PARAMETERIZED KANTOROVICH INEQUALITY FOR POSITIVE OPERATORS

Masatoshi Fujii * Eizaburo Kamei ** and Akemi Matsumoto ***

ABSTRACT. The Kantorovich inequality says that if A is a positive operator on H such that $0 < m \le A \le M$ for some $M \ge m > 0$, then

$$(Ax,x)(A^{-1}x,x) \le \frac{(M+m)^2}{4Mm}$$

for all unit vectors $x \in H$. We generalize it by the use of a family of power means, which gives us a parameterization of the Kantorovich inequality. Moreover we give a parameterization of the Pólya-Szegő inequality.

1. Introduction. Let a, g and h be the arithmetic, geometric and harmonic mean respectively. It is known that these means are unified by the family of power means $\{m_r; -1 \le r \le 1\}$, i.e.,

(1)
$$\alpha m_r \beta = \left(\frac{\alpha^r + \beta^r}{2}\right)^{\frac{1}{r}} \quad \text{for } \alpha, \beta > 0.$$

It is easily seen that $m_1 = a, m_0 = g$ and $m_{-1} = h$. The family of power means plays an interesting role, e.g., [1,3,5,7]. We refer to [6] for the theory of operator means.

Now Kantorovich established the following inequality in his study on applications of functional analysis to numerical analysis, cf. [2]: If $\{a_k\}$ is a sequence in \mathbb{R} such that $0 < m \le a_k \le M$ for some m and M, then

$$\sum_{k} a_k x_k^2 \sum_{k} \frac{1}{a_k} x_k^2 \leq \frac{(M+m)^2}{4Mm} \left(\sum_{k} x_k^2\right)^2$$

holds for all $x = \{x_k\}$ in $l^2(\mathbb{N})$.

If we define the diagonal operator A by $A = \text{diag } (a_k)$, then we have

$$(Ax,x)(A^{-1}x,x) \le \frac{(M+m)^2}{4Mm} ||x||^4 \text{ for } x \in l^2(\mathbb{N})$$

if $0 < m \le A \le M$. As a matter of fact, the following inequality is proved by Greub and Rheinboldt [2], which we call the Kantorovich inequality.

¹⁹⁹¹ Mathematics Subject Classification. 47A63 and 47B15.

The Kantorovich inequality. If A is a positive operator on a Hilbert space H such that $0 < m \le A \le M$ for some $M \ge m > 0$, then

(2)
$$(Ax,x)(A^{-1}x,x) \leq \frac{(M+m)^2}{4Mm}$$

for all unit vectors $x \in H$.

From the mean theoretic view, the Kantorovich inequality (2) is seen as follows:

(3)
$$(Ax,x) m_0 (A^{-1}x,x) \leq \frac{M+m}{2\sqrt{Mm}}$$

for all unit vectors $x \in H$.

In this note, we give a parameterization of the Kantorovich inequality by the use of power means which includes (3) as the case r=0. In the proof, the convexity of the function t^{-1} on $(0,\infty)$ is effective. Moreover we parameterize the Pólya-Szegő inequality [2; Theorem 2] which is equivalent to the Kantorovich inequality.

2. Parameterized Kantorovich inequality. The Kantorovich inequality has the following parameterization by power means.

Theorem 1. Let A be a positive operator on a Hilbert space H such that $0 < m \le A \le M$ for some $M \ge m > 0$. Then, for power means $m_{\tau}(-1 \le r \le 1)$

$$(Ax, x) m_{\tau} (A^{-1}x, x)$$

$$\leq \begin{cases} 2^{-\frac{1}{r}} (M^{r} + M^{-r})^{\frac{1}{r}} & \text{if } M^{1-2r} \leq m \\ 2^{-\frac{1}{r}} (M + m) (1 + (Mm)^{\frac{r}{r-1}})^{\frac{1-r}{r}} & \text{if } m^{2} \leq (Mm)^{\frac{1}{1-r}} \leq M^{2} \\ 2^{-\frac{1}{r}} (m^{r} + m^{-r})^{\frac{1}{r}} & \text{if } M \leq m^{1-2r} \end{cases}$$

for all unit vectors $x \in H$. The bound is optimal.

Remark. In the case r=0, i.e., m_0 is the geometric mean, the right hand side in the above (4) is regarded as the limit by taking $r\to 0$; namely

$$\lim_{r\to 0} 2^{-\frac{1}{r}} (M+m) (1+(Mm)^{\frac{r}{r-1}})^{\frac{1-r}{r}} = \frac{M+m}{2\sqrt{Mm}}.$$

It is clear that the second case in (4) only happens and so it is the Kantorovich inequality (3). On the other hand, if r = 1, i.e., $m_1 = a$, then the second case happens if and only if Mm = 1. Therefore we have

$$(Ax, x) \ a \ (A^{-1}x, x) \leq \frac{1}{2} \ \max\{m + \frac{1}{m}, M + \frac{1}{M}\}.$$

for all unit vectors $x \in H$. As a matter of fact, we can directly compute it. Finally, if r = -1, i.e., $m_{-1} = h$, then the mixed type iequality (4) happens;

$$(Ax,x) \ h \ (A^{-1}x,x) \leq \begin{cases} 2(M+M^{-1})^{-1} & \text{if} \quad M^3 \leq m \\ \frac{2(M+m)}{(1+\sqrt{Mm})^2} & \text{if} \quad m^4 \leq Mm \leq M^4 \\ 2(m+m^{-1})^{-1} & \text{if} \quad M \leq m^3 \end{cases}$$

for all unit vectors $x \in H$.

Now the computational part of the proof is concentrated to the following lemma. For this, we prepare the functions f_r on [0, M+m] for $-1 \le r \le 1$;

$$f_r(t) = t \ m_r \ g(t)$$

$$= \frac{1}{Mm} 2^{-\frac{1}{r}} ((Mmt)^r + (M+m-t)^r)^{\frac{1}{r}},$$

where

$$g(t) = \frac{M + m - t}{Mm}.$$

Lemma. Let f_r be as in above and put $\alpha_r = \frac{M+m}{1+(Mm)^{r/(r-1)}}$. Then

$$\max_{\substack{m \leq t \leq M}} f_r(t) = \begin{cases} f_r(M) & \text{if } M^{1-2r} \leq m \\ f_r(\alpha_r) & \text{if } m^2 \leq (Mm)^{\frac{1}{1-r}} \leq M^2 \\ f_r(m) & \text{if } M \leq m^{1-2r}. \end{cases}$$

Incidentally,

$$\max f_1(t) = \max\{f_1(m), f_1(M)\}.$$

Proof. Since

$$f_r'(t) = \frac{1}{Mm} 2^{-\frac{1}{r}} ((Mmt)^r + (M+m-t)^r)^{\frac{1-r}{r}} ((Mm)^r t^{r-1} - (M+m-t)^{r-1}),$$

it follows that $f'_{\tau}(t) > 0$ for $0 \le t < \alpha_{\tau}$, $f'_{\tau}(\alpha_{\tau}) = 0$ and $f'_{\tau}(t) < 0$ for $\alpha_{\tau} < t \le M + m$. Therefore we have

$$\max f_{\tau}(t) = \left\{ egin{array}{ll} f_{ au}(M) & ext{if} & M < lpha_{ au} \ \\ f_{ au}(lpha_{ au}) & ext{if} & m \leq lpha_{ au} \leq M \ \\ f_{ au}(m) & ext{if} & lpha_{ au} < m \,. \end{array}
ight.$$

Finally we remark that $m \leq \alpha_r \leq M$ if and only if $m^2 \leq (Mm)^{\frac{1}{1-r}} \leq M^2$. Actually the former is rephrased that

$$M(Mm)^{\frac{r}{r-1}} \ge m$$
 and $M \ge m(Mm)^{\frac{r}{r-1}}$,

or equivalently

$$M^2(Mm)^{\frac{1}{1-r}} > 1$$
 and $1 > m^2(Mm)^{\frac{1}{1-r}}$.

Furthermore it is equivalent to the desired inequality. In addition, the other cases are easily checked.

Proof of Theorem 1. Let $A = \int t \ dE_t$ be the spectral decomposition of A. Then, for a fixed unit vector $x \in H$,

$$(Ax,x) m_r (A^{-1}x,x) = \int t \ d(E_tx,x) m_r \int t^{-1} \ d(E_tx,x)$$

$$\leq t_0 m_r \ g(t_0)$$

for some $t_0 \in [m, M]$ because the function t^{-1} is convex and g is the straight line through the points (m, m^{-1}) and (M, M^{-1}) . Recalling that $f_{\tau}(t) = t m_{\tau} g(t)$, we have the required inequality (4) by combining with Lemma.

The following theorem is another direct generalization of the Kantorovich inequality as r = 1/2, which is pointed out by the referee.

Theorem 2. Let A be a positive operator on a Hilbert space H such that $0 < m \le A \le M$ for some $M \ge m > 0$ and 0 < r < 1. Then

$$(Ax, x)^{\tau} (A^{-1}x, x)^{1-\tau}$$

$$\leq \begin{cases} m^{2\tau - 1} & \text{if } 0 < r < \frac{m}{M+m} \\ (M+m)(Mm)^{\tau - 1} r^{\tau} (1-r)^{1-\tau} & \text{if } \frac{m}{M+m} \le r \le \frac{M}{M+m} \\ M^{2\tau - 1} & \text{if } \frac{M}{M+m} \le r < 1 \end{cases}$$

for all unit vectors $x \in H$,. The bound is optimal.

The proof of Theorem 2 can be done similarly to that of Theorem 1 by putting $f_r(t) = t^r g(t)^{1-r}$.

3. Parameterized Pólya-Szegö inequality. The Kantorovich inequality is equivalent to the following inequality [2; Theorem 2]. Since it is an operator version of an inequality due to Pólya and Szegö, we may call it the Pólya-Szegö inequality.

The Polya-Szegö inequality. Let A and B be commuting positive operators on H such that

(5)
$$0 < m_1 < A < M_1 \text{ and } 0 < m_2 \le B \le M_2.$$

Then

(6)
$$(A^2x,x)(B^2x,x) \leq \frac{(M_1M_2 + m_1m_2)^2}{4M_1M_2m_1m_2}(Ax,Bx)^2$$

for all $x \in H$.

The Pólya-Szegő inequality will be parameterized as well as the Kantorovich one. In the below, we suppose that A and B satisfy the condition (5) for some m_i and $M_i (i = 1, 2)$. For the sake of convenience, we put the constant K_r for $-1 \le r \le 1$;

$$K_{\tau} = \begin{cases} 2^{-\frac{1}{r}} ((\frac{M_{1}}{m_{2}})^{r} + (\frac{m_{2}}{M_{1}})^{r})^{\frac{1}{r}} & \text{if} \quad M_{1}^{1-2r} M_{2} \leq m_{1} m_{2}^{1-2r} \\ 2^{-\frac{1}{r}} \frac{M_{1} M_{2} + m_{1} m_{2}}{M_{2} m_{2}} (1 + (\frac{M_{1} m_{1}}{M_{2} m_{2}})^{\frac{r}{r-1}})^{\frac{1-r}{r}} \\ & \text{if} \quad m_{1} m_{2} \leq M_{2} m_{2} (\frac{M_{1} m_{1}}{M_{2} m_{2}})^{\frac{1}{2(1-r)}} \leq M_{1} M_{2} \\ 2^{-\frac{1}{r}} ((\frac{m_{1}}{M_{2}})^{r} + (\frac{M_{2}}{m_{1}})^{r})^{\frac{1}{r}} & \text{if} \quad M_{1} M_{2}^{1-2r} \leq m_{1}^{1-2r} m_{2}. \end{cases}$$

Theorem 3. Let A and B be commuting positive operators satisfying (5). Then

(7)
$$(A^2x, x) m_{\tau} (B^2x, x) \leq K_{\tau}(Ax, Bx)^2$$

for all $x \in H$.

Proof. The proof is quite similar to [2; Theorem 2]. We put $C = AB^{-1}$; $m = \frac{m_1}{M_2}$ and $M = \frac{M_1}{m_2}$. Then we have $0 < m \le C \le M$. Hence Theorem 1 implies that

$$\frac{(Cx,x) m_{\tau} (C^{-1}x,x)}{\|x\|^{4}} \le \begin{cases}
2^{-\frac{1}{r}} (M^{\tau} + M^{-\tau})^{\frac{1}{r}} & \text{if } M^{1-2\tau} \le m \\
2^{-\frac{1}{r}} (M+m)(1 + (Mm)^{\frac{r}{r-1}})^{\frac{1-r}{r}} & \text{if } m^{2} \le (Mm)^{\frac{1}{1-r}} \le M^{2} \\
2^{-\frac{1}{r}} (m^{\tau} + m^{-\tau})^{\frac{1}{r}} & \text{if } M \le m^{1-2\tau}
\end{cases}$$

for all $x \in H$. It is easily checked that the right hand side of the above is just K, and the left hand side becomes

$$\frac{(A^2x,x)\ m_\tau\ (B^2x,x)}{(Ax,Bx)^2}$$

by replacing x to $(AB)^{\frac{1}{2}}x$, which completes the proof.

Remark. Theorem 3 is implied by Theorem 1, as seen in the proof of it. Conversely Theorem 1 follows from Theorem 2. In fact, for a given C with $0 < m \le C \le M$, we take

$$A = C^{\frac{1}{2}}, B = C^{-\frac{1}{2}}; m_1 = m^{\frac{1}{2}}, M_1 = M^{\frac{1}{2}}, m_2 = M^{-\frac{1}{2}}, M_2 = m^{-\frac{1}{2}},$$

and apply it to Theorem 3.

Finally we consider a noncommutative generalization of the Pólya-Szegő inequality and Theorem 3.

Theorem 4. Let A and B be positive operators satisfying (5). Then

$$||B^{-\frac{1}{2}}AB^{\frac{1}{2}}x|||Bx|| \leq \frac{M_1M_2 + m_1m_2}{2\sqrt{M_1M_2m_1m_2}}||A^{\frac{1}{2}}B^{\frac{1}{2}}x||^2$$

for all $x \in H$.

Proof. We put $C = A^{\frac{1}{2}}B^{-1}A^{\frac{1}{2}}$. Then we have

$$0 < m = \frac{m_1}{M_2} \le C \le M = \frac{M_1}{m_2}.$$

The Kantorovich inequality implies that

(9)
$$(Cx,x)(C^{-1}x,x) \leq \frac{(M+m)^2}{4Mm} ||x||^4$$

for all $x \in H$. If we replace x in (9) by $A^{\frac{1}{2}}B^{\frac{1}{2}}x$ and M, m by $M_i, m_i (i = 1, 2)$, then the desired inequality is obtained.

Theorem 5. Let A and B be positive operators satisfying (5). Then

$$||B^{-\frac{1}{2}}AB^{\frac{1}{2}}x||^2 m_\tau ||Bx||^2 \le K_\tau ||A^{\frac{1}{2}}B^{\frac{1}{2}}x||^4$$

for all $x \in H$.

Proof. We also put $C = A^{\frac{1}{2}}B^{-1}A^{\frac{1}{2}}$ and so we have (8). Hence it follows from Theorem 1 that

$$(Cx, x) m_{\tau} (C^{-1}x, x) \leq K_{\tau} ||x||^{4}$$

for all $x \in H$. Replacing x in the above by $A^{\frac{1}{2}}B^{\frac{1}{2}}x$ and M,m by $M_i, m_i (i = 1, 2)$, we have the desired inequality, as in the proof of Theorem 3.

4. A concluding remark. Generalizations of the Kantorovich inequality are discussed by several authors, for which we refer to [8] and [4]. Though the former is somewhat complicated, the latter is simple as follows:

Theorem K. (Kijima) Let A and B be positive operators satisfying (5). Then

$$M_1m_1(A^{-1}x,x)(By,y) + M_2m_2(Ax,x)(B^{-1}y,y) \leq M_1M_2 + m_1m_2$$

for all unit vectors $x, y \in H$.

The proof of Theorem K is reduced to the following elementary inequality: If $0 < m_1 \le a \le M_1$ and $0 < m_2 \le b \le M_2$, then

$$\frac{M_2a}{m_1b} + \frac{M_1b}{m_2a} \le 1 + \frac{M_1M_2}{m_1m_2}.$$

He also gave a path of results whose starting point is Theorem K and final one is the Pólya-Szegő inequality.

Acknowledgement. The authors would like to express their thanks to the referee for his useful comment and suggestion.

REFERENCES

- 1. J.LFujii and E.Kamei, Uhlmann's interpolational method for operator means, Math. Japon., 84 (1989), 541-547.
- 2. W.Greub and W.Rheinboldt, On a generalization of an inequality of L.V.Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407-415.
- 3. E.Kamei, Paths of operators parameterized by operator means, Math. Japon., 39 (1994), 395-400.
- 4. Y.Kijima, On some operator inequalities, Proc. of Symposium on Funct. Anal., 1 (1966), 25-29.
- 5. F.Kubo, On Logarithmic operator means, 10th Symp. Appl. Funct. Anal. Sci. Univ. Tokyo, (1987), 47-61.
- 6. F.Kubo and T.Ando, Means of positive linear operators,, Math. Ann., 248 (1980), 205-224.
- 7. T.P.Lin, The power mean and the logarithmic mean, Amer. Math. Monthly, 81 (1974), 879-883.
- 8. B.Mond, An inequality for operators in a Hilbert space, Pacific J. Math., 18 (1966), 161-163.
- * Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582, Japan
- ** Momodani Senior Highsohool, Ikuno, Osaka 544, Japan
- *** Tennoji Senior Highschool, Osaka Kyoiku University, Tennoji, Osaka 543, Japan

Received June 27, 1994, Revised June 21, 1995