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On p-quasihyponormal operators

Atsushi Uchiyama *

Abstract

For a p-quasihyponormal operator T' with the polar decomposition T = U|T|,
we show that T, = U|T|P is quasihyponormal with spectrum o(Tp) = {rPe® :
e ¢ o(T)}. From this, we obtain the following Putnam type inequality for a
p-quasihyponormal operator T '

e~ el <2irie [ etaras)h.
re¥ea(T)

These results are parallel with Xia, Aluthge and Cha-Itoh’s results for p-hyponormal
operators. Also we show that the Riesz idempotent E for T with respect to an
isolated point A of the spectrum o(T) satisfies ranE = ker(T — A), moreover, if
A # 0 then E is self-adjoint and ker(T — ) = ker(T — A)*.

1. Introductions

Studying p-hyponormal operators, i.e., operators T on a (separable) complex Hilbert
space H such that (T*T)? > (TT*)?, for 0 < p < 1 was first started by D. Xia {20}, in
that paper, he gave an example of semi-hyponormal operator but not hyponormal. Here
we say that an operator T is hyponormal iff T is 1-hyponormal, semi-hyponormal iff T
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is %-hyponormal. After that, he have proved that many important results of hyponormal

operators also hold for p-hyponormal operators for p > % One of the famous results
of them is to extend Putnam’s inequality for hyponormal operators to the case of p-

hyponormal operators for p > % as follows:

Theorem (Xia [21]) Let T be a p-hyponormal operator for p > % and T =U|T| a
polar decomposition of T. Then U|T'|P is hyponormal with spectrum

o(U|TIP) = {r*e® : re®® € o(T)},

and hence , 1
e =l <oz [ e,
21 J Jreiteo(r)

Above Xia’s theorem was shown for all p > 0 by Aluthge. Also Xia and Aluthge
extended Berger-Shaw’s inequality to a class of operators which includes the class of
p-hyponormal operators [2].

Aluthge’s new method ” Aluthge transform” is very important and necessarily to study
p-hyponormal operators. The assertion is as follows:

Theorem(Aluthge[1]) For p-hyponormal operator T = U|T|, Aluthge transform T =
|T|%U|T|% is hyponormal if p > 1, (p + 3)-hyponormal if 0 < p < 1.

By using previous Xia’s lemma and above Aluthge’s theorem, M. Cho-T. Huruya [5]
and M. Ch5-M. Itoh [6] also extended above Xia’s theorem to the case 0 < p < 1.
Studying p-quasihyponormal operators, i.e., the operators T such that T*{(T*T)P —

(TT*)?}T > 0 was first started by S. Arora-P. Arora [4]. By definition, if a p-quasihyponormal

operator has dense range then it is p-hyponormal, so if we want to extend some results
for p-hyponormal operators to the case of p-quasihyponormal operators we may assume
p-quasihyponormal operator T does not have dense range, in particular, 0 € o(7"). In
this paper, we assume p-quasihyponormal operator T does not have dense range, be-
cause the results which we obtain have been already proven in the case of p-hyponormal
operators. We remark some differences of properties between p-quasihyponormal opera-
tors and p-hyponormal operators. One is that p-hyponormality implies g-hyponormality
for all 0 < ¢ < p, however, p-quasihyponormality does not imply g-quasihyponormality
even if 0 < ¢ < p. In fact, there exists an example of p-quasihyponormal which is not
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g-quasihyponormal for all ¢ > 0 such that ¢ # p. Also, it is not true that the Aluthge
transform of p-quasihyponormal is ¢g-quasihyponormal for some ¢ > 0. There exists an ex-
ample of p-quasihyponormal operator which Aluthge transform is no longer g-hyponormal
for all ¢ > 0. See [18]. That is, though Aluthge transform is very powerful to analyze p-
hyponormal operators and also it is convenience because it does not change the spectrum
of operators, but it does not work well to study p-quasihyponormal operators. How-
ever, we see that the deformed operator 7, = U|T'|P of a p-quasihyponormal operator T’
is quasihyponormal(i.e., 1-quasihyponormal.) For quasihyponormal operators, there are
many results have been obtained, e.g., Putnam type inequality, self-adjointness of Riesz
idempotent with respect to non-zero isolated point of spectrum, Weyl’s theorem (after we
write definitions).

In this paper, we show the following results 1), 2), 3) and 4).

For a p-quasihyponormal operator T,
1) T, = U|TP is quasihyponormal with the spectrum

{rre® : re?® € o(T)},

2) 1T — |T* (2| < 20T NP (2 [/, pocoqry T drdf)?,
3) for each isolated point of o(T), the Riesz idempotent E for T with respect to A

defined by
1

T _ -1
E_szr(z T) ' dz,

satisfies that ranE = ker T if A = 0, ranE = ker(T' — A\) = ker(T' — A\)* and E = E* if
A # 0, where « is a circle with center A and small enough radius € such that {z: |z — A| <
e} Na(T) = {7},

4) Wey!’s theorem holds for T, i.e.,

o(T) \ w(T) = moo(T):

Here we denote the Weyl spectrum of 7" and the set of all eigenvalues of T with finite
multiplicities such that each of which is an isolated point in o(T") by w(T) and 7o (T)
respectively. For definitions of w(7T) and mgo(7T"), we mention them in the next section.

2. Preliminaries
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Definitions and Notations An operator T on H is called Fredholm if it has closed
range and both kerT' and CokerT" = H franT are finite dimension, also is called semi-
Fredholm if it has closed range and either kerT" or CokerT is finite dimension. For
a semi-Fredholm operator T there corresponds an index ind(7) which called Fredholm
index defined by

ind(T") = dimker 7" — dim CokerT = dimker " — dim ker 7™.

It is well-known that ind(.) is a continuous mapping from the set of all semi-Fredholm
operators to the discrete space Z U {£oo}. We denote the set of all Fredholm operators
on ‘H with Fredholm index 0 by F.

o(T) = {X€ C:T - Xisnot invertible} : spectrum of T
{) € C: X is an eigenvalue of T} : point spectrum of T'
0o(T) = {XA€C:3H{x,}2;, CH,|znll =1 and [|(T — N)zn|| = 0 as n = oo}
: approximate point spectrum of T
w(T) = {A€C:T—-X¢gF} : Weyl spectrum
700(T) = {X € 0p(T): dimker(T — A) < co and ) is isolated in o(T')}.

s,
3
I

We say that A € C is a normal approximate eigenvalue of T if A € o,(T)(i.e., A is
an approximate eigenvalue of 7) and for each sequence of unit vectors in ‘H such that
(T — Nza]| = 0 as n — oo,

(T — A)*z,|| = 0 asn — oo.

Denote the set of all normal approximate eigenvalues of T by 0, (T).
Proposition 1.(Holder-McCarcy inequality) For A >0 and x € H,

(Az,2) < |24z, z)r ifp>1 (1)
(Az,z) > ||z »(APz,z)r f0<p<L. ()

For p-hyponormal operator T, 0,(T) = 0n.(T) was proven by D. Xia [20] and M.
Cho-T. Huruya [5]. Though there exists p-quasihyponormal operator T' such that ker T’
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does not reduce T', see [13], we see that every eigenspace of a p-quasihyponormal operator
T with respect to non-zero eigenvalue always reduces 7. The next lemma contains this
assertion.

Lemma 1. Let T be a p-quasihyponormal operator for some p > 0. Then o, (T)\{0} C
0na(T). Hence the following (i) and (ii) hold.
(i) If (T — N)z,]| — 0 with ||z,|| =1 and X = |A|e® # 0, then

(T = A)*zal|| = 0,
hence, ||(|T] — |A|)zal| = 0, ||(U — €®)z,|| = 0 and ||(U — €¥)*x,|| — 0, where T = U|T|
is the polar decomposition of 7'.

(ii) If X # 0 is an eigenvalue of T', then ker(T" — \) C ker(T' — A)*, hence ker(T — \)
reduces 7.

Proof. First, we show the case 0 < p < 1. In this case T is of the form

0 0

such that (A*A)? > (AA* + SS*)? > (AA*)?. In particular, A is p-hyponormal. See
Uchiyama [16]. Recall that for any p-hyponormal operator B satisfies 0,(B) = 0,,(B).

If X € 0,(T)\ {0} and {z,}2, is an arbitrary sequence of unit vectors in H which
satisfies

T=<A S) on H =ranT @ kerT™,

(T — XN)zn|| >0 asn— oo,
then z, = y, @ 2, € H = ranT @ ker T™* satisfies

zn =0, |lyall @ 1, and [[(A— Ayl — 0,
as n— oo Hence, ||(A — A)*yn|| = 0. From this, for each ¢t > 0, we have
(A1 = [A)yall = 0 and (14" = [A[)yall = O,

as n — oo. Since (A*A)? > (AA* + SS*)P > (AA*)? we also have ||((AA* + S5*)? —
IA|*)yn|l = 0 and therefore ||((AA* + SS*) — |A|?)yn]] — 0. This implies ||S*y,| — O.
Hence we have
T = X)*zn]l = (A= X)*yn @ (S*yn — Azn)|
< A =2 yall + 1S™yall + 1Al 2]l — O.
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Next we show the case p > 1. Let {z,} be an arbitrary sequence of unit vectors in H
such that

T — A)z,|| >0 asn — oo.
Then »
IT*zn|| > {T*Tn, Tn)| = {Tn, Tzn) — |A|,
so we have
lin_1}inf T z,|| > |-

We shall show that limsup, ., ||T*Z.|| < |A|. Without loss of generality, we may assume
that || T*z,|| > %1 for all n.
Since T is p-quasihyponormal,

0 < T*{(T*T)? — (TT*)°}T.

Hence
0 < (T*{(T*T)? — (TT*)?}Tzp,zn)
= <(|)\|4(5’"T"‘)"’“1 IAP(TT*)P)zn, Tn) + O(I(T — X)znll)
= NNTT)> xn,x,,) — IPTT* Yz, 2a) + O(I(T = N)zall)
< l/\|4((TT*)”$mZn> — IXPTT*)Pzn, 2a) + O(I(T = Nzall) by (2)
= DRITPzal (|/\|2 (TT*)zn, za)7) + O(I(T — Nznl))
< AP |||T'|p~’ﬂn|| M = I 2all?) + O(IT = Nzall) by (1).
Since |||T* |”:z:n|i ' > \T*z, |21 > (U)"’(’"l) above inequalities shows that

0< AP - HT"‘ﬂrnll2 +O(I(T — X)znl)).

Hence we have
limsup [[T*za | < [AP%,

n—o00
and lim ||T*z,|| = |A|. The assertion of this lemma is immediately from this since

T = A)zall® = IT"2all® + [N = XT* T, zn) —_X(xn,T*$n>
= ||T'.'4L',,||2 + |/\|2 = Man, Tzy) — MTxy, Zy)
= AP+ =22 —|AP=0 asn— oo.
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The assertions of (i) and (ii) are immediate from the fact o, (T) \ {0} C opa.

Since we only consider the operator valued function T'(t) = U|T|***¢~1) (¢ > 0)

for p-quasihyponormal operator T, we prepare the following an elementary lemma to be
understood easily.

Lemma 2. Let T : [0,1] — B(#) be a norm continuous mapping, i.e., sp,s € [0,1]
and s, — s implies ||T(s,) — T(s)|| — 0. If T(0) and T(1) are semi-Fredholm operator
such as ind(7(0)) # ind(7T'(1)). Then there exists an s, € (0,1) such that T'(sq) is not
semi-Fredholm, in particular 0 € 0,(T(s0)). .

Proof. Assume that there is no such point s;. Then {T'(s) : s € [0, 1]} is a connected
subset of semi-Fredholm operators. Hence each of them has same Fredholm index because
Fredholm index ind(-) is a continuous function from {semi-Fredholm operators } to Z U
{£oo}. This is a contradiction. Thus there exists an sy € (0,1) such that T'(sq) is not
semi-Fredholm.

If0 &€ 0,(T(s0)), then T(so) is bounded below and hence it is a semi-Fredholm operator
with ind(T'(so)) < —1, this contradicts the fact that T'(sy) is not semi-Fredholm.

Now, we can prove 1), more generally, the following.
Lemma 3. Let T' = U|T| be p-quasihyponormal for some p > 0 and ¢ > 0 be arbitrary.

Then T, = U|T|? is £-quasihyponormal with spectrum

o(T,) = {r%e¥ : re¥ € o(T)}.

Proof. It is easy to see that an operator S is p-quasihyponormal if and only if
P{(S*S)? — (SS*)P}P > 0,

where P is the orthogonal projection onto [ranS](= ranS).
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Since [ranT) = [ranT,), (T*T)? = (T,*T,)* and (TT*)? = (T,T,*)+, the operator T is
*Z—-quasihyponormal.
We show the latter. It suffices to show that

{rie® : re® € o(T)} C o(T,),
because if this holds, by using symmetric argument, we also have
{sie" : s € o(T,)} C o(T),
and we have the conclusion. Since 0 € o(T) if and only if 0 € o(T}), we have only to
prove if A = re®® € o(T) \ {0}, then A, = r%® € o(Ty).
First we consider the case 1') A € 0,(T). In this case, A is a normal approximate

eigenvalue of T by Lemma 1, hence there exists a sequence of unit vectors {z,}32, in H
such that

I(IT| = r)zall > 0 and ||(U — €®)za]| > 0 asn — .
From this we have

1(Ty = Ag)zall < NU(TI? = r9)za| + r|(U — €®)za — 0.
Hence A; € 0,(Ty) C o(Ty).
Next, we consider the case 2’) A € o(T') \ 0,(T’). Suppose that A, does not belong to
o(T,). Then operator valued mapping S(-) : [0,1] = B(H) defined by
S(t) — U|T|1+t(q—1) _ r1+t(q—1)ei0 — T1+t(q—1) _ Al+t(q—l)

is continuous and satisfies

S(0) = T — X is semi-Fredholm with ind(S(0)) < -1,
S(1) = T, — ), is invertible.

Hence by Lemma 2, there exists an s € (0,1) such that S(s) is not semi-Fredholm, i.e.,
Ais(g—1) = @ Ve? € g4(T14sg-1)). Since Tiigq-1) is Trsh—1y-quasihyponormal we
have A145(g-1) € Ona(T1+4s(g-1)) by Lemma 1. By using the same argument as case 1°), we
have that A € ,(T) and ), € 0,(T,). This is a contradiction. Hence A, = r%* € o(T,).
This completes the proof.

Remark 1. (i) If we choose R = C\ {0} or R = o(T) \ {0}, T(t) = U|T|***¢)) and
1e(re®) = r1+4e-Dei for re? € R, the above lemma is also shown directly by Xia’s lemma,
and Lemma 1.
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(ii) Since re?? — 79¢% is a homeomorphism on C, this maps each isolated point of
o(T) to an isolated point of o(7,). That also maps 0,(T") onto 0,(7,), hence it maps
o(T)\ 0,(T) onto o(Ty) \ 0.(Ty).

3. Main results

In [16], the author obtained an extension of Putnam’s inequality for quasihyponormal
operators as follows.

Proposition 2. If T is a quasihyponormal operator, then
. . 1 1
\T°T - TT"|| < 2||Tl|(;m(0(T)))5, 3)

where m(-) is the planar Lebesgue measure on C.

Remark 2. One may think that the above inequality is quite different from original
Putnam inequality for hyponormal operators, and it should be improved at least as follows:

|T*T — TT*|| < Cm(o(T)),

where C is a uniformly constant which is independent on quasihyponormal operator T

However, we remark that there does not exist such constant C. We show an example
of a sequences {T},} of quasihyponormal operators such that m(o(7,)) = 1 for all n and
T Ty — TnT,"|| = oo as n — oc.

Let {€,} be the canonical orthogonal basis for £2(N), U the unilateral shift on ¢?(N) de-
fined by Ue,, = €,41 for n € N and P, the orthogonal projection onto the one-dimensional
subspace Ce,. Let # = ¢2(N) & £2(N). Define operators T, on ‘H by

U+n P1
0 0

) on H =¢(N)® A(N).
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Then T, is quasihyponormal but not hyponormal with o(T,) = {0} U {z : |z — n| < 1},
i.e., m(o(T,)) =1 for all n, and ||T,|| = n + 1. Since,

* * __ 0 nPl
Tn Tn"'TnTn _(prl Pl ),

we have ||T,*T, — T, T,*|| = h’—‘@ﬂ(z O(||T,]])) — oo as n — oo. Hence there does not
exist such constant C, and this example also shows that ||T'}| on the right hand side of
the inequality in Proposition 2 is necessary.

By Proposition 2 and Lemma 3, we have the following Putnam type inequality for p-
quasihyponormal operators. It shows that a p-quasihyponormal operator with Lebesgue
null set spectrum is always a normal operator. In particular, every p-quasihyponormal
operator on a finite dimensional Hilbert space is a normal operator and also compact,
p-quasihyponormal operator is normal.

Theorem 1. If T is p-quasihyponormal for some p > 0, then

jrry - @yl <A ([ taash.

eilco(T)

Proof. Since T, = U|T|P is quasihyponormal with spectrum o(T}) = {rPe?® : re €
o(T)}, by lemma 3,

TP - @Il = 15T, - T3
2Tyl (- m(o (Ty)}

1
TP / / r drdg)}
m re'?co(Tp)

2P [[ tanast
T re’eo(T)

IA

The following results have been already shown the case of p-quasihyponormal operators
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for 0 < p < 1. See [13]. In here, we shall show those for all p > 0 by using deformed
operator 1,, Lemma 3 and the results for quasihyponormal case.

Lemma 4. If T is p-quasihyponormal, then it is isoloid, i.e., every isolated point of
o(T) is an eigenvalue of T.

Proof. If A = rei® is isolated in a(T), then A, = rPe¥ is isolated point of spectrum
o(T,) of quasihyponormal operator T, = U|T|? by Lemma 3 and Remark 1 (ii). By
Tanahashi-Uchiyama [13], the Riesz idempotent E, with respect to A, defined by

E, = 5;—1 l (2 — Tp)~'dz (4)

satisfies ranE, = kerT, if A\ = 0, ranE, = ker(T, — \,) = ker(T, — Ap)* and E, is self-
adjoint if A # 0, where 7 is a circle with center ), and small enough radius € such that
{z:]z—X| <€} No(T,) = {A,}. Since kerT,, = ker T, and ker(T, — Ap) = ker(T — ) if
A # 0 by Lemma 1, we have the conclusion.

One may wonder whether above E, coincides with the Riesz idempotent £ for T' with
respect to A or not. The answer is yes, i.e., E = E,. We prove this in the proof of the
next theorem. '

Theorem 2. If T is a p-quasihyponormal and ) is an isolated point of o(7T'), then the
Riesz idempotent E with respect to A defined by

1
E=_—"— - T) dz, o

i (=D (5)

satisfies ranE = ker T if A = 0, ranF = ker(T — \) = ker(T' — \)* and E = E* if A # 0,

where +/ is a circle with center A and small enough radius ¢ such that {z : |z — A| <
§}no(T) ={A}.

Proof Let E, be same as in the proof of Lemma 4. Then

ranE, = ker(T, — \,) = ker(T — A) C ranE.
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First we show in the case A # 0. Since, E, is the orthogonal projection onto ker(T' — )
and ker(T" — X) reduces T by Lemma 1, E,T = AE, = TE, hence E, also commutes
with E. Assume that £ # E,. Then ran(E — E,) is a non-zero T-invariant closed
subspace which contained in ran(l — E,), because £ — E, = (1 — E,)E is idempotent.
Since E = E(E,®1—E,) = E,® (1 - E,)E = E,® E - E,, {A\} = 0(T|rane) =
O'(Th'a,nEp) UO’(TIran(E_Ep)) = {/\} UO’(T‘ran(E_EP)), and we have U(Tlran(E_Ep)) = {)\}
Hence ) is an approximate eigenvalue of T|ran(e—g,). Thus there exists a sequence {z,}
of unit vectors in ran(E — E,) such that

(T = A)zn|| = 0.

By Lemma 1, A € 0,,(T), so we have ||(T, — Ap)zs|| — 0 as n — 0. This contradicts the
fact that o(Tp|ran(-£p)) does not contain A,. Hence, we have E = E, and the assertion
is immediate from this.

Next, we show the case A = 0. Let T = ( 0 4

0 B
ker T @ ranT* be 2 x 2 matrix representation and 7' = U|T| be the polar decomposition
of T. Then U is of the form
U= (VY
A0 U, )’

T ( 0 Ui(A*A+ B*B)? )
“\ 0 UyA*A+B*B): )’

) on H = ranE, @ (ranE,)! =

because ker U = ker T'. Hence,

and .
T = 0 U,(A*A+ B*B):
P~ \0 Uy(A*A+B*B)f )’
Put C = Uy(A*A+ B*B)% and D = U,(A*A+ B*B)%. We shall show that D is invertible.
If D is not invertible, then by assumption, 0 is an isolated point of o(D). Let F be the
Riesz idempotent for D with respect to 0. Then F' # 0 and
E, = —l—/(z T de
Y

2m

_ 1 z71 z71C(z— D)! dz
~oomiJ,\ O (z—D)™!

aiJ, 27 de 55 [,27'C(z = D)™Mdz
- 0 = J,(z— D) dz



B 1 = J,271C(z = D)™ dz
- 0 F ’

this contradicts the fact that ranE, = ker T'. Hence D is invertible, therefore A*A+ B*B,
Us; and B = Uy(A*A + B*B)% are also invertible because

0<D*D < (A'A+ B*B)?

implies the invertibility of (4*4 + B*B)?, so is A*A+ B*B and U, = D(A*A + B*B)?.
So, we have

1 X[ 27'C(z— D) 'dz
Ep — ( 0 2m ffy E) ) )
_ (1 —CD'5 [{zt = (2= D) '} dz
0 0
_ (1 —CD '\ _ (1 -Uy(A*A+ B*B)5(A*A+ B*B)7U,™*
—\o0o 0 ~\ o0 0
(1 =UUt
—\o 0 ’

and similarly, '
1 271 271A(z — B)™!
E = —
2 [, ( 0 (z-Bt )

(1 =AB'\ (1 -U U
—\o o0 —\ 0 0 '

Hence, E, = E. Thus the assertion also holds.

Remark 3. By the proof of Theorem 2, we easily see that if 7" is p-quasihyponormal
for some p > 0 and A = re® is an isolated point of o(T), then for every s > 0, the Riesz
idempotent E; for T, = U|T|* with respect to A\; = r°¢* coincides with E; because T} is
£.quasihyponormal.

Theorem 3. Weyl’s theorem holds for p-quasihyponormal operator T, i.e., o(T) \
?.U(T) = WOQ(T). .
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Proof. Let A € o(T) \ w(T). Then T — XA € F and 0 < dimker(T — ) < co. We
shall show that X is isolated in o (7).

First, we consider the case A = 0. Since T € Fy, |T|* € Fo for all s > 0and U € Fp
because ranU = ranT is closed and ker U = ker T', that is ind(U) = ind(7"). Thus we have
T, = U|T|P € Fo. Since T, is quasihyponormal hence Weyl’s theorem holds for T by [17]
or [19), i.e,,

0 € o(Ty) \ w(T}) = maa(Ty).
Hence 0 is isolated in o(T},), therefore 0 is isolated in o(T) by Lemma 3 and Remark 1
(ii). |

Next, we consider the case A # 0. Since ker(T" — X) reduces 7' by Lemma 1, T is of

the form

T=M®T, on H=ker(T— )& [ran(T — N\)*],
where T} is p-quasihyponormal and ker(T; — A) = {0}. Since ker(T" — ) is finite dimen-
sional, T; — X is Fredholm with index 0, hence it is invertible. This implies that A is
isolated in o(T") = {A} Uo(T7).

Conversely, if A € mpo(T"), then the Riesz idempotent E with respect to A defined
by (5) satisfies ranE = ker(T' — ) by Theorem 2 and o(T'|ran(1-£)) does not contain .
Hence,

ran(T — ) = ran(T — A\)E +ran(T — \)(1 - E)
= ran(l — E),

(i.e., T — X is semi-Fredholm) and since dim(H fran(T — X)) = dim(#H fan(l — E)) =
dimranFE = dimker(T — \), T — X € Fy, so we have A € o(T) \ w(T).

Acknowledgment. The author would like to express his sincere thanks to Professor
Kotaro Tanahashi for his kindly suggestions.
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