<p\leq\frac{1}{2}$ .
It is well known that a p-hyponormal operator is q-hyponormal for $q\leq p$ by Lowner’s
Theorem. An operator $T\in B(\mathcal{H})$ is said to be quasi-hyponormal if $T^{*2}T^{2}\geq(T^{*}T)^{2}$ . An
operator $T\in B(\mathcal{H})$ is said to be paranormal if $||T^{2}x||\geq\Vert Tx||^{2}$ for all unit vectors $x\in \mathcal{H}$ . For
an operator $T$ , we denote the spectrum and the approximate point spectrum by $\sigma(T)$ and
$\sigma_{a}(T)$ , respectively. A point $z\in C$ in the joint approximate point spectrum $\sigma_{ja}(T)$ if there
exists a sequence of unit vectors $\{x_{n}\}$ in $\mathcal{H}$ such that $(T-z)x_{n}\rightarrow 0$ and $(T-z)^{*}x_{n}\rightarrow 0$ .
For an operator $T\in B(\mathcal{H})$ , we denote the polar decomposition of $T$ by $T=U|T|$ .

We need the following results.

THEOREM A (Th.4 of [6]). Let $T$ be p-hyponormal. If $Tx=\lambda x$ , then $T^{*}x=\overline{\lambda}x$ .

THEOREM $B$ (Th.8 of [6]). Let $T$ be p-hyponormal. Then

$\sigma_{a}(T)=\sigma_{ja}(T)$ .

Next, let $\mathcal{T}$ be the set of all strictly monotone increasing continuous non-negative func-
tions on $R^{+}=[0, \infty$ ). Let $\mathcal{T}_{o}=\{\varphi\in \mathcal{T} : \varphi(0)=0\}$ . For $\varphi\in \mathcal{T}_{o}$ , the mapping $\tilde{\varphi}$ is defined
by

$\tilde{\varphi}(re^{i\theta})=e^{i\theta}\varphi(r)$ and $\tilde{\varphi}(T)=U\varphi(|T|)$ .
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Then we have the following

THEOREM $C$ (Th.3 of [7]). Let $T=U|T|$ be p-hyponormal and $U$ be unitary. If $\varphi\in \mathcal{T}_{o}$

and $\tilde{\varphi}(T)$ is p-hyponormal, then

$\tilde{\varphi}(\sigma(T))=\sigma(\tilde{\varphi}(T))$ .

2. Spectral Properties. First we study the following for $T\in B(\mathcal{H})$ : $ If\lambda$ is an
isolated point of $\sigma(T)$ , does it follow that $\lambda$ is an eigenvalue of $T$ ?

J. G. Stampfli proved that above statement is true if an operator $T$ is hyponormal (Th.2
of [13]). S. L. Campbel and B. C. Gupta proved that it also holds if an operator $T$ is
quasi-hyponormal (Cor.7 of [4]).

THEOREM 1. Let $T=U|T|$ be p-hyponormal and $\lambda$ be an isolated point of $\sigma(T)$ . If $U$ is
unitary or $\lambda\neq 0$ , then $\lambda$ is an eigenvalue of $T$ .

Proof. First we assume that $U$ is unitary. Let $S=U|T|^{p}$ and $\varphi(t)=t^{\frac{1}{p}}$ for $t\geq 0$ . Then
$S$ is a hyponormal operator and $\varphi\in \mathcal{T}_{o}$ . Let $\lambda=re^{i\theta}$ . Since $\tilde{\varphi}(S)=T$ , by Theorem $C,$ $r^{p}e^{i\theta}$

is an isolated point of $\sigma(S)$ . Hence by Stampfli’s result it folows that $r^{p}e^{i\theta}$ is an eigenvalue
of $S$ . Hence there exists a nonzero eigen-vector $x$ of $\lambda$ . When $\lambda=0,$ $|T|^{p}x=0$ because $U$ is
unitary. Hence $0$ is an eigenvalue of $T$ .
So we assume $\lambda\neq 0$ . Then, by Theorem $A$ , it holds that $Ux=e^{i\theta}x$ and $|T|^{p}x=r^{p}x$ .
Therefore this vector $x$ is an eigen-vector of the eigenvalue $\lambda$ of $T$ .
Next, we assume that $U$ is not unitary and $\lambda\neq 0$ . Since we may assume that $U$ is isometry,
we put operators $V$ and $A$ on $\mathcal{H}\oplus \mathcal{H}$ as folows:

$V=\left(\begin{array}{ll}U & I-UU^{*}\\0 & U^{*}\end{array}\right)$ and $|A|=\left(\begin{array}{l}|T|0\\00\end{array}\right)$ .

Let $A=V|A|$ , then we have $\sigma(T)\cup\{0\}=\sigma(A)$ . Hence, $\lambda\in\sigma(A)$ and $\lambda$ is an isolated
point of $\sigma(A)$ . Since $A$ is p-hyponormal and $V$ is unitary, from the above result it folows
that there is a non-zero vector $x_{1}\oplus x_{2}$ such that $A(x_{1}\oplus x_{2})=\lambda(x_{1}\oplus x_{2})$ . Since $\lambda\neq 0$ , it
folows $x_{2}=0$ . Hence $x_{1}\neq 0$ . Therefore, $\lambda$ is an eigenvalue of $T$ .

Next, for an operator $T\in B(\mathcal{H})$ , let $C^{*}(T)$ be the $C^{*}$-algebra generated by $T$ and the
identity $I$ .

THEOREM 2. Let $T$ be p-hyponormal. Then $\lambda\in\sigma_{a}(T)$ if and only if there exists a $*-$

homomorphism $\phi$ : $C^{*}(T)\rightarrow C$ such that $\phi(T)=\lambda$ .

Proof. M. Enomoto, M. Fujii and K. Tamaki proved that the following conditions are
equivalent(Th. 1 of [8]):
(1) $\lambda\in\sigma_{ja}(T)$ .
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(2) There is $a^{*}$-homomorphism $\phi$ on $C^{*}(T)$ such that $\phi(T)=\lambda$ .
Hence this theorem follows from Theorem B.

3. Example.
It is well-known that the inclusive relations of these classes of non-normal operators are

as follows:

$p$ –hyponormal
$\backslash (*)$

$\nearrow$

$hyponormal\backslash $ $ paranormal\nearrow$
’

quasi–hyponormal

(cf. [2], [9], [10], [12]). ${\rm Re} cently$, M. Fujii, R. Nakamoto and H. Watanabe in [10] gave
a nice generalization of $(*)$ . The inclusive relation of the p-hyponormality and tfe quasi-
hyponormality is not known. In this section, we give counter-examples for the inclusive
relation of these classes. The idea of operators below is due to P. R. Halmos [11] (Problem
164). Let $V$ be a two-dimensional complex vector space $(V=C^{2})$ and let $\mathcal{H}$ be the direct
sum of countably many copies of $V$ . Explicitly, $\mathcal{H}$ is the set of all sequences

$x=<\cdots,$ $x_{-1},$ $x_{0},$ $x_{1},$ $\cdots>$

of vectors in $V$ such that $\Sigma_{n}||x_{n}||^{2}<\infty$ ; the inner product of $x$ and $y$ is defined by
$(x, y)=\Sigma_{n}(x_{n}, y_{n})$ . Let $\{P_{n} ; n=0, \pm 1, \pm 2, \cdots\}$ be a sequence of positive operators on
$V$ such that the sequence $\{||P_{n}||\}$ of norms is bounded, then the equations $(Px)_{n}$ $:=P_{n}x_{n}$

define an operator $P$ on $\mathcal{H}$ . If $U$ is the shift defined by $(Ux)_{n}$ $:=x_{n-1}$ , then $U$ is an operator
on $\mathcal{H}$ .

If $A=UP$ , then

$(A^{*}Ax)_{n}=P_{n}^{2}x_{n},$ $(AA^{*}x)_{n}=P_{n-1}^{2}x_{n-1}$ ,

$(A^{*2}A^{2}x)_{n}=P_{n}P_{n+1}^{2}P_{n}x_{n}$ and $((A^{*}A)^{2}x)_{n}=P_{n}^{4}x_{n}$ .

Example 1. Let positive $2\times 2$-matrices $C$ and $D$ be

$C=\left(\begin{array}{ll}2 & 0\\0 & l\end{array}\right)$ and $D=\left(\begin{array}{ll}3 & l\\1 & 2\end{array}\right)$ .

Let $\{P_{n}\}$ be a sequence of positive $2\times 2$-matrices defined with

$P_{n}=\left\{\begin{array}{ll}C & (n\leq 0)\\D & (n\geq 1).\end{array}\right.$
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And an operator $T$ on $\mathcal{H}$ is defined by

$T=UP$.

Then $((T^{*}T)^{\frac{1}{2}}x)_{\mathfrak{n}}=P_{\mathfrak{n}}x_{\mathfrak{n}}$ and $((TT^{*})^{\frac{1}{2}}x)_{\mathfrak{n}}=P_{\mathfrak{n}-1}x_{\mathfrak{n}}$ .

Since $D\geq C,$ $T$ is a semi-hyponormal operator. But since

$(T^{*2}T^{2}x)_{n}=P_{n}P_{n+1}^{2}P_{n}x_{n}$ and $((T^{*}T)^{2}x)_{n}=P_{\mathfrak{n}}^{4}x_{\mathfrak{n}}$ ,

if $n=0$ , then

$(T^{*2}T^{2}x)_{0}=CD^{2}Cx_{0}=\left(\begin{array}{ll}40 & l0\\l0 & 5\end{array}\right)x_{0}$ and $((T^{*}T)^{2}x)_{0}=C^{4}x_{0}=\left(\begin{array}{ll}l6 & 0\\0 & 1\end{array}\right)x_{0}$ .

Since

$\left(\begin{array}{ll}40 & 10\\10 & 5\end{array}\right)-\left(\begin{array}{ll}l6 & 0\\0 & 1\end{array}\right)\not\geq 0$ ,

$T$ is not a quasi-hyponormal operator.

Automatically, this example is a semi-hyponormal operator which is not hyponormal. Using
singular integral operator techniques, D. Xia gave such an operator (Cor.1.4 of [14] of p.54).

Example 2. Next, we will give a quasi-hyponormal operator which is not p-hyponormal
for every $p$ . This example is due to S. L. Campbell and B. C. Gupta (EX.1 of [4]). For the
completeness, we will show it.
Let positive $2\times 2$-matrices $E$ and $F$ be

$E=\left(\begin{array}{ll}l & 0\\0 & 0\end{array}\right)$ and $F=\left(\begin{array}{ll}2 & 4\\4 & 8\end{array}\right)$ .

Let $\{P_{\mathfrak{n}}\}$ be a sequence of positive $2\times 2$-matrices defined with

$P_{n}=\left\{\begin{array}{ll}E & (n\leq 0)\\F & (n\geq 1).\end{array}\right.$

An operator $S$ on $\mathcal{H}$ is defined by $S=UP$ . Then

if $n\geq 1$ , then $(S^{*2}S^{2}x)_{n}=((S^{*}S)^{2}x)_{n}=F^{4}x_{\mathfrak{n}}$ ,
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if $n\leq-1$ , then $(S^{*2}S^{2}x)_{n}=((S^{*}S)^{2}x)_{n}=E^{4}x_{n}$ ,

if $n=0$ , then

$(S^{*2}S^{2}x)_{0}=EF^{2}Ex_{0}=\left(\begin{array}{ll}20 & 0\\0 & 0\end{array}\right)x_{0}$ and $((S^{*}S)^{2}x)_{0}=E^{4}x_{0}=\left(\begin{array}{ll}l & 0\\0 & 0\end{array}\right)x_{0}$ .

Hence $S^{*2}S^{2}\geq(S^{*}S)^{2}$ . Therefore, $S$ is a quasi-hyponormal operator.
But let $x$ $:=<x_{n}>_{n=-\infty}^{\infty}$ where $x_{n}=0$ if $n\neq 1$ and $x_{1}=(-2,1)$ . Then $Sx=0$ , but
$S^{*}x\neq 0$ . Hence, by Theorem $A,$ $S$ is not p-hyponormal for every $p$ .

Addendum. Theorem 1 holds for any isolated points of $\sigma(T)$ of any p-hyponormal operator
$T$ . It is Theorem 1 of the paper “Weyl’s theorem for p-hyponormal operators.” by M. Cho,
S. Oshiro and H. Segawa.
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