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PARAMETERIZED KANTOROVICH
INEQUALITY FOR POSITIVE OPERATORS

MasaTosal Fuin * E1zaBuro KAMEI ** AND AKEMI MATSUMOTO ***

ABSTRAOT. The Kantorovich inequality says that if A is a positive operator on - H such that
0<m<L AL M for some M > m > 0, then

(M + m)?

(Az,z)(A 1z, 2) < Y™

for all unit vectors £ € H. We generalize it by the use of a family of power means, which gives
us a parameterization of the Kantorovich inequality. Moreover we give a parameterisation of
the Pélya-Ssego inequality.

1. Introduction. Let a,g and % be the arithmetic, geometric and harmonic mean
respectively. It is known that these means are unified by the family of power means
{m,;;-1<r <1}, ie,

(1) am, = * for a,8 > 0.

a”+ 871
(17
It is easily seen that m'l =a,mp = g and m_; = h. The family of power means plays an
interesting role, e.g., [1,3,5,7]. We refer to [6] for the theory of operator means.

Now Kantorovich established the following inequality in his study on applications of

functional analysis to numerical analysis, cf. [2] : If {ax} is a sequence in IR such that
0 <m < ax <M for some m and M, then

Sast 3 oot < U (0 a1)

k

holds for all £ = {z;} in I*(N).
If we define the diagonal operator A by A = diag (ax), then we have

(M +m)?

(Az,z)(47'z,2) < M

llz]|* for z € 1*(IN)

f0<m< A< M. As a matter of fact, the following inequality is proved by Greub and
Rheinboldt [2], which we call the Kantorovich inequality.
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The Kantorovich inequality. If A is a positive operator on a Hilbert space H such that
0<m< A< M for some M >m > 0, then

(M +m)?

(2) (Az,z)(A 'z, 5) < M

for all anit vectors z € H.

From the mean theoretic view, the Kantorovich inequality (2) is seen as follows :

M4+m
2vVMm

(3) (Az,z) mo (A71z,2) <

for all unit vectors z € H.

In this note, we give a parameterization of the Kantorovich inequality by the use of power
means which includes (3) as the case r = 0. In the proof, the convexity of the fanction 11
on (0, 00) is effective. Moreover we parameterise the P6lya-Szego inequality [2 ; Theorem
2] which is equivalent to the Kantorovich inequality.

2. Parameterised Kantorovich inequality. The Kantorovich inequality has the
following parameterization by power means. '

Theorem 1. Let A be a positive operator on a Hilbert space H such that0 < m< A< M
for some M > m > 0. Then, for power means m,(—1 <r <1)

(Az,3) m, (A7 'z,7)

-5 (M7 4+ M™7)F if M™"<m
(4) <{ 27 H (M +m)Q+ (Mm)TT) T if m? < (Mm)T= < M?
2% (m" + mT)* if M<m!~%

for all unit vectors T € H. The bound is optimal.

Remark. In the case r = 0, i.e., mg is the geometric mean, the right hand side in the
above (4) is regarded as the limit by taking r — 0 ; namely

. =r M+im
lim 2~ (M + m)(1 + (Mm)7=) 5 = )
liy 37 (0 -+ m)(1 + (Mm) )7 = LT

It is clear that the second case in (4) only happens and so it is the Kantorovich inequality
(3)- On the other hand, if r = 1, i.e., m1 = a, then the second case happens if and only if
Mm = 1. Therefore we have

1 1 1
-1 < — — —_
(Az,z) o (A7'z,2) < 5 max{m + —, M + M}

for all unit vectors £ € H. As a matter of fact, we can directly compute it. Finally, if
r = —1, i,e., m_; = h, then the mixed type iequality (4) happens ;
2AM+M~Y)! f M3<m
2(M +m)
Az, z) h (A 'z,7) < { ———o—r
(45,2) h (475.9) S| (3 Vam):
2m+m~)"! if M<md

if mt<Mm< M?*
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for all unit vectors z € H.

Now the computational part of the proof is concentrated to the following lemma. For
this, we prepare the functions f, on [0, M + m] for —1<r <1

f+@) =t m, g(2)

= L2‘*((Mmt)r +(M4+m- t)')%.

Mm

where M4+ :
m —
9= =3

Lemma. Let f, be as in above and put o, = M —y. Then

f+(M) if M=% <m

22X [r(t) = fr(ar) if m? < (Mm)™ < M?

£+(m) if M <mi-%

Incidentally,
max f,(t) = max{f,(m), f,(M)}.
Proof. Since
F0) = 37=27H(Mrt) + (M +m — 8)7) 5 (M) 7= — (M +m — 2 =),

it follows that f/(t) > 0for 0 < ¢ < a,, fl(a,) = 0 and fI(t) <O fora, <t < M +m.
Therefore we have

(M) if M<a,
max f.(t) = { fr(ar) if m<a, <M
f+(m) if a <m.

Finally we remark that m < o, < M if and only if m? < (Mm)T=F < M?. Actually the
former is rephrased that

M(Mm)V"ET >m and M > m(Mm)FET,

or equivalently
M3 (Mm)™ >1 and 1> m3}(Mm)™r.

Furthermore it is equivalent to the desired inequality. In addition, the other cases are easily
checked.

Proof of Theorem 1. Let A= f1dE; be the spectral decomposition of A. Then, for a fixed
unit vector z € H,

(Az,2) m, (A7 'z,7) = /t d(E:z, ) m, /t“l d(E:z, %)

<ty m, g(to)
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for some to € [m, M] because the function t~! is convex and g is the straight line through
the points (m,m—!) and (M, M~!). Recalling that f,(t) = t m, g(t), we have the required
inequality (4) by combining with Lemma.

The following theorem is another direct generalization of the Kantorovich inequality as
r = 1/2, which is pointed out by the referee.

Theorem 2. Let A be a positive operator on a3 Hilbert space H such that0 < m < A< M
for some M >m >0and 0 <r <1. Then

(Az,z)" (A z,2)' T

mar-1 iIf 0<r< ﬁ;
< M+ m)MmY (- i g < < e
r—1 .
M3 if IZ% <r<1

for all unit vectors + € H,. The bound is optimal.

The proof of Theorem 2 can be done similarly to that of Theorem 1 by putting f,.(¢) =
'trg(f) 1—r

3. Parameterized Pélya-Szego inequality. The Kantorovich inequality is equivalent
to the following inequality [2; Theorem 2]. Since it is an operator version of an inequality
due to Pélya and Szegd, we may call it the Pélya-Szego inequality.

The Pdlya-Szego inequality. Let A and B be commuting positive operators on H such
that

(5) 0<mi<A<M, and 0<mya<B< M,
Then

2
() (433, 5)(Bls, 7) < MaiMatmuma)l o 52

4M 1M2m1m;
forallz € H.
The Pélya-Szego inequality will be parameterized as well as the Kantorovich one. In the

below, we suppose that A and B satisfy the condition (5) for some m; and M;(: = 1,2).
For the sake of convenience, we put the constant K, for -1 <r <1;

( 5—1 M M2ypyd : —2r —2r
HEY FGEE i MM Smumy ™
_1 M M; 4+ mim, Mym,, r  i-r
2 r—1) 7
K, = MmO Gy )
if mimgy < MQ"IQ(Mlml)’h—"’ < M M,
Mym,

—ig My, Maa 1-2r 1-2r
(277 (G + (D)) if MiM;™"" <myi”ms.

—132 —



Theorem 3. Let A and B be commuting positive operators satisfying (5). Then
(7) (A%z,3) m, (B%z,7) < K,(Az, Bz)?

foralz € H.

Proof. The proof is quite similar to [2 ; Theorem 2]. We put C = AB~!; m = % and
M= %} Then we have 0 < m < C < M. Hence Theorem 1 implies that

(Cz,z) m, (C~'z,3)

ll=I1*
2R MT + MT)* if M-7<m
<4 2TE(M +m)(1 4 (Mm)TE) 5 if m? < (Mm)T™ < M3
—F(m” + m=T)* if M<mi-%

for all z € H. It is easily checked that the right hand side of the above is just X, and the

left hand side becomes
(4%z,2) m, (B3z,z)

(Az, Bz)?

by replacing z to (AB)}.I, which completes the proof.
Remark. Theorem 3 is implied by Theorem 1, as seen in the proof of it. Conversely
Theorem 1 follows from Theorem 2. In fact, for a given C with 0 < m < C < M, we take

A=ct B=Cim=miMi=Mimi=MF M=m},

and apply it to Theorem 3.

Finally we consider a noncommutative generalization of the Pélya-Szego inequality and
Theorem 3.

Theorem 4. Let A and B be positive operators satisfying (5). Then

1,1 MiMy+mimg, 1.1 4
BT7AB Bz < A’B
18+ AB3si||Bal < 2MAATAML 41 piy
forallz € H.
Proof. Weput C = A¥B—1A%. Then we have
my M1
8 0 =—<C< = —.
(8) <m i, S C<M —
The Kantorovich inequality implies that
_ M + m)?
©) (C2,2)(C15,2) < PEEY 0

4Mm

for all z € H. If we replace z in (9) by A¥BYz and M,m by M, m(s = 1,2), then the
desired inequality is obtained.
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Theorem 5. Let A and B be positive operators satisfying (5). Then
|B-% AB¥z||* m, ||Bs|)® < K,||a*Biz|*

forall z € H.

Proof. We also put C = AYB-1A% and so we have (8). Hence it follows from Theorem 1
that

(Cz,z) m, (C'1,2) < K,||z]*
for all z € H. Replacing z in the above by A¥B%z and M,m by M;, m(s = 1,2), we have
the desired inequality, as in the proof of Theorem 3.

4. A concluding remark. Generalizations of the Kantorovich inequality are discussed
by several authors, for which we refer to [8] and [4]. Though the former is somewhat
complicated, the latter is simple as follows :

Theorem K. (Kijima) Let A and B be positive operators satisfying (5). Then
Mym (A~ 'z, 3)(By,y) + Mama(Az,z)(B™y,y) < My M3 +mym;

for all unit vectors z,y € H.

The proof of Theorem K is reduced to the following elementary inequality : If0 < m; <
a < M; and 0 < m3 < b < M;, then

M,a + Mlb S 1+ M]_Mg.
mb  maa mimg

He also gave a path of results whose starting point is Theorem K and final one is the
Pélya-Szego inequality.

Acknowledgement. The authors would like to express their thanks to the referee for
his useful comment and suggestion.
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