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Average-time Criterion for

Vector-valued Markovian Decision Systems
Hang-Chin Lai and Kensuke Tanaka

Abstract. The optimization problem of a Markovian decision
model for vector-valued ioss function is investigated under the
discrete average-time criterion. For a convex cone D, a
D-optimal policy is defined as a policy which takes minimal
point, with respect to the ordering induced from D, among the
set of all cluster points of the expected average vector losses.
By using a numericai modification, we prove that a D-optimal
policy exists in the vector-valued decision system for the
average criterion. Conversely, under some additional conditions,
a D-optimal policy is also an optimal policy of the modified
decision system for numerical 1loss function constructed by a

weighted vector.
1. Introduction

In a dynamic programming problem, the Markovian models on
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infinite horizon have been studied by many authors. Much of the
earlier works in this area were done by Blackwell ([2],[3]1 and
Strauch [171. Hinderer (111 gave an extensive account of
Markovian decision process with discrete time parameter.
Previously, average criterion for Markovian decision processes
were investigated by Ross [14]1, (151, [16]1, Tijims [19], etc.
However, these papers are restricted in the Markovian models
with real-valued loss function. Recently, under the influence of
multiobjective optimization theory ( see Yu [21] and Tanino and
Sawaragi (18] ), many authors studied vector-valued Markovian
models ( cf. Furukawa [5]1, Hartley (71, Henig (8], [9] and White
[(20], etc. ). However, they restricted themselves in the case of
discounted model. Up till now the vector-valued Markovian model
under average criterion in general state and action spaces has
not yet been formulated.

In this paper, we will study the optimization problem of
vector-valued Markovian decision model under the time average
criterion as opposed to the criterion of numéricél Markovian
decision models. We will show the existence of a D-optomal
policy which minimizes the set of all cluster points of the
expected time average vector losses. We show that the D-optimal
policy is indeed more general than the optimal solution of the
usual optimization problem. To this end, we introduce a vector
as a weighted factor in the positive polar cone of a convex cone
D, and modify the vector-valued Markovian decision model to be a
new decision system with numerical 1loss function. It follows

that an optimal policy of modified decision model is also a

— 72 —



D-optimal policy of the vector decision one. Further, from the
convexity of the set of all cluster points for all policies, and
under approprate conditions, the converse version of the above
result is also true, that 1is, a D-optimal policy of the
vector-valued decision model is an optimal policy of the
modified decision system with numerical loss function.

This paper is organized in the following way. In Section 2,
we formulate the average time criterion of vector-valued
Markovian decision model. In Section 3, we preéent some
notations and definitions for D-optimal policy. Section 4 is the
main part of this paper, and we show that the D-optimal policy
exists in our decision system. We also establish the relation
between the vector decision system and the modified decision

system.

2. Formulation of vector-valued Markovian decision model

with an expected average reward criterion

A vector-valued decision system of Markovian model is
specified by a set of five elements
(S, A, F, q, r ). (2.1)
where
(i) S is a non-empty Borel subset of a Polish space ( that
is, complete separable metric space ), the state space
of the decision system.
(ii) A is a non-empty Borel subset of a Polish space, the

action space.
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(iii) F is a Borel measurable multifunction which associates
each state s € S, a non-empty feasible set F(s) c A of
actions.

(iv) q is a transition probability measure q(:-{s,a) on the
Borel subsets of S for any (s,a) € GrF={((s,a)|a € F(s)}.
The graph of multifunction F, is a Borel subset of SxA.
For a Borel subset B c S, the mapping q(B|-,-): GrF =+ R
is a Borel function in (s,a) € GrF. This function
q(B|ls,a) plays the law of motion in the decision systém.

v) ri-,*) =« Fys Toe 0 » T J(*,*): GrF = R™ is an

m-dimensional vector-valued function, it is a one step

vector loss function.

Note that the feasible set F(s) of actions depends only on
the state s € S, and q(-|s,a) is independent of the time. A
policy n is defined as an infinite sequence ( nl, nz, veee nt,
**+++ ), where each element T, is a conditional probability on A
under the known histories H1 =S, H = (GrF)Ht_l, t 2 2, the set
of possible histories up to the t-th stage. Let S, and a, denote
the t-th state and the t-th action, respectively. Assume that T,
satisfies the constraint nt(F(st)lht) = 1 for any given history
ht = ( sl,al;sz.az, MRS ) in the decision system. A policy
n is said to be stationary if there exists a Borel measurable
mapping f:S -+ A such that f(s) € F(s) for all s € S, and
n,(f(s d)lh,) = 1 for any given history h, = ( s,,a,,8,,8,, *°*°

s,).

t
Throughout this paper, we let W denote the set of all
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policies. Let R™ be the range space of the vector loss function
r which is an ordered vector space ordering by a pointed convex
cone D, that is, a convex cone D such that DNn(-D) = (8}, where 0
denotes the zero vector.

Now, we interpret the decision process as follows. If a
policy m = ( "1’ n2, cres nt, ++++ ) is applied for a
successive discrete time t = 1, 2, 3, -++++ , we observe the
subsequent variant states s € S of the decision system, and

t

through proper analysis, then choose an action a, € F(st) under

t

the conditional probability n, for the past history ht up to the

t
time t. Such an action will incur one step vector loss function
r(st.at). Then, the decision process moves to a new state 54141
according to the transition probability measure q(°lst,at). and
the process of the decision system is then developed from the

state s So, given an initial distribution p(-) on S, any

t+1°
policy n together with a transition probability q, we define a
probability measure pf on the set (SxA)t = 8§ X A XS X A X o~
S X A up to time t ( cf. Hinderer [11,p.8031), that is, p’f =
PR, Qit, s v oM, LG, . Whence, if we use the policy m = ( m,, &,,

+++ ), then, at the time t, the expected vector loss is given by

n
)1 f r(st.at)dpt(ht) (2.2)

(sxa)t

En[r(st.at

m
n
( . f ri(st’at)dpt(ht)’ ) .

(sxayt 1=1
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Therefore the total expected vector loss, up to the time n, is

given by

: n
n
®" (n) E E [r(s,

,a,)] (2.3)
1 t .

t

g m
(oo -, E_ [r.(s,,a,)],*°° ) .
t=1 ) S | t’t i=1

In this decision system, we wish to find a policy n* which
minimizes the set of all cluster points of { ®"(t)/n | n = 1, 2,
3, +--+ for m € W} in R™ with respect to an order cone. This
means that no other policy yields a smaller cluster point under
the ordered structure.

For a weighted vector d = ( 81.32, R ,&m ), we have

n
t§1< 3.En[r(st,at)]/n >

< d,8"Gvy/n >

m
> aiEn[ri(st.at)]/n. (2.4)
1 i=1

1]
"M

t

We will find a n* which minimizes (2.4) over m € W. For this

purpose, we will show that, for any mx € W,
< d,0"n*™/n > < < d4,6"x)/n >  for n = 1,2, -+ , (2.5)

Let C(n) c Rr™ be the set of all cluster points of {On(n)/n, n =

1,2, --- }. We shall prove that, as n + ® in (2.5), there exists



n*e M with o™ € cn™) such that

cd, o™ > < ¢ d. 000 > for all ®M) c C = U COU.
nEN

This policy n* is a D~-optimal policy in our decision system, and
¢(n*) is a minimal point of the set C in Rm with respect to the
cone D. To show the existence of a D-optimal policy in our

decision’system. we proceed to the next section.
3. D-optimal policy in the decision system

Let ¢lE and intE be respectively the closure and the
interior of a subset E in Rm. For any subset E in. Rm, the

positive polar cone of E is given by

E¥ = ( yeR™ | < x,y > > 0 for all x€E }, (3.1)

where < X,y > is the inner product of x and y in Rm. A cone

generated by a subset E in Rm is defined by the set :
[E]l = ( yeR" | y = xx, x € E, 1€R, ), (3.2)

where R+ is the set of all nonnegative real numbers.

Now, consider a subset L C Rm such that

(i) 2 (0,0, --- ,0) € L and e = (1,1,°--,1) € L.
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(ii) L*= ( yeR™ | < x,y > > 0 for all x € L ) # ¢.

(iii) LU{(B) = D is a convex cone with vertex at the origin 6.

Note that this L is a convex cone without vertex 6 in Rm
and D denotes a convex cone which determine a partial order in
Rm. We will use the sets L and D throughout the paper. Further,

we introduce a set of weighted vectors by

+

L, = ¢(d = ¢ al,az m

b

+ m
,+*°+,d_>eL | 24, =1). (3.3

Then, LI # 8 since e € L. Let nt be any policy in W,
EO = ( o"0u/n, n=1,2,--- ) (3.4)
be the set of all time average vector expected rewards up to

n=1, 2, -+ , where

n
") = > E_[r(s,,a,)],
7 t’ 7t
t=1
and En[r(st,at)] is given in (2.2). Denote by C(n) the set of

all cluster points of the set E(n), that is, for each ®(xn) €

C(n), there exists a subsequence {nk} of {(n} such that

n

@ k

(n)/nk -+ o) as kK & o,

The basic problem is to find an optimal policy n* € N such

that O(n*) € C(n*) minimizes C = % C(m) for our decision system
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with respect to the convex cone D in Rm.

Definition 3.1 A policy n* is said to be D-optimal policy
for time average criterion of the decision system (2.1) if there
is no other pPolicy n such that

on*) € o) + L for some ®(N) € C. (3.5)

Remark 3.1 For a closed convex cone E, if L = intE(resp.
L = E - {(8)), the policy n* in (3.5) is usually called a E-weak

(resp.E-strong) optimal policy ( see Aubin [1,p.2951).

Note that the D-optimal policy n* need not be unique.

Let ExtI[CIDl1 be the set of all minimal cluster points in C
for all D-optimal policies. This is similar to the terminology
of all D-extreme points of C given by Yu ( see p.336,Definition
4.1 in Yul21] ).

The following lemma is essential for our later works.

*

Lemma 3.1 Let d = ( d;,d,, ---- ,d_) € LY. 1£f n* is a

-
policy such that #n*) € cn™) and
<d, o™ > < < 4,000 > for all ®(n) € C.

Then, n* is a D-optimal policy of the decision system (2.1).

Proof. Assume to the contrary that n* is not a D-optimal
policy. Then there exists a policy n with ®(n) € C(n) such that
on*) € v + L.

Thus, there is a d € L such that O(n*) = ¢(nx) + d. Then, for
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<+

d € L,
¢ d,omm* > =< d, 000 >+ <d,do>.

Since < d,d > > 0 by the definition of L;, it follows that

< d, o™ > > < d, 000 >.

This contradicts our hypothesis.

Observing d = ( al,az, ceee .am ) € LI' in Lemma 3.1, we

get the existence of a D-optimal policy for the system (2.1).

Since

m n A
izl tzl &iEn[ri(st,at)]/n

< d,o(M)/n >

m
En[.z airi(st.at)]/n
1 i=1

]
L 3% =

t

n
tzl E, [< &,r(st.at) >1/n, (3.6)

wé see that < &,r(st,at) > is essential in the vector-valued
decision system, but the numerical number < &.@n(n)/n > is
different from the wusual optimization problem. Whence, we
consider a modified decision system as the following form
(s, A, F, q, < d,r > ). (3.7

In this modified decision system, it is only < d,r > in place
of r in the vector decision system (2.1). As we have known, the
real-valued Markovian decision process with expected average

reward criterion has been developed by some authors ( cf. Ross
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{141, (151, [16]1 and Tijms [19] ). Employing their arguments,
we see that an optimal poliéy exists in the modified decision
system. Then, Lemma 3.1 is applicable to derive the existence of

a D-optimal policy in the original decision system (2.1).

4. The existence of a D-optimal policy in the dynamic

decision system

Let B(S) be the set of all bounded Borel measurable real
functions on S. We need some additional assumptions on F, r and
q in the decision system (2.1). Let Pk(A) be the collection of
compact subsets of the Polish space A which is an action space A

in (2.1). We impose the following assumptions.

(A1) F: S =~ Pk(A) is a Borel measurable multifunction.

(A2) Each component ri(s,a), i=1,2,3 <--,m, of the vector-
valued loss function r(s,a) is bounded on GrF,‘and is
continuous in a € F(s) for each s € S.

(A3) For any u € B(S), the integral functional

(s,a) € GrF = I u(x)da(xls,a)
‘ S

is lower semicontinuous(l.s.c.) in a€F(s) for each s€S.

Now, we <consider the decision system (3.7) in place of

+

; ¢ see (3.3) ), use the scalar < d,r >

(2.1): for any d € L
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instead of the vector r in (2.1), and write the new decision
system as follows:

( S, A, F, q, < d,r > ). 4.1
From the assumptions (Al) and (A2), the loss function < d,r > in
the system (4.1) is bounded on GrF, and is c}ontinuous in a €
F(s) for each s € S. Thus, for a weighted vector d € L;, we

define an operator T on B(S) by

Tu(s) = min [< d,r(s,a) > + Iu(x)dq(xls.a)]. (4.2)
a€F(s) S

Evidently, Tu € B(S) whenever u € B(S). For simplicity, we let

L(a)u(s) = < d,r(s,a) > + J' u(x)da(x|s,a). (4.3)
S

Then, the Eq.(4.2) is simply rewritten as

Tu(s) = min Lda)u(s).
a€F(s)

Under the above preparation, we proceed to prove the existence
theorem for the D-optimal policy of average criterion on the

system (2.1).

Theorem 4.1 If there exists a function u in B(S) and a
constant o such that
o + u(s) = Tu(s) for all s € S, (4.4)

then, there exists a stationary optimal policy f of average
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criterion for the decision system (2.1) such that for each ®(f)
€ C(f),
®(f) € Ext(C|D].
Furthermore. f is s Borel mapping from S into A such that
o« + u(s) = L(f(s))u(s), (4.5)
where C(f) denotes the set of all cluster points of E(f) ( see

(3.4) ) for the policy f and C = % cOoun.

Proof. From (A2) and (A3), L{(a)u(s) in (4.3) is a l.s.c.
function in a € F(s), the minimum in (4.2) is attained by Borel
measurable selector f for F since F satisfies (Al), that is
(4.5), and so

@ + u(s) = L(f(s))u(s)
< L(a)u(s) for all (s,a) € GrF. (4.6)
This fact can be proved by an argument similar to that of
Theorem 2 in Himmelberg et al.[10]. So, using the property of a

+

weighted vector d € L1 and (4.3), the expression (4.6) can be

rewritten as

o + <d,(u(s))> = < d,r(s,f(s)) > + f <d, (u(x))>dq(x|s, £f(s))
S
< ¢ d,r(s,a) > + I <d, (u(x))>dgq(x|s,a), (4.7)
S _

for all (s,a) € GrF, where (u(-)) = (u(*),u(*), e ,u(*)) € Rm.

Let ht= (sl,al,sz.az.°--~-.s ) denote the history of the

t
decision process up to time t, and let ht= (ht'at)' For any
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policy rm,

n
Enttzl((“(st+l)) - E lCu(s, .M |hiD] =8,

(] - e o o o . . o e o o m
where E [ (u( ))1ht] = ( yE [ud )Iht]. ) € R".

+

Consequently, for d € Ll’

we get

n
< &.En[tgl{(u(st+l>) - E lCu(s, 1))|hi1}] >

n
tzlEn[<&,(u(st+l))> - <d,E [(u(s

t+1221011] (4.8)

n
(=]

But,

< 4,E [Culsy ;M ]h}) >

< &,f (u(x))dq(xlst,at) >
s

I < d, (u(x)) >dq(x|st,at)
S

L(a, )< &,(u(st)) > - « &,r(st.at) > (by using (4.3))

> T< d,(u(s,)) > - < &.r(st,a ) > (by using (4.2))

t t

o + < a.<u<st>> > = < &.r(st,a ) > (by using (4.4)),

t
(4.9)

— 84 —



the equality in (4.9) holds for the policy f since f is
determined as the minimal action. Thus, inserting (4.9) into

(4.8), we obtain

n
tEIEKK&.(u(s_Hl)» - o - <d,(u(s,))> + «d,r(s ,a)>1 20,

or

E [(u(sn+ ))-(u(s,))] @n(n)

o« < <d, =& 1 1__", > (4.10)
n n

for all n. The equality in (4.10) holds when the policy f is

chosen. Note that

") =
t

nMs

1En[r(st,at)l.

Here, the set of all cluster points of the set

En[(u(s ))-(u(sl)) n

n;l +i°__r(1E_L_’ n=1’2’3’..,,.}

{

is equal to C(rn) since, for any u € B(S),

E_[(u(s Y)-(u(s,))]
lim I n+l 1 = 8.
n » o n
Consequently, since H+ = { zGRmI < d,z > 2 a )} is a closed
positive half space with a support hyperplane H = {( z € Rm | <
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d,z > = ) as its boundary, it follows from (4.10) that

H, 5 COU for all m € W, (4.11)
Similary, since the equality in (4.10) holds for the stationary
policy f, we have

H > C(H). (4.12)

Therefore,(4.11) and (4.12) imply that, for each ®(f) € C(f),

< d,o(f) > < < d, 000 > for all ®(n) € C,
where C = % C(n). This shows that f is an optimal policy for the
average criterion of the system (4.1). Hence, applying Lemma
3.1, we see that f is a D-optimal policy of time average

criterion of the vector-valued decision system (2.1).
Remark 4.1 In Ross [14-16], he treats

lim sup " (n)/n or l1im inf "0 /n
n - o n - o

in the case of real-valued loss function. It can be considered
as an element of C(x) in one dimensional case. Hence, Theorem
4.1 with D = [0,») c R and d = 1 € LI c R gives the results in

the case of the real-valued loss function.
In order to give a converse version of Theorem 4.1 in the
modified decision system, we introduce the cone convexity for a

set E.

Definition 4.1 Let D = LU{B} be a conex cone. A subset E
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. m . . . . . m
in R is said to be D-convex if E + D is convex in R .

The following theorem is a partial converse of Theorem 4.1.

Theorem 4.2 Let n* be a D-optimal policy of average
criterion for the decision system (2.1), and let C ( see Section
3 ) be a D-convex set. Suppose that there is a cluster point
ox*) in C(nx*) such that

cl{wWincl[-D1 = (8}, (4.13)

where W = C + D - ¢(n*) and [W] is the cone generated by W.
Then, n* is an optimal policy for the average criterion of the
modified decision system (4.1) with a numerical loss function

< d,r > on W for some 4 € LI.

+

Proof. From the expression (3.6) of ®"()/n for 4 € Ly, it

is sufficient to show that there exists d € LI such that
<d, o™ > < < d, 000 > for all ®(n) € C. (4.14)

Thus we wish to have a non-zero vector 4 € L'n W*, where w* is
the positive polar cone of W. We will prove it by contradiction.
Suppose to the contrary that LY n w* = ¢. Since L' and w* are
convex and intL" # ¢, by the separation theorem for two disjoint
convex sets ( see for example, Bazarra & Shetty [4). or
Luenberger [13] ), we see that there exists a non-zero vector

m

d € (AR™™* = R™ such that

inf < d,y > = sup, < d,x >.
YEW ’ X€EL
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As 0 € W¥, < d,x > < 0 for all x € L. We have
d e (-LH* = cl1¢-p). (4.15)
Since, the continuous linear functional d acting on elements

near zero in L+ will take values near zero, it follows that

sup, < d,x > <0 and inf_ < d,y > 2 0.
X€EL yEW

Hence,
d e w** = c1rwl. (4.16)
From (4.15) and (4.16), we see that cl[W]l N cl(-D) contains a
non-zero d which contradicts the assumption (4.13), and it
contains only the zero vector. Therefore,
waL" & .
Let d be a non-zero vector such that < 3.y > 2 0 for all y € W,
that is,
< 4,000 +d -om*) > 20 for all ®(n) € C.
Here d may be chosen zero in D. Hence,
< d,000 > 2 < d,0x™ > for all ¢V € C. (4.17)
Further, since d € L' and e = (1,1,--+,1) € L, there exists o >
0 such that a = < a,e >. So, dividing both sides of (4.17) by

the positive number o and letting d = 3/&. we then have d € L;,

and hence
< 4,000 > =2 < d, o™ > for all ®(n) € C.

This shows that n* is an optimal policy of the average criterion

of the modified decision system (4.1).
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