ON p-HYPONORMAL OPERATORS

Muneo Chō and Hirohiko Jin

Abstract

In this paper, we will give some spectral properties of p-hyponormal operators and two operators T and S on a complex Hilbert space as follows:

- (1) T is a p-hyponormal operator which is not quasi-hyponormal.
- (2) S is a quasi-hyponormal operator which is not p-hyponormal.

1. Introduction. Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . An operator $T \in B(\mathcal{H})$ is said to be hyponormal if $T^*T \geq TT^*$. An operator $T \in B(\mathcal{H})$ is said to be p-hyponormal if $(T^*T)^p \geq (TT^*)^p$. Especially, when $p = \frac{1}{2}$, T is called semi-hyponormal. Throughout this paper, let 0 . It is well known that a <math>p-hyponormal operator is q-hyponormal for $q \leq p$ by Löwner's Theorem. An operator $T \in B(\mathcal{H})$ is said to be quasi-hyponormal if $T^{*2}T^2 \geq (T^*T)^2$. An operator $T \in B(\mathcal{H})$ is said to be paranormal if $||T^2x|| \geq ||Tx||^2$ for all unit vectors $x \in \mathcal{H}$. For an operator T, we denote the spectrum and the approximate point spectrum by $\sigma(T)$ and $\sigma_a(T)$, respectively. A point $z \in \mathbb{C}$ in the joint approximate point spectrum $\sigma_{ja}(T)$ if there exists a sequence of unit vectors $\{x_n\}$ in \mathcal{H} such that $(T-z)x_n \to 0$ and $(T-z)^*x_n \to 0$. For an operator $T \in B(\mathcal{H})$, we denote the polar decomposition of T by T = U|T|.

We need the following results.

THEOREM A (Th.4 of [6]). Let T be p-hyponormal. If $Tx = \lambda x$, then $T^*x = \overline{\lambda}x$.

THEOREM B (Th.8 of [6]). Let T be p-hyponormal. Then

$$\sigma_a(T) = \sigma_{ja}(T).$$

Next, let \mathcal{T} be the set of all strictly monotone increasing continuous non-negative functions on $\mathbf{R}^+ = [0, \infty)$. Let $\mathcal{T}_o = \{\varphi \in \mathcal{T} : \varphi(0) = 0\}$. For $\varphi \in \mathcal{T}_o$, the mapping $\tilde{\varphi}$ is defined by

$$\tilde{\varphi}(re^{i\theta})=e^{i\theta}\varphi(r) \ \ \text{and} \ \ \tilde{\varphi}(T)=U\varphi(|T|).$$

(1991) Mathematics Subject Classification. 47B20.

Key words and phrases. Hilbert space, p-hyponormal operator, quasi-hyponormal operator.

Then we have the following

Theorem C (Th.3 of [7]). Let T=U|T| be p-hyponormal and U be unitary. If $\varphi\in\mathcal{T}_o$ and $\tilde{\varphi}(T)$ is p-hyponormal, then

$$\tilde{\varphi}(\sigma(T)) = \sigma(\tilde{\varphi}(T)).$$

- 2. Spectral Properties. First we study the following for $T \in B(\mathcal{H})$: If λ is an isolated point of $\sigma(T)$, does it follow that λ is an eigenvalue of T?
- J. G. Stampfli proved that above statement is true if an operator T is hyponormal (Th.2 of [13]). S. L. Campbell and B. C. Gupta proved that it also holds if an operator T is quasi-hyponormal (Cor.7 of [4]).

THEOREM 1. Let T = U|T| be p-hyponormal and λ be an isolated point of $\sigma(T)$. If U is unitary or $\lambda \neq 0$, then λ is an eigenvalue of T.

Proof. First we assume that U is unitary. Let $S = U|T|^p$ and $\varphi(t) = t^{\frac{1}{p}}$ for $t \geq 0$. Then S is a hyponormal operator and $\varphi \in \mathcal{T}_o$. Let $\lambda = re^{i\theta}$. Since $\tilde{\varphi}(S) = T$, by Theorem C, $r^p e^{i\theta}$ is an isolated point of $\sigma(S)$. Hence by Stampfli's result it follows that $r^p e^{i\theta}$ is an eigenvalue of S. Hence there exists a nonzero eigen-vector x of λ . When $\lambda = 0$, $|T|^p x = 0$ because U is unitary. Hence 0 is an eigenvalue of T.

So we assume $\lambda \neq 0$. Then, by Theorem A, it holds that $Ux = e^{i\theta}x$ and $|T|^px = r^px$. Therefore this vector x is an eigen-vector of the eigenvalue λ of T.

Next, we assume that U is not unitary and $\lambda \neq 0$. Since we may assume that U is isometry, we put operators V and A on $\mathcal{H} \oplus \mathcal{H}$ as follows:

$$V = \left(egin{array}{cc} U & I - U U^* \ 0 & U^* \end{array}
ight) \ \ ext{and} \ \ |A| = \left(egin{array}{cc} |T| & 0 \ 0 & 0 \end{array}
ight).$$

Let A = V|A|, then we have $\sigma(T) \cup \{0\} = \sigma(A)$. Hence, $\lambda \in \sigma(A)$ and λ is an isolated point of $\sigma(A)$. Since A is p-hyponormal and V is unitary, from the above result it follows that there is a non-zero vector $x_1 \oplus x_2$ such that $A(x_1 \oplus x_2) = \lambda(x_1 \oplus x_2)$. Since $\lambda \neq 0$, it follows $x_2 = 0$. Hence $x_1 \neq 0$. Therefore, λ is an eigenvalue of T.

Next, for an operator $T \in B(\mathcal{H})$, let $C^*(T)$ be the C^* -algebra generated by T and the identity I.

THEOREM 2. Let T be p-hyponormal. Then $\lambda \in \sigma_a(T)$ if and only if there exists a *-homomorphism $\phi: C^*(T) \to \mathbf{C}$ such that $\phi(T) = \lambda$.

Proof. M. Enomoto, M. Fujii and K. Tamaki proved that the following conditions are equivalent (Th.1 of [8]): (1) $\lambda \in \sigma_{ja}(T)$.

(2) There is a *-homomorphism ϕ on $C^*(T)$ such that $\phi(T) = \lambda$. Hence this theorem follows from Theorem B.

3. Example.

It is well-known that the inclusive relations of these classes of non-normal operators are as follows:

(cf. [2], [9], [10], [12]). Recently, M. Fujii, R. Nakamoto and H. Watanabe in [10] gave a nice generalization of (*). The inclusive relation of the p-hyponormality and the quasi-hyponormality is not known. In this section, we give counter-examples for the inclusive relation of these classes. The idea of operators below is due to P. R. Halmos [11] (Problem 164). Let V be a two-dimensional complex vector space $(V = \mathbb{C}^2)$ and let \mathcal{H} be the direct sum of countably many copies of V. Explicitly, \mathcal{H} is the set of all sequences

$$x = < \cdots, x_{-1}, x_0, x_1, \cdots >$$

of vectors in V such that $\sum_n \|x_n\|^2 < \infty$; the inner product of x and y is defined by $(x,y) = \sum_n (x_n,y_n)$. Let $\{P_n \; | \; n=0,\pm 1,\pm 2,\cdots\}$ be a sequence of positive operators on V such that the sequence $\{\|P_n\|\}$ of norms is bounded, then the equations $(Px)_n := P_n x_n$ define an operator P on \mathcal{H} . If U is the shift defined by $(Ux)_n := x_{n-1}$, then U is an operator on \mathcal{H} .

If A = UP, then

$$(A^*Ax)_n = P_n^2x_n, (AA^*x)_n = P_{n-1}^2x_{n-1},$$

$$(A^{*2}A^2x)_n = P_n P_{n+1}^2 P_n x_n$$
 and $((A^*A)^2x)_n = P_n^4 x_n$.

Example 1. Let positive 2×2 -matrices C and D be

$$C = \left(egin{array}{cc} 2 & 0 \ 0 & 1 \end{array}
ight) \ \ ext{and} \ \ D = \left(egin{array}{cc} 3 & 1 \ 1 & 2 \end{array}
ight).$$

Let $\{P_n\}$ be a sequence of positive 2×2 -matrices defined with

$$P_n = \left\{ \begin{array}{ll} C & (n \le 0) \\ D & (n \ge 1). \end{array} \right.$$

And an operator T on \mathcal{H} is defined by

$$T = UP$$
.

Then
$$\left((T^*T)^{\frac{1}{2}}x\right)_n = P_nx_n$$
 and $\left((TT^*)^{\frac{1}{2}}x\right)_n = P_{n-1}x_n$.

Since $D \ge C$, T is a semi-hyponormal operator. But since

$$(T^{*2}T^2x)_n = P_n P_{n+1}^2 P_n x_n$$
 and $((T^*T)^2x)_n = P_n^4 x_n$,

if n = 0, then

$$(T^{*2}T^2x)_0 = CD^2Cx_0 = \begin{pmatrix} 40 & 10 \\ 10 & 5 \end{pmatrix} x_0 \text{ and } \left((T^*T)^2x\right)_0 = C^4x_0 = \begin{pmatrix} 16 & 0 \\ 0 & 1 \end{pmatrix} x_0.$$

Since

$$\left(\begin{array}{cc} 40 & 10 \\ 10 & 5 \end{array}\right) - \left(\begin{array}{cc} 16 & 0 \\ 0 & 1 \end{array}\right) \not \geq 0,$$

T is not a quasi-hyponormal operator.

Automatically, this example is a semi-hyponormal operator which is not hyponormal. Using singular integral operator techniques, D. Xia gave such an operator (Cor.1.4 of [14] of p.54).

Example 2. Next, we will give a quasi-hyponormal operator which is not p-hyponormal for every p. This example is due to S. L. Campbell and B. C. Gupta (Ex.1 of [4]). For the completeness, we will show it.

Let positive 2×2 -matrices E and F be

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $F = \begin{pmatrix} 2 & 4 \\ 4 & 8 \end{pmatrix}$.

Let $\{P_n\}$ be a sequence of positive 2×2 -matrices defined with

$$P_n = \begin{cases} E & (n \leq 0) \\ F & (n \geq 1). \end{cases}$$

An operator S on \mathcal{H} is defined by S = UP. Then

if
$$n \ge 1$$
, then $(S^{*2}S^2x)_n = ((S^*S)^2x)_n = F^4x_n$,

if
$$n \le -1$$
, then $(S^{*2}S^2x)_n = ((S^*S)^2x)_n = E^4x_n$,

if n = 0, then

$$(S^{*2}S^2x)_0 = EF^2Ex_0 = \begin{pmatrix} 20 & 0 \\ 0 & 0 \end{pmatrix} x_0 \text{ and } \left((S^*S)^2x \right)_0 = E^4x_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x_0.$$

Hence $S^{*2}S^2 \ge (S^*S)^2$. Therefore, S is a quasi-hyponormal operator. But let $x := \langle x_n \rangle_{n=-\infty}^{\infty}$ where $x_n = 0$ if $n \ne 1$ and $x_1 = (-2,1)$. Then Sx = 0, but $S^*x \ne 0$. Hence, by Theorem A, S is not p-hyponormal for every p.

Addendum. Theorem 1 holds for any isolated points of $\sigma(T)$ of any p-hyponormal operator T. It is Theorem 1 of the paper "Weyl's theorem for p-hyponormal operators." by M. Chō, S. Ōshiro and H. Segawa.

References

- [1] A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory, 13(1990), 307-315.
- [2] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged), 33(1972), 169-178.
- [3] J. Bunce, Characters on singly generated C*-algebras, Proc. Amer. Math. Soc., 25(1970), 297-303.
- [4] S. L. Campbell and B. C. Gupta, On k-quasihyponormal operators, Math. Japon., 23(1978), 185-189.
- [5] M. Chō, Spectral properties of p-hyponormal operators, Glasgow Math. J., 36(1994), 117-122.
- [6] M. Chō and T. Huruya, p-hyponormal operators for 0 , Commentationes Math., 33(1993), 23-29.
- [7] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc., 123(1995), 2435-2440.
- [8] M. Enomoto, M. Fujii and K. Tamaki, On normal approximate spectrum, Proc. Japan Acad., 48(1972), 211-215.
- [9] T. Furuta, On convexoid operators, Sūgaku, 25(1973), 20-37(in Japanese).
- [10] M. Fujii, R. Nakamoto and H. Watanabe, The Heinz-Kato-Furuta inequality and hyponormal operators, Math. Japon., 40(1994), 469-472.

- [11] P. R. Halmos, A Hilbert space problem book, Van Nostrand, 1967.
- [12] I. Nishitani and Y. Watatani, Some Theorems on paranormal operators, Math. Japon. 21(1976), 123-126.
- [13] J. G. Stampfli, Hyponormal operators, Pacific J. Math., 12(1962), 1453-1458.
- [14] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Boston, 1983.

 DEPARTMENT OF MATHEMATICS, JOETSU UNIVERSITY OF EDUCATION, JOETSU 943, JAPAN

Received April 19, 1995