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PARAMETERIZED KANTOROVICH
INEQUALITY FOR POSITIVE OPERATORS

MASATOSHI FUJII* EIZABURO KAMEI** AND AKEMI MATSUMOTO***

ABSTRAOT. The Kantorovich inequ ality $\iota$ ays that if $A$ is a positive operator on $Hs$uch that
$0<m\leq A\leq M$ for so me $M\geq m>0$ , then

$(Ax,x)(A^{-1}x.s)\leq\frac{(Jf+m)^{2}}{4Mm}$

for all unit vectors $x\in H$. We generalize it by the use of a family of power means, which give $s$

us a parameteriEation of the Kantorovich inequality. Moreover we give a parameterimation of
the $P6lya$-Ssego inequality.

1. Introduction. Let $a,$ $g$ and $h$ be the arithmetic, geometric and hamonic mean
respectively. It is known that these means are unifled by the family of power means
$\{m_{r} ; -1\leq r\leq 1\}$ , i.e.,

(1) $\alpha m_{r}\beta=(\frac{\alpha^{r}+\beta^{r}}{2})^{\iota}r$ for $\alpha,\beta>0$ .

It is easily seen that $m_{1}=a,$ $m_{0}=g$ and $m_{-1}=h$ . The family of power means plays an
interesting $roIe$ , e.g., [1,3,5,7]. We refer to [6] for the theory of operator means.

Now Kantorovich established the following inequaIity in his study on appIications of
functional anaIysis to numericaI analysis, cf. [2] : If $\{a_{k}\}$ is a sequence in $\mathbb{R}$ such that
$0<m\leq a_{k}\leq M$ for some $m$ and $M$ , then

$\sum_{k}a_{k}x_{k}^{2}\sum_{k}\frac{1}{a_{k}}x_{k}^{2}\leq\frac{(M+m)^{2}}{4Mm}(\sum_{k}x_{k}^{2})^{2}$

holds for a1I $x=\{x_{k}\}$ in $l^{2}(N)$ .
If we deflne the diagonal operator $A$ by $A=$ diag $(a_{k})$ , then we have

$(Ax, x)(A^{-1}x,x)\leq\frac{(M+m)^{2}}{4Mm}||x||^{4}$ for $x\in l^{2}(N)$

if $0<m\leq A\leq M$ . As a matter of fact, the following inequality is proved by Greub and
Rheinboldt [2], which we call the Kantorovich inequality.
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The Kantorovich inequality. If $A$ is a $poli\mathfrak{t}ive$ operator on a Hilbert $sp$ace $H$ such that
$0<m\leq A\leq M$ for some $M\geq m>0$ , tben

(2) $(Ax,x)(A^{-1}x, x)\leq\frac{(M+m)^{2}}{4Mm}$

for all unit vectors $x\in H$ .

From the mean theoretic view, the Kantorovich inegality (2) is seen as follows :

(3) $(Ax,x)m_{0}(A^{-1}x,x)\leq\frac{M+m}{2\sqrt{Mm}}$

for all unit vectors $x\in H$ .
In this note, we give a parameterization of the Kantorovich inequality by the use ofpower

means which includes (3) as the case $r=0$ . In the proof, the convexity of the function $t^{-1}$

on $(0, \infty)$ is effective. Moreover we parameterize the Ptlya-Szego incqnality [2 ; Theorem
2] which is equivalent to the Kantorovich ineqnality.

2. $P\bullet r\bullet meteri\bullet ed$ Kantorovich inequality. The Kantorovich inequality has the
following parameterization by power means.
Theorem 1. Let $A$ be a positive operator on a Hilbert $\iota p$ace $H$ snch that $0<m\leq A\leq M$

for some $M\geq m>0$ . Then, for power means $m_{r}(-1\leq r\leq 1)$

$(Ax,x)m_{r}(A^{-1}x,x)$

(4) $\leq\left\{\begin{array}{ll}2^{r}-1(M^{r}+M^{-r})^{1}\Gamma & if M^{1-2r}\leq m\\2^{-1}\prime(M+m)(1+(Mm)^{\rightarrow-}r-1)^{\frac{1-r}{r}} & if m^{2}\leq(Mm)-\leq M^{2}\\2-1\prime(m^{f}+m^{-\tau})^{\iota}r & if M\leq m^{1-2r}\end{array}\right.$

for all unit vectors $x\in H$ . The $bo$un $d$ is optimal.

Remark. In the case $r=0$ , i.e., $m_{0}$ is the geometric mean, the right hand side in the
above (4) is regarded as the limit by takin$gr\rightarrow 0$ ; namely

$\lim_{r\rightarrow 0}2^{-\frac{1}{r}}(M+m)(1+(Mm)\overline{r}-=1)^{\frac{1-r}{r}}=\frac{M+m}{2\sqrt{Mm}}$

It is clear that the second case in (4) only happens and so it is the Kantorovich inequality
(3). On the other hand, if $r=1$ , i.e., $m_{1}=a$ , then the second case happens if and only if
$Mm=1$ . Therefore we have

$(Ax,x)a(A^{-1}x,x)\leq\frac{1}{2}\max\{m+\frac{1}{m}, M+\frac{1}{M}\}$ .

for all unit vectors $x\in H$ . As a matter of $hct$ , we can directly compute it. Finally, if
$r=-1$ , i,e., $m_{-1}=h$ , then the mixed type iequality (4) happens ;

$(Ax,x)h(A^{-1}x, x)\leq\left\{\begin{array}{ll}2(M+M^{-1})^{-1} & if M^{3}\leq m\\\frac{2(M+m)}{(1+\sqrt{Mm})^{2}} & if m^{S}\leq Mm\leq M^{4}\\2 (m+m^{-1})^{-1} & if M\leq m^{3}\end{array}\right.$
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for all unit vectors $x\in H$ .

Now the computational part of the proof is concentrated to the following lemma. For
this, we prepare the functions $f_{r}$ on $[0, M+m]$ for-l $\leq r\leq 1$ ;

$f_{r}(t)=tm_{r}g(t)$

$=\frac{1}{Mm}2^{-1}’((Mmt)^{r}+(M+m-t)^{r})^{1}r$

where
$g(t)=\frac{M+m-t}{Mm}$

Lemma. Let $f_{r}$ be as in above and put $\alpha_{r}=\frac{M+m}{1+(Mm)^{r/(1)}\sim}$ Then

$\max_{m\leq t\leq M}f_{r}(t)=\left\{\begin{array}{ll}f_{r}(M) & if M^{1-2r}\leq m\\f,.(\alpha_{r}) & if m^{2}\leq(Mm) -P1\leq M^{2}\\f_{r}(m) & if M\leq m^{1-2r}.\end{array}\right.$

Incidentally,
max $f_{1}(t)=\max\{f_{1}(m), f_{1}(M)\}$ .

Proof. Since

$f:(t)=\frac{1}{Mm}2^{-1}r((Mmt)^{r}+(M+m-t)^{r})\div((Mm)^{r}t^{r-1}-(M+m-t)^{r-1})$ ,

it follows that $f_{r}^{\prime}(t)>0$ for $0\leq t<\alpha_{r},$ $f_{r}^{/}(\alpha_{r})=0$ and $f_{r}^{\prime}(t)<0$ for $\alpha_{r}<t\leq M+m$ .
Therefore we have

max $f_{r}(t)=\{$

$f_{r}(M)$ if $M<\alpha_{r}$

$f,(\alpha_{r})$ if $m\leq\alpha_{r}\leq M$

$j_{r}(m)$ if $\alpha_{r}<m$ .

Finally we remark that $m\leq\alpha_{r}\leq M$ if and only if $m^{2}\leq(Mm)^{\frac{1}{1-r}}\leq M^{2}$ . Actually the
former is rephrased that

$M(Mm)^{\overline{r}-1}=\geq m$ and $M\geq m(Mm)^{\overline{r}-l}=$ ,

or equivalently
$M^{2}(Mm)1-r\geq 1$ and $1\geq m^{2}(Mm)^{\bigwedge_{1-r}}$ .

Furthemore it is equivalent to the desired inequality. In addition, the other cases are easily
checked.

Prooj of Theo rem 1. Let $A=\int tdE_{t}$ be the spectral decomposition of $A$. Then, for a flxed
unit vector $x\in H$ ,

$(Ax,x)m_{r}(A^{-1}x, x)=/td(E_{t}x,x)m_{r}\int t^{-1}d(E_{t}x, x)$

$\leq t_{0}m_{\tau}g(t_{0})$
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for some $t_{0}\in[m, M]$ because the function $t^{-1}$ is convex and $g$ is the straight line through
the points $(m, m^{-1})$ and $(M, M^{-1})$ . Recalling that $f_{r}(\ell)=tm_{r}g(t)$ , we have the reqpired
inequality (4) by combining with Lemma.

The following theorem is another direct $generali\cdot ation$ of the Kantorovich inequality as
$r=1/2$ , which is pointed out by the refer $ee$ .
Theorem 2. Let $A$ be a positive operator on a Hilbert space $H$ such that $0<m\leq A\leq M$

for some $M\geq m>0$ an$d0<r<1$ . Then

$(Ax,x)^{r}(A^{-1}x,x)^{1-r}$

$\leq\left\{\begin{array}{ll}m^{2r-1} & if 0<r<\frac{m}{M+m}\\(M+m)(Mm)^{r-1}r^{r}(1-r)^{1-r} & if \frac{n}{M+n1}\leq r\leq\frac{u}{M+m}\\M^{2r-1} & if \frac{u}{M+m}\leq r<1\end{array}\right.$

for all unit vectors $x\in H,$ . The bound is optima $l$.

The proof of Theorem 2 can be done similarly to that of Theorem 1 by putting $f_{\tau}(t)=$

$t^{r}g(\ell)^{1-r}$ .

3. Parameterized $P\delta 1y\bullet$-Szego inequality. The Kantorovich inequality is cqnivalcnt
to the following inequality [2; Theorem 2]. Since it is an operator version of an ineqnality
due to Ptlya and Szego, we may call it the $P\ell lya$-Szego incqnality.

The $P\dot{o}Iy\bullet$-Szego inequality. Let $A$ and $B$ be commutizng positive operator on $H$ such
that

(5) $0<m_{1}\leq A\leq M_{1}$ and $0<m_{2}\leq B\leq M_{2}$ .

Then

(6) $(A^{2}x, x)(B^{2}x, x)\leq\frac{(M_{1}M_{2}+m_{1}m_{2})^{2}}{4M_{1}M_{2}m_{1}m_{2}}(Ax, Bx)^{2}$

for all $x\in H$ .

The $P6lya$-Szego inequality will be parameterized as well as the Kantorovich one. In the
below, we suppose that $A$ and $B$ satisfy the condition (5) for some $m_{i}$ and $M_{i}(i=1,2)$ .
For the sake of convenience, we put the constant $K_{r}$ for-l $\leq r\leq 1$ ;

$K_{r}=\left\{\begin{array}{l}2^{-\frac{1}{r}}((\frac{M_{1}}{m_{2}})+(\frac{m_{2}}{M_{1}})^{r})^{\frac{1}{r}}M_{1}^{1-2r}M_{2}\leq m_{1}m_{2}^{1-2r}\\2^{-\frac{1}{r}}\frac{M_{1}M_{2}+m_{1}m_{2}}{M_{2}m_{2}}(1+(\frac{M_{1}m_{1}}{M_{2}m_{2}})\overline{r}^{\underline{L}}\overline{1})^{\frac{1-r}{r}}\\m_{1}m_{2}\leq M_{2}m_{2}(\frac{M_{1}m_{1}}{M_{2}m_{2}})^{\frac{1}{l(1-r)}}\leq M_{1}M_{2}\\2^{-1}r((\frac{m_{1}}{M_{2}})^{r}+(\frac{M_{2}}{m_{1}})^{r})^{1}rM_{1}M_{2}^{1-2r}\leq m_{1}^{1-2r}m_{2}\end{array}\right.$
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Theorem 3. Let $A$ and $B$ be commuting $poli\ell ire$ operators satisfying $(\delta)$ . Then

(7) $(A^{2}x,x)m_{r}(B^{2}x,x)\leq K_{r}(Ax, Bx)^{2}$

for all $x\in H$ .
Proof. The proof is quite similar to [2 ; Theorem 2]. We put $C=AB^{-1}$ ; $m=\#^{n1}$ and
$M=\frac{M}{m}\perp 2$ Then we have $0<m\leq C\leq M$ . Hence Theorem 1 implies that

$\frac{(Cx,x)m_{r}(C^{-1}x,x)}{||x||^{S}}$

$\leq\left\{\begin{array}{ll}2^{-\frac{1}{r}}(M^{r}+M^{-r})^{\frac{1}{r}} & if M^{1-2r}\leq m\\2^{-\frac{1}{r}}(M+m)(1+(Mm)\star)^{\frac{1-r}{r}} & if m^{2}\leq(Mm)-\leq M^{2}\\2^{-\frac{1}{r}}(m^{\tau}+m^{-r})^{1}r & if M\leq m^{1-2r}\end{array}\right.$

for all $x\in H$ . It is easily checked that the right hand side of the above is just $K$, and the
left hand side becomes

$\frac{(A^{2}x,x)m_{r}(B^{2}x,x)}{(Ax,Bx)^{2}}$

by replacing $x$ to $($AB $)^{}$ 2 $x$ , which completes the proof.

Remark. Theorem 3 is implied by Theorem 1, as seen in the proof of it. Conversely
Theorem 1 follows from Theorem 2. In fact, for a given $C$ with $0<m\leq C\leq M$ , we take

$A=C^{1}2$ , $B=C^{-1}:$ ; $m_{1}=m^{1}2M_{1}=M^{1}*,$ $m_{2}=M^{-1}*,$ $M_{2}=m^{-1}a$

and apply it to Theorem 3.

Finally we consider a noncommutative generalization of the $Ptlya$-Szeg\"o inequality and
Theorem 3.

Theorem 4. Let $A$ and $B$ be positive operators satisfying $(\delta)$ . Then

$||B^{-\frac{1}{2}}$ AB $x||||Bx||\leq\frac{M_{1}M_{2}+m_{1}m_{2}}{2\sqrt{M_{1}M_{2}m_{1}m_{2}}}||A^{1}2B^{\frac{1}{2}}x||^{2}$

for $alIx\in H$ .
Proof. We put $C=A^{1}B^{-1}A^{1}2$ . Then we have

(8) $0<m=\frac{m_{1}}{M_{2}}\leq C\leq M=\frac{M_{1}}{m_{2}}$

The Kantorovich inequality implies that

(9) $(Cx, x)(C^{-1}x, x)\leq\frac{(M+m)^{2}}{4Mm}||x||^{S}$

for all $x\in H$ . If we replace $x$ in (9) by $A^{1}2B$ I $x$ and $M,$ $m$ by $M_{i},$ $m_{i}(i=1,2)$ , then the
desired inequality is obtained.
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Theorem 5. Let $A$ and $B$ be positive operators satisfying (5). Then

$||B*AB^{f}x||^{2}m_{r}||Bx||^{2}\leq K_{r}||A\}_{B}*x||^{4}$

for all $x\in H$ .

Proof. We also put $C=A^{\iota}aB^{-1}A$ } and so we have (8). Hence it follows mm Theorem 1
that

$(Cx,x)m_{r}(C^{-1}x,x)\leq K_{r}||x||^{4}$

for all $x\in H$ . Replacing $x$ in the above by $A^{11}\tau B\tau x$ and $M,m$ by $M_{i},$ $m;(i=1,2)$ , we have
the desired inequality, as in the proof of Theorm 3.

4. A concluding remark. Generalizations of the Kantorovich inequality ae $d\dot{u}$cusscd
by several authors, for which we refer to [8] and [4]. Though the former is somewhat
complicated, the latter is simple as follows:

Theorem K. (Kijima) Let $A$ and $B$ be positive $ op\epsilon rato\pi$ satisfying $(S)$ . Then

$M_{1}m_{1}(A^{-1}x,x)(By,y)+M_{2}m_{2}(Ax,x)(B^{-1}y,y)\leq M_{1}M_{2}+m_{1}m_{2}$

for all unit vectors $x,$ $y\in H$ .

The proof of Theorem $K$ is reduced to the followin$g$ elementary ineqaality: If $ 0<m_{1}\leq$

$a\leq M_{1}$ and $0<m_{2}\leq b\leq M_{2}$ , then

$\frac{M_{2}a}{m_{1}b}+\frac{M_{1}b}{m_{2}a}\leq 1+\frac{M_{1}M_{2}}{m_{1}m_{2}}$ .

He also gave a path of results whose startin$g$ point is Theorem $K$ and ffial one is the
$P6lya$-Szego ineqnality.
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