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Abstract

In the present paper circles and ellipses will be characterized by
some properties of billiard ball trajectories. Those properties will be
discussed in connection with the characterization of flat metrics on
tori by some families of geodesics and tori of revolution. The main
method is the geometry of geodesics due to H. Busemann which was
reconstructed in the configuration space by V. Bangert. In particular,
the theory of parallels plays an important role in the present paper.

1 Introduction
Let $C$ be a smooth simple closed and strictly convex curve with length $L$

in the Euclidean plane $E$ and let $c$ : $R\rightarrow E$ be its representation with
arclength, namely $|\dot{c}(t)|=1$ for any $t\in R$ where $R$ is the set of all real
numbers. Let $x=(x_{j})_{j\in Z}$ be a sequence of points in $C$ where $Z$ is the set
of all integers. We say that $x$ is a billiard ball trajectory if the angle between
the tangent vector $A$ to $C$ at $x_{i}$ and the oriented segment $T(x_{i-1}, x_{i})$ from
$x_{i-1}$ to $x_{i}$ is equal to the one between $A$ and $T(x_{i}, x_{i+1})$ for any $i\in Z$ .

A billiard ball trajectory $x=(x_{j})_{j\in Z}$ in $C$ is represented by a sequence
$s=(s_{j})_{j\in Z}$ of real numbers such that $x_{j}=c(s_{j})$ and $s_{j}<s_{j+1}<s_{j}+L$

for any $j\in Z$ and the sequence $s=(s_{j})_{j\in Z}$ will be considered to be a
configuration $\{(j, s_{j})\}_{j\in Z}$ in the configuration space X $=Z\times R\subset R^{2}$ . A
configuration $s=(s_{j})_{j\in Z}$ for $x$ is determined uniquely up to the difference
$pL(p\in Z)$ .
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Let $x_{0},x_{1}\in C$ and $(x_{0},x_{1}, x_{2})$ the billiard ball trajectory. Let $\theta_{0}$ (resp.,
$\theta_{1})$ be the angle between the segment $T(x_{0}, x_{1})$ from $x_{0}$ to $x_{1}$ (resp., $T(x_{1},$ $x_{2})$ )
and the tangent vector to $C$ at $x_{0}$ (resp., $x_{1}$ ). Set $u_{0}=\cos\theta_{0}$ and $u_{1}=\cos\theta_{1}$ .
We call $\Omega=C\times(-1,1)$ the phase space which is the set of all pairs $(x, u)$

for $x\in C$ and $u\in(-1,1)$ . Define a billiard ball map $\varphi$ : $\Omega\rightarrow\Omega$ as
$\varphi(x_{0}, u_{0})=(x_{1}, u_{1})$ . The billiard ball map is an example of a monotone
twist map (see [17]). Let $\overline{x}=(x_{0}, u_{0})\in\Omega$ and $\varphi^{j}(\overline{x})=(x_{j}, u_{j})$ for all $j\in Z$ .
Then, the sequence $x=(x_{j})_{j\in Z}$ is a billiard ball trajectory. Any billiard ball
trajectory is given in this way.

In the present paper circles and ellipses will be characterized by some
properties of billiard ball trajectories. Those properties will be discussed in
connection with the characterization of flat metrics on tori by some families
of geodesics and tori of revolution. The main tool is the geometry of geodesics
due to H. Busemann (see [6]) which was reconstructed in the configuration
space by V. Bangert (see $[1],[2]$ ).

We first recall some properties of billiard ball trajectories in circles and
ellipses (see [17]).

Billiards in circles : If $C$ is a circle with center $z$ , then its radius is
$ r=L/2\pi$ . Let $x=(x_{j})_{j\in Z}$ be a billiard ball trajectory and $s=(s_{j})_{j\in Z}$ its
configuration. Then, $s_{j+1}-s_{j}$ is constant for any $ j\in$ Z. Given $a>0$ and
$y\in C$ there exists a billiard ball trajectory $x=(x_{j})_{j\in Z}$ with a configuration
$s=(s_{j})_{j\in Z}$ such that $x_{0}=c(s_{0})=y$ and all $s_{j+1}-s_{j}$ are equal to $a$ .
Moreover, the envelope curve of initial segments $T(x_{0}, x_{1})$ of these billiard
ball trajectories with initial points $x_{0}$ is a circle $K$ with center $z$ , and such
a billiard ball trajectory $x=(x_{j})_{j\in Z}$ satisfies that the successive point $x_{j+1}$

after $x_{j}$ in $C$ is given so that the segment $T(x_{j}, x_{j+1})$ is tangent to $K$ . For
any positive integers $q,p\in Z^{+}$ with $p/q<1$ and any point $y\in C$ there
exists a periodic billiard ball trajectory $x=(x_{j})_{j\in Z}$ such that $x_{j+q}=x_{j}$ and
$s_{j+q}-s_{j}=pL$ for any $j\in Z$ where $s=(s_{j})_{j\in Z}$ is a configuration for $x$ .
Let $t=(t_{j})_{j\in Z}$ be a configuration with $t_{0}=s_{0}$ for a billiard ball trajectory
$y=(y_{j})_{j\in Z}$ . Then, $t_{j}>s_{j}$ for any $j>0$ if $t_{1}>s_{1}$ and $ 1\ddagger m_{j\rightarrow\infty}t_{j}-s_{j}=\infty$

(the divergence property).
Billiards in ellipses: An ellipse $C$ has the property similar to ones circles

have. Let $C$ be an ellipse and for any $x_{0}\in C$ let $x=(x_{j})_{j\in Z}$ be a billiard ball
trajectory for which the segment $T(x_{j}, x_{j+1})$ does not pass between the focal
points of $C$ for any $j\in Z$ . Then, the segments $T(x_{j}, x_{j+1})$ are tangent to an
ellipse with the same focal points as $C$ . Since $x_{q}$ depends continuously on
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the points $x_{1}$ when $x_{0}$ is fixed, we can find a periodic billiard ball trajectory
$x=(x_{j})_{j\in Z}$ such that $x_{i+q}=x_{i}$ for any $i\in Z$ and the sum of the arclengths
of subarcs $a(x_{j}, x_{j+1})$ for $j=i,$ $\cdots i+q-1$ is $pL$ if $p/q<1$ and $p/q\neq 1/2$ .
Notice that $a(x_{j}, x_{j+1})=s_{j+1}-s_{j}$ if $s=(s_{j})_{j\in Z}$ is a configuration for $x$ .
Thus, for any point $y\in C$ and any positive integer $q,p\in Z^{+}$ with $p/q<1$
$(p/q\neq 1/2)$ there exists a periodic billiard ball trajectory $x=(x_{j})_{j\in Z}$ with
period $(q,p)$ such that $x_{j+q}=x_{j}$ and $s_{j+q}-s_{j}=pL$ where $s=(s_{j})_{j\in Z}$

is a configuration for $x$ . Let $x=(x_{j})_{j\in Z}$ and $y=(y_{j})_{j\in Z}$ be billiard ball
trajectories such that $x_{0}=y_{0}$ is an endpoint of the diameter (the long axis)
of $C$ and $s=(s_{j})_{j\in Z}$ and $t=(t_{j})_{j\in Z}$ their configurations with $t_{0}=s_{0}$ . Then,
$t_{j}>s_{j}$ for all $j\in Z^{+}$ and $t_{j}<s_{j}$ for all $j\in Z^{-}$ if $t_{1}>s_{1}$ where $Z^{+}$ (resp.,
$Z^{-})$ is the set of all positive (resp., negative) integers. We will call those
points poles. The billiard ball trajectories passing between the focal points
of $C$ are tangent to a hyperbola with the same focal points.

Taking these properties of billiard ball trajectories in consideration, we
propose some characterizations of circles and ellipses.

According to M. Bialy ([4]), the billiard is called integmble if a subset of
full measure of the phase space is foliated by closed curves invariant under
the billiard ball map $\varphi$ . As was seen in the above the billiards in circles and
ellipses are integrable. G. Birkhoff’s conjecture is stated in [4] as follows.
The only examples of integrable billiards are circular and elliptic billiards.
M. Bialy ([4]) has given a partial answer of the conjecture, proving that $C$

is a circle if $\Omega$ is foliated by $\varphi$-invariant continuous closed curves not null-
homotopic in $\Omega$ . M. Wojtkowski ([21]) proved that $C$ is a circle if the domain
bounded by $C$ is foliated by smooth caustics to which almost every billiard
ball trajectories are tangent. As was stated in [4] Bialy’s theorem corresponds
to a theorem of E. Hopf ([9]) concerning Riemannian metrics on tori without
conjugate points. N. Innami ([16]) extended Bialy’s theorem to the higher
dimensional case and the nonpositive curvature case as L. Green ([7]) did E.
Hopf’s.

In order to state our contribution we need some words. In this paper a
simple curve $f$ in $\Omega$ means that $f$ with relative topology in $\Omega$ is homeomor-
phic to a point, a bounded closed interval or a circle. We say that a family
$F$ of subsets in $\Omega$ is a covering of $\Omega$ by simple curves if for any $\overline{x}\in\Omega$ there
exixts a simple curve $f\in F$ with $\overline{x}\in f$ . We call a covering $F$ of $\Omega$ by simple
curves a foliation of $\Omega$ by simple curves if for any $\overline{x}\in\Omega$ there exists a unique
simple curve $f\in F$ with $\overline{x}\in f$ . A covering $F$ of $\Omega$ by simple curves is by
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definition element-wise $\varphi$ -periodic if for any $f\in F$ there exists an $i\in Z^{+}$

such that $f,$ $\varphi(f),$ $\cdots$ , $\varphi^{i-1}(f)$ are mutually disjoint and $\varphi^{i}(f)=f$ . We say
that $F$ is $\varphi$-invariant if $\varphi(f)=f$ for any $f\in F$ .

Theorem 1.1. $C$ is a circle if and only if $\Omega$ admits a $\varphi$ -invariant foliation
$F$ of $\Omega$ by simple curves such that $F$ is closed in the set of all closed subsets
in $\Omega$ .

We have Theorem 1.1 as a consequence of Bialy’s theorem, proving that
al simple curves $f\in F$ are not null-homotopic in $\Omega$ .

As was mentioned by V. Bangert ([1]) we can study the geodesics on
tori and billiard ball trajectories in convex curves by using the same idea,
the variational method in their configuration spaces. This fact suggests us
that there would exist some characterizations of circles and ellipses which
correspond to those for flat tori and tori of revolution.

We say that a periodic billiard ball trajectory $x=(x_{j})_{j\in Z}$ with period
$(q,p)$ starting at $x_{0}$ is minimal $if-\sum_{j=0}^{q-1}|x_{j}-x_{j+1}|$ is minimal in the set of
all sequences $x^{\prime}=(x_{j}^{\prime})_{0\leq j\leq q}$ such that $\sum_{j=0}^{q-1}a(d_{j},x_{j+1}^{\prime})=pL$ and $x_{0}^{\prime}=x_{0}$ ,
$x_{q}^{\prime}=x_{q}$ , where $a(x_{j}^{\prime}, x_{j+1})=s_{j+1}^{\prime}-s_{j}^{\prime}$ if $x_{j}^{l}=c(s_{j}^{\prime})$ with $s_{j}^{\prime}<s_{j+1}^{l}<$

$s_{j}^{\prime}+L$ for any $ j\in$ Z. This is equivalent to the following. If $s=(s_{j})_{j\in Z}$ is
a configuration for a minimal periodic billiard ball trajectory $x$ with period
$(q,p),$ $then-\sum_{j=0}^{q-1}|c(s_{j})-c(s_{j+1})|$ is minimal in the set of all configurations
$t=(t_{j})_{0\leq j\leq q}$ with $t_{j}<t_{j+1}<t_{j}+L$ such that $t_{0}=s_{0}$ and $t_{q}=s_{q}=s_{0}+pL$ .

A curve $C$ is of constant width if and only if there ezists a periodic billiard
ball trajectory from any point in $C$ with period $(2,1)$ (see [18],[20]). We see
the example of a curve $C$ in [15] such that there exists a periodic billiard
ball trajectory from any point in $C$ with period $(3,1)$ and it is not an ellipse.
These periodic billiard ball trajectories are minimal. These examples show
that the assumption of the following corollary is not superfluous.

Corollary 1.2. Suppose there exists a minimal periodic billiard ball trajec-
tory from any point in $Cu$)$ith$ any period $(q,p)$ such that $p/q<1$ . Then, $C$

is a cirde.

E. Hopf’s theorem ([9]) states that a torus $T^{2}$ is flat if all points are poles.
However, the existence of poles does not imply that the Riemannian metric
is flat. In fact, a torus $T^{2}$ of revolution has poles and points which are not
poles (see [11]). In contrast to this fact a torus $T^{2}$ is flat if there is a pole
$P$ such that the length of any perpendicular Jacobi vector field $Y(t)$ with
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$Y(O)=0$ along any unit speed geodesic $\gamma(t)$ from $\gamma(0)=P$ is monotone
increasing for $t>0$ (see [11],[13]).

In order to think the similar properties we define poles for convex billiards.
Let $s_{0}=t_{0}$ and $x_{0}=c(s_{0})$ . Let $s=(s_{j})_{j\in Z}$ and $t=(t_{j})_{j\in Z}$ be configurations
for billiard ball trajectories with $t_{1}>s_{1}$ . We say that a point $x_{0}\in C$ is a
pole if $t$ and $s$ do not cross at any other point than $s_{0}$ , namely, $t_{j}>s_{j}$ for
$j>0$ and $t_{j}<s_{j}$ for $j<0$ . We say that a pole $x_{0}\in C$ has the monotone
property if $t_{j}-s_{j}$ is monotone increasing for $j\in Z$ .

All points in circles are poles with monotone property. In an ellipse the
endpoints of long axis are poles without monotone property and other points
are not poles.

Corollary 1.3. $C$ is a circle if and only if all points in $C$ are poles.

Corollary 1.4. $C$ is a circle if and only if $C$ has a pole satisfying the mono-
tone property.

Let $M$ be the universal covering space of a torus $T^{2}$ and $D$ the isometry
group on $M$ such that $T^{2}=M/D$ . Let $\tau\in D$ . The displacement function
$d_{\tau}$ of $\tau$ on $M$ is given by $d_{\tau}(q)=d(q, \tau(q))$ for any point $q\in M$ where $d$

is the natural distance induced from the Riemannian metric of $M$ . A torus
$T^{2}$ is flat if and only if all displacement functions $d_{\tau}$ for $\tau\in D$ are constant
on $M$ (see [12],[2]). If a torus $T^{2}$ is a surface of revolution, then there is an
element $\eta\in D$ such that the displacement function $d_{\tau}$ is constant on $M$ if
$\tau\in D$ is not any power $\eta^{m}$ of $\eta$ . To show the corresponding fact we define a
displacement function $D(q,p)$ : $X\rightarrow R$ for any $q,p\in Z^{+}$ with $p/q<1$ as
follows. Let $s_{j}=(j, s_{j})\in X$ . Then, $D(q,p)(s_{j})$ is by definition the minimum
of $-\sum_{k=j}^{j+q}|s_{k+1}-s_{k}|$ in the set of all configurations from $s_{j}=(j, s_{j})$ to
$s_{j+q}=(j+q, s_{j}+pL)$ . In the light of the torus case we will prove the
following.

Corollary 1.5. $C$ is a circle if and only if the displacement functions $D(q,p)$

are constant in X for all $q,p\in Z^{+}$ with $p/q<1$ .

Let $M$ be the universal covering space of a torus $T^{2}$ . We say that the
geodesics in $M$ satisfy the divergence property if $ d(\beta(t), \gamma(t))\rightarrow\infty$ as $ t\rightarrow$

$\infty$ for any unit speed geodesics $\beta(t)$ and $\gamma(t)$ with $\beta(0)=\gamma(0)$ and $\beta\neq\gamma$ . A
torus is flat if and only if the geodesics of its universal covering space satisfy
the divergence property (see [22]). To prove the corresponding fact we define
a divergence property as follows.
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Let $s=(s_{j})_{j\geq 0}$ and $t=(t_{j})_{j\geq 0}$ be configurations of billiard ball trajecto-
ries such that $s_{0}=t_{0}$ . We define $dis_{\infty}(s, t)$ as

$dis_{\infty}(s, t)=\lim infj\rightarrow\infty|s_{j}-t_{j}|$ .

In contrast with the fact for tori we will prove the following.

Corollary 1.6. $C$ is a circle if and only if $dis_{\infty}(s, t)>L/4$ for the $ configu\rightarrow$

rations of any billiard ball trajectories $s\neq t$ with $s_{0}=t_{0}$ .

The notion of slope is given as follows in Section 4. Let $x=(x_{j})_{j\in Z}$ be
a billiard ball trajectory and let $a(x_{j},x_{j+1})$ be the arclength of the subarc of
$C$ from $x_{j}$ to $x_{j+1}$ measured with the positive orientation of $C$ . We define
the slope of $x$ as

$\alpha(x)=\lim_{n\rightarrow}\inf_{\infty}\frac{1}{n}\sum_{j=0}^{n-1}a(x_{j},x_{j+1})=\lim_{n\rightarrow}\inf_{\infty}\frac{s_{n}}{n}$ .

where $s=(s_{j})_{j\in Z}$ is a configuration for $x$ . Let $\alpha(\tilde{x})$ denote the slope of
the billiard ball trajectory determined by $\tilde{x}$ for $\tilde{x}\in\Omega$ . In addition, the
asymptotic billiard ball trajectories and parallel biliard ball trajectories will
be defined in the configuration space in Section 5 as in Euclidean geometry.

Let $s=(s_{j})_{j\in Z}$ be a minimal configuration for a billiard ball trajectory
$\overline{x}\in\Omega$ with slope $\alpha(\overline{x})=aL$ where $a$ is an irrational number with $0<a<1$ .
If $\overline{x}$ is contained in a $\varphi$-invariant curve $f$ (not a point), then $f$ is a simple
closed curve not null-homotopic in $\Omega$ (see Lemma 7.1), and, moreover, al
points in $f$ corresponds to billiard parallels to $s$ in X (see Theorem 4.16).
Then, we have a caustic in $E$ which is a closed continuous curve (see Lemma
6.8 and Lemma 6.1). Where we say that a closed continuous curve $K$ is a
caustic if $K$ has the following property. Let $x_{0}$ be an arbitrary point in $C$ and
let $T(x_{0},x_{1})$ be a segment tangent to $K$ . If $x=(x_{j})_{j\in Z}$ is the billiard bal
trajectory determined by $T(x_{0},x_{1})$ , then $T(x_{j},x_{j+1})$ is a segment tangent to
$K$ for all $j\in Z$ . In the light of those results, we will prove the following.

Theorem 1.7. Suppose there exists a sequence of closed simple curves $f_{n}$

with slope $a(\overline{x})=\alpha_{n}\neq L/2$ for any $\overline{x}\in f_{n}$ not null-homotopic in $\Omega$ such
that they make simple caustics in E. If the sequence of slopes $\alpha_{n}$ converges
to $L/2$ , then $C$ is an ellipse.
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This theorem should be contrasted with the existence of region free of
caustics for an arbitrary convex billiards proved by E. Gutkin and A. Katok
([8]). We state the following which is the main part of the proof of Theorem
1.7.

Corollary 1.8. Suppose there exists a sequence of simple caustics $K_{n}$ such
that $a(x^{n})\neq L/2$ for $x^{n}=(x_{j}^{n})_{j\in Z}$ being a billiard ball trajectory tangent to
$K_{n}$ and $\alpha(x^{n})\rightarrow L/2$ as $ n\rightarrow\infty$ . Then, $C$ is an ellipse.

2 Billiard geodesic
Let $C$ be a smooth strictly convex simple closed curve in the Euclidean plane
$E$ with length $L$ . Let $X=Z\times R\subset R^{2}$ where $Z$ is the set of all integers and
$R$ is the set of all real numbers. We denote $(i, s_{i})\in X$ by $s_{i}$ for simplicity. A
configuration $s=(s_{j})_{i\leq j\leq k}$ makes a broken segment $T(s)=\bigcup_{j=i}^{k-1}T(s_{j}, s_{j+1})$

in $R^{2}$ where $T(s_{j}, s_{j+1})$ is the segment from $(j, s_{j})$ to $(j+1, s_{j+1})$ in $R^{2}$ . For
$q,p\in Z$ let $U(q,p)$ be the translation in X which is given by

$U(q,p)(s_{i})=U(q,p)(i, s_{i})=(i+q, s_{i}+pL)$

for any $(i, s_{i})\in$ X. Let $x=(x_{j})_{i\leq j\leq k}$ be a sequence of mutually different
points in $C$ . We define a configuration $s=(s_{j})_{i\leq J\leq k}$ for $x$ as $x_{j}=c(s_{j})$ and
$s_{j}<s_{j+1}<s_{j}+L$ for $i\leq j\leq k-1$ . We call such a configuration $s$ and
a broken segment $T=T(s)$ made of such a configuration $s$ a C-curve. We
define the negative length of a C-curve $T=T(s)$ as

$H(s;i, k)=H(s_{i}, s_{i+1}, \cdots s_{k})=-\sum_{j=i}^{k-1}|c(s_{j+1})-c(s_{j})|$

where $|\cdot|$ is the natural norm in $E$ and $c:R\rightarrow E$ is the representation of
$C$ by arclength. Let $H(i, k;u, v)$ denote the minimum of $H(s;i, k)$ in the set
of all C-curves $s=(s_{j})_{i\leq j\leq k}$ from $s_{i}=(i, u)$ to $s_{k}=(k, v)$ .

We borrows some words from the geometry of geodesics (see [6]).

1. A C-curve $s=(s_{j})_{i\leq j\leq k}$ (and $T=T(s)$ ) is called a billiard curve or
simply a b-curve if $x=(x_{j})_{i\leq j\leq k}$ given by $x_{j}=c(s_{j})$ for $i\leq j\leq k$ is a
billiard ball trajectory.
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2. A b-curve $s=(s_{j})_{i\leq j\leq k}$ (and $T=T(s)$ ) is called a billiard geodesic
or simply a b-geodesic if $H(s;j,j+2)$ is the minimum in the set of all
C-curves from $s_{j}$ to $s_{j+2}$ for $i\leq j\leq k-2$ , namely $H(s;j, j+2)=$
$H(j,j+2;s_{j}, s_{j+2})$ .

3. A C-curve $s=(s_{j})_{i\leq j\leq k}$ (and $T=T(s)$ ) is called a billiard segment or
simply a b-segment if $H(s;i, k)$ is the minimum in the set of all C-curves
from $s_{i}$ to $s_{k}$ , namely $H(s;i, k)=H(i, k;s_{i}, s_{k})$ .

4. A b-geodesic $s=(s_{j})_{j\geq i}$ (and $s=(s_{j})_{J\leq i}$ ) (and $T=T(s)$ ) is called
a billiard ray from $s_{i}$ or simply a b-ray from $s_{i}$ if all sub-bgeodesics are
b-segments, namely $H(s;j, k)=H(j, k;s_{j}, s_{k})$ for any $k>j$ .

5. A b-geodesic $s=(s_{j})_{j\in Z}$ (and $T=T(s)$ ) is called a billiard straight
line or simply a b-straight line if all sub-b-geodesics are b-segments,
namely $H(s;j, k)=H(j, k;s_{j}, s_{k})$ for any $k>j$ .

We will see the difference among those definitions in the following.

Example: Let $a>b>0$ and let $C$ be an ellipse in $E$ given by the equation

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ .

Let the configuration $s=(s_{j})_{j\in Z}$ correspond to the short axis as a billiard
ball trajectory. Then it a b-curve which is not a b-geodesic if $a>\sqrt{2}b$ . It
is a bgeodesic which $is$ not a b-straight line if $\sqrt{2}b\geq a$ . The configuration
for the long axis is always a bstraight line. All configurations for billiard
ball trajectories passing through focal points are also bstraight lines. There
exists no billiard ball trajectory in any ellipse whose configuration is a b-ray
which is not a bstraight line. However, the b-rays play important roles in
the theory of parallels in the present paper.

The following lemmas are fundamental. The proofs are similar to those
ones for geodesics in Riemannian geometry. Most results in Section 2 to 5
are seen in [1] and [2]. The different point is that the configurations in our
consideration are only C-curves. It means that there may not exi$st$ any C-
curve joinning given points. Another different point is that we do not use
the notion of circle maps and rotation numbers.

Lemma 2.1. A C-curve $s=(s_{j})_{i\leq j<k}$ is a b-curve if and only if it is a
cntical C-curve of $H$ in the set of all $\overline{C}$-curves from $s_{i}$ to $s_{k}$ .
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Proof. Let $H(t_{i+1}, \ldots, t_{k-1})=-|c(s_{i})-c(t_{i+1})|-\sum_{j=i+1}^{k-2}|c(t_{j+1})-c(t_{j})|-$

$|c(s_{k})-c(t_{k-1})|$ . If $s$ is a critical C-curve of $H$ , we have that

$0=\frac{\partial H}{\partial t,\langle})=\frac{jc(s_{j})-c(s_{j-1})(s_{i+1},\ldots,s_{k-1}}{|c(s_{j})-c(s_{j-1})|},\dot{c}(s_{j})\rangle-\langle\dot{c}(s_{j}),$

$\frac{c(s_{j+1})-c(s_{j})}{|c(s_{j+1})-c(s_{j})|}\rangle$

for $j=i+1,$ $\ldots$ , $k-1$ where $\dot{c}(s_{j})$ is the velocity vector of $c$ at $s_{j}$ . This
means that $s$ is a bcurve. $\square $

Lemma 2.2. Let $t_{i}<t_{i+1}<t_{i}+L$ . Then, there exists a unique b-curve
$s=(s_{j})_{j\in Z}$ such that $s_{i}=t_{i}$ and $s_{i+1}=t_{i+1}$ .

Proof. A billiard ball trajectory $x=(x_{j})_{j\in Z}$ is determined by two successive
points $x_{i}$ and $x_{i+1}$ in C. $\square $

Lemma 2.3. A b-segment is a b-geodesic.

Proof. This is a consequence of the definition. $\square $

Lemma 2.4. $H\dot{i}$ invariant under any tmnslation $U(q,p)$ , namely, if $s=$

$(s_{j})_{i\leq J\leq k}$ and $s^{\prime}=U(q,p)s=(s_{j}^{\prime})_{i+q\leq J\leq k+q},$ $s_{j}^{\prime}=s_{j-q}+pL$ , for any $ i+q\leq$

$j\leq k+q$ , then $H(s;i, k)=H(s^{\prime};i+q, k+q)$ . In particular, $s^{\prime}=U(q,p)s$

is a b-curve (geodesic, segment, ray and straight line, resp.) if $s$ is a b-curve
(geodesic, segment, my and straight tine, resp.).

Proof. $s$ and $s^{\prime}$ yield the same billiard ball trajectory as a plane figure in
E. $\square $

Lemma 2.5. If $s=(s_{i-1}, s_{i}, s_{i+1})$ and $s^{\prime}=(s_{i-1}^{\prime}, s_{i}^{\prime}, s_{i+1}^{\prime})$ are b-curves with
$s_{i}=s_{i}^{\prime}$ and $s\neq s^{\prime}$ , then $(s_{i-1}-s_{i-1}^{\prime})(s_{i+1}-s_{i+1}^{\prime})<0$ . In particular, if
$s_{i-1}^{\prime}\leq s_{i-1},$ $s_{i}^{\prime}=s_{i}$ and $s_{i+1}^{\prime}\leq s_{i+1}$ , then $s=s^{\prime}$ .

Proof. Let $x_{j}=c(s_{j})$ and $x_{j}^{\prime}=c(s_{j}^{\prime})$ for $j=i-1,$ $i,$ $i+1$ . Then, $x_{i}=x_{i}^{\prime}$ . If
$x_{i}^{\prime}$ is in the oriented subarc of $C$ from $x_{i-1}$ to $x_{i}$ , then $x_{i+1}^{\prime}$ is in the oriented
subarc of $C$ from $x_{i}$ to $x_{i+1}$ . Therefore, if $s_{i-1}<s_{i-1}^{\prime}<s_{i}=s_{i}^{\prime}$ , then
$s_{i}=s_{i}^{\prime}<s_{i+1}^{\prime}<s_{i+1}$ . The other case is proved in the same way.

We say that $s$ and $s^{\prime}$ as in the first part of Lemma 2.5 cross at $i$ . We
sometimes use this lemma for indirect proofs.
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Lemma 2.6. If $T(s_{i}, s_{i+1})$ intersects $T(s_{i}^{\prime}, s_{i+1}^{\prime})$ , namely $s_{i}<s_{i}^{\prime}<s_{i+1}^{\prime}<$

$s_{i+1}<s_{i}+L$ , then

$|c(s_{i+1})-c(s_{i})|+|c(s_{i+1}^{\prime})-c(s_{i}^{\prime})|<|c(s_{i+1}^{\prime})-c(s_{i})|+|c(s_{i+1})-c(s_{i}^{\prime})|$ .

namely,

$H(ss)+H(s^{\prime}s^{\prime})>H(ss^{\prime})+H(s^{l}s)$ .

Proof. Let $A=c(s_{i}),$ $B=c(s_{i}^{\prime}),$ $C=c(s_{i+1}^{l}),$ $D=c(s_{i+1})$ . For the four-
sided figure ABCD the sum of length of diagonal lines $AC+BD$ is greater
$thantheoneofapairofopositelinesBC+AD$ .

We say that $s$ and $s^{\prime}$ as in the assumption of Lemma 2.6 cmss between $i$

and $i+1$ .

Lemma 2.7. If $s_{i}<s_{k}<s_{i}+L(k-i)$ , then there exists a b-segment $s=$

$(s_{j})_{i\leq j\leq k}$ from $s_{i}$ to $s_{k}$ , namely $H(s;i, k)=H(i, k;s_{i}, s_{k})$ . If $s_{k}>s_{i}+L(k-i)$ ,
$k>i$ , then there exist no C-curve connecting $s_{k}$ and $s_{i}$ .

Pmof. Let $t=(t_{j})_{i\leq j\leq k}$ is defined as

$t_{j}=\frac{j-i}{k-i}s_{k}+\frac{k-j}{k-i}s_{i}$

for all $j$ with $i\leq j\leq k$ . Then, $t$ is a C-curve joinning $s_{i}$ to $s_{k}$ . The b-segment
$s$ mentioned in the statement is given as a C-curve minimizing $H$ in the set
of all C-curves connecting $s_{i}$ to $s_{k}$ .

If $s=(s_{j})_{i\leq j\leq k}$ is a configuration such that $s_{k}>s_{i}+L(k-i)$ , then at
least one of $s_{j+1}-s_{j}$ is greater than $L$ . Hence, $s$ is not a C-curve. a

Let $s=(s_{j})_{i\leq j\leq k}$ and $s^{\prime}=(s_{j}^{\prime})_{i\leq j\leq k}$ be b-geodesics such that $ T(s)\cap$

$ T(s^{\prime})=\emptyset$ . Suppose $s_{j}<s_{j}^{\prime}$ for al $i\leq j\leq k$ . Then, we have a strip
$[T(s), T(s^{\prime})]$ in $R^{2}$ whose lower boundary is $T(s)$ and upper boundary is
$T(s^{\prime})$ . We also denote $[T(s),T(s^{\prime})]\cap X$ as $[T(s),T(s^{\prime})]$ .

Proposition 2.8. Let $t_{j}$ and $t_{h}(i\leq j<h\leq k)$ be in the stri $[T(s), T(s^{\prime})]$

such that $t_{j}<t_{h}<t_{j}+L(h-j)$ . Then there exists a b-geodesic from $t_{j}$ to
$t_{h}$ in the strip $[T(s),T(s^{\prime})]$ .
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Proof. Let $i^{\prime}=(t_{m}^{\prime})_{j\leq m\leq h}$ be a C-curve from $t_{j}$ to $t_{h}$ in X. If $t^{\prime}$ does not lie in
$[T(s), T(s^{\prime})]$ , we deform it as follows. Let $m_{0}=\min\{m|s_{m}\geq t_{m}^{\prime}, j\leq m\leq h\}$

and $m_{1}=\max\{m|s_{m}\geq t_{m}^{\prime},j\leq m\leq h\}$ . Set $t^{\prime\prime}=(t_{m}^{\prime\prime})_{J\leq m\leq h}$ with $t_{m}^{\prime\prime}=t_{m}^{\prime}$

for $j\leq m\leq m_{0},$ $t_{m}^{J/}=s_{m}$ for $m_{0}+1\leq m\leq m_{1}$ , and $t_{m}^{\prime\prime}=t_{m}^{\prime}$ for
$m_{1}+1\leq m\leq h$ . The C-curve $t^{l/}$ lies in the upper half plane to $T(s)$ . Let
$m_{0}^{\prime}=\min\{m|s_{m}\leq t_{m}^{\prime\prime},j\leq m\leq h\}$ and $ m_{1}^{\prime}=\max\{m|s_{m}\leq t_{m}^{\prime\prime},j\leq$

$m\leq h\}$ . By using these $m_{0^{\prime}}$ and $m_{1}$
‘ we can get a C-curve $t^{\prime\prime\prime}$ which is

in the strip $[T(s), T(s^{\prime})]$ . Thus the set of all C-curves from $t_{j}$ to $t_{h}$ in the
strip $[T(s), T(s^{\prime})]$ is not empty. Let $t=(t_{m})_{j\leq m\leq h}$ be a C-curve at which
$H$ assumes its minimum in the set of all C-curves from $t_{j}$ to $t_{h}$ in the strip
$[T(s), T(s^{\prime})]$ . This C-curve is a b-geodesic in the strip $[T(s), T(s^{\prime})]$ because
of Lemma 2.1, 2.3, 2.5 and 2.6. $\square $

We sometimes need to consider b-segments, b-rays and b-straight lines in a
strip $[T(s),T(s^{\prime})]$ which are by definition H-minimal in the strip $[T(s), T(s^{\prime})]$

but not so possibly in the whole space X. We say that the set $W$ of b-curves
$t=(t_{j})_{i\leq j\leq k}$ is a foliation of the strip $[T(s), T(s^{\prime})]$ if there exists a unique
b-curve in $W$ through any point $t_{h}\in[T(s), T(s^{\prime})]$ .

Proposition 2.9. If $W$ is a foliation of the strip $[T(s), T(s^{\prime})]$ by b-curves,
then all b-curves $t=(t_{j})_{i\leq J\leq k}$ in the foliation $W$ are b-segments in the strip
$[T(s), T(s^{\prime})]$ . Moreover, if $t_{k}$ and $t_{m}$ are in a b-curve $t=(t_{j})_{i\leq j\leq k}\in W$ , then
the sub-b-curve $t=(t_{j})_{h\leq j\leq m}$ of $t=(t_{j})_{i\leq j\leq k}$ is the unique b-curve connecting
$t_{h}$ and $t_{m}$ in the strip $[T(s), T(s^{\prime})]$ .

Pmof. Let $P_{W}$ : $[T(s), T(s^{l})]\rightarrow[s_{i}, s_{i}^{\prime}]$ be the projection along the foliation
$W$ , namely $P_{W}(t_{j})=t_{i}$ for any $(j, t_{j})\in[T(s), T(s^{\prime})]$ where $t=(t_{h})_{i\leq h\leq k}\in W$

is the unique b-curve in $W$ through $t_{j}$ . Suppose $t=(t_{j})_{h\leq j\leq m},$ $ i\leq h\leq m\leq$

$k$ , is not a b-segment in the strip $[T(s), T(s^{\prime})]$ . Then, there exists a b-segment
$t^{\prime}=(t_{j}^{\prime})_{h\leq J\leq m}$ from $t_{h}^{l}=t_{h}$ to $t_{m}^{\prime}=t_{m}$ in the strip $[T(s), T(s^{j})]$ which is
different from $t$ , namely $t^{\prime}\not\in W$ . Let $M=\max\{P_{W}(t_{j}^{\prime})|h\leq j\leq m\}$ and
$N=\min\{P_{W}(t_{j}^{\prime})|h\leq j\leq m\}$ . Then, $M\neq t_{i}$ or $N\neq t_{i}$ . We will be able
to have the same contradiction in either case. So we suppose $M\neq t_{i}$ and
$M=P_{W}(t_{i_{0}}^{\prime})$ for some $h\leq i_{0}\leq m$ . Let $t^{\prime\prime}=(t_{j}^{\prime\prime})_{i<j\leq k}\in W$ with $t_{i}^{\prime\prime}=M$ .
Then, we have that $t_{i_{0}-1}^{\prime l}\geq t_{i_{0}-1}^{\prime},$ $t_{i_{0}}^{\prime\prime}=t_{i_{0}}^{\prime}$ and $t_{i_{0}+1}^{\overline{//}}\geq t_{i_{0}+1}^{\prime}$ because of
the definition of $M$ . From Lemma 2.5 we see that $t^{\prime\prime}=t^{\prime}$ , contradicting that
$t_{i}^{\prime}\neq M=t_{i}^{\prime\prime}$ .

The same argument proves the remaining part of the statement. $\square $
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3 Billiard segment
In this section we will show that some properties of billiard segments are
similar to those ones of minimizing geodesics in Riemannian geometry.

Proposition 3.1. Let $t=(t_{j})_{h\leq j\leq m}$ and $u=(u_{j})_{h\leq j\leq m}$ be b-segments with
$t\neq u$ . Then, $T(t)\cap T(u)$ contains at most two points. If $T(t)\cap T(u)=\{a, b\}$ ,
then $a$ and $b$ are common endpoints of $t$ and $u$ . Furthermore, there exists the
unique b-segment $fmmt_{i}$ to $t_{j}$ which is a sub-b-segment of $t$ for any $t_{j}$ if $t_{j}$

is not the endpoint $(i.e., j\neq i, m)$ of a b-sugment $t=(t_{j})_{i\leq j\leq m}$ .

Pmof. Suppose $T(t)\cap T(u)\supset\{a, b\}$ . We have to show that the following
three cases do not result.

1. There exist $h^{\prime}$ and $m^{\prime}$ such that $h^{\prime}\neq h$ or $m^{\prime}\neq m$ , and $h^{\prime}<m^{\prime}$ with
$a=(h^{\prime},t_{h^{\prime}})=(h^{\prime}, u_{h^{\prime}}),$ $b=(m^{l}, t_{m^{\prime}})=(m^{\prime}, u_{m^{\prime}})$ .

2. There exist $h^{\prime}$ and $m^{\prime}$ such that $a=(h^{\prime}, t_{h^{\prime}})=(h^{\prime}, u_{h^{\prime}})$ and $b=$

$T(t_{m^{\prime}},t_{m^{\prime}+1})\cap T(u_{m^{\prime}},u_{m^{\prime}+1})(b\not\in\{m^{\prime},m^{\prime}+1\}\times R)$ .

3. There exi$sth^{\prime}$ and $m^{\prime}$ such that $a=T(t_{h^{\prime}}, t_{h^{\prime}+1})\cap T(u_{h^{\prime}}, u_{h^{\prime}+1})$ and
$b=T(t_{m^{\prime}}, t_{m^{\prime}+1})\cap T(u_{m^{\prime}}, u_{m^{\prime}+1})(a, b\not\in\{h^{\prime}, h^{\prime}+1, m^{\prime},m^{\prime}+1\}\times R)$ .

Case (1): Suppose $m^{\prime}\neq m$ and $t_{m^{\prime}-1}<u_{m^{\prime}-1}$ . Since

$H(t_{m^{\prime}-1},t_{m^{\prime}}, t_{m^{\prime}+1})+H(u_{m^{\prime}-1},u_{m^{\prime}},u_{m^{\prime}+1})$

$=H(t_{m^{\prime}-1}, t_{m^{\prime}})+H(t_{m^{\prime}}, t_{m^{\prime}+1})+H(u_{m^{\prime}-1}, u_{m^{\prime}})+H(u_{m^{\prime}},u_{m^{\prime}+1})$

$=H(t_{m^{\prime}-1},t_{m^{\prime}}, u_{m^{\prime}+1})+H(u_{m^{\prime}-1},u_{m^{\prime}},t_{m^{\prime}+1})$

and both $(t_{m^{\prime}-1},t_{m^{\prime}}, u_{m^{\prime}+1})$ and $(u_{m^{\prime}-1}, u_{m^{\prime}}, t_{m^{\prime}+1})$ are not b-curves, there
exist $t_{m^{\prime}}^{\prime}$ and $u_{m^{\prime}}^{\prime}$ such that

$H(t_{m^{\prime}-1}, t_{m^{\prime}}, u_{m^{\prime}+1})+H(u_{m^{\prime}-1},u_{m^{l}},t_{m^{\prime}+1})$

$>H(t_{m^{\prime}-1},t_{m^{\prime}}^{\prime},u_{m^{\prime}+1})+H(u_{m^{\prime}-1}, u_{m^{\prime}}^{\prime},t_{m^{\prime}+1})$ .

Set

$t^{\prime}=(t_{h}, \ldots, t_{h^{\prime}},u_{h^{\prime}+1}, \ldots, u_{m^{\prime}-1},u_{m^{\prime}}^{\prime}, t_{m^{\prime}+1}, \ldots, t_{m})$

$u^{\prime}=(u_{h}, \ldots, u_{h^{\prime}},t_{h^{\prime}+1}, \ldots,t_{m^{\prime}-1}, t_{m^{\prime}}^{\prime},u_{m^{\prime}+1}, \ldots,u_{m})$
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Then, we have

$H(t;h, m)+H(u;h, m)>H(t^{\prime};h, m)+H(u^{\prime};h, m)$

and, hence,

$H(t;h, m)>H(t^{\prime};h, m)$ or $H(u;h, m)>H(u^{\prime};h, m)$ .

This contradicts the H-minimal property of $t$ and $u$ .
Case (2): Suppose $h^{\prime}<m^{\prime}$ . Set

$t^{\prime}=(t_{h}, \ldots , t_{h^{\prime}}, u_{h^{\prime}+1}, \ldots, u_{m^{\prime}}, t_{m^{\prime}+1}, \ldots, t_{m})$

$u^{l}=(u_{h}, \ldots, u_{h^{\prime}}, t_{h^{l}+1}, \ldots, t_{m^{\prime}}, u_{m^{\prime}+1}, \ldots, u_{m})$ .

By using Lemma 2.6 we have that

$H(t;h, m)+H(u;h, m)=\sum_{j=h}^{m-1}\{H(t_{j}, t_{j+1})+H(u_{j}, u_{j+1})\}$

$>\sum_{j=h}^{m^{\prime}-1}\{H(t_{j}, t_{j+1})+H(u_{j}, u_{j+1})\}+H(u_{m^{\prime}}, t_{m^{\prime}+1})$

$+H(t_{m^{\prime}}, u_{m^{\prime}+1})+\sum_{j=m+1}^{m-1}\{H(t_{j}, t_{j+1})+H(u_{j}, u_{j+1})\}$

$=H(t^{l}; h, m)+H(u^{\prime};h, m)$ ,

and, hence,

$H(t;h, m)>H(t^{\prime};h, m)$ or $H(u;h, m)>H(u^{\prime};h, m)$ ,

This is a contradiction.
Case (3): Suppose $h^{\prime}<m^{\prime}$ . Set

$t^{\prime}=(/, \ldots , t_{m})$
$u^{\prime}=(u_{h}, \ldots, u_{h^{\prime}}, t_{h^{\prime}+1}, \ldots, t_{m}/, u_{m^{\prime}+1}, \ldots, u_{m})$ .

In the same way as before we get

$H(t;h, m)>H(t^{l};h, m)$ or $H(u;h, m)>H(u^{l};h, m)$ ,
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a contradiction.
Therefore, if $T(t)\cap T(u)$ contains two points, then they are common

endpoints of $T(t)$ and $T(u)$ .
To prove the last part of the statement, let $t^{\prime}=(t_{k}^{l})_{i\leq k\leq j},$ $t_{i}^{\prime}=t_{i}$ and

$t_{j}^{\prime}=t_{j}$ be a bsegment which is not a sub-b-segment of $t=(t_{k})_{i\leq k\leq m}$ . Since
$(t_{j-1}^{\prime}, t_{j}, t_{j+1})$ is not a b-curve, there exists a b-segment $(t_{j-1}^{\prime},t_{j}^{\prime\prime}, t_{j+1})$ with

$H(t_{j-1}^{\prime}, t_{j}^{\prime\prime})+H(t_{j}^{\prime\prime}, t_{j+1})<H(t_{j-1}^{\prime}, t_{j})+H(t_{j}, t_{j+1})$

Then, we have a C-curve $(t_{i}^{\prime}, \ldots,t_{j-1}^{\prime},t_{j}^{\prime\prime},t_{j+1})$ which satisfies

$H(t_{i}^{\prime}, \ldots,t_{j-1}^{\prime}, t_{j}^{\prime l}, t_{j+1})<H(t_{i}, \ldots, t_{j+1})$ ,

contradicting that $t=(t_{k})_{i\leq k\leq m}$ is a bsegment. [:]

By the same reason as Proposition 3.1 we can prove the following.

Lemma 3.2. Let $s=(s_{j})_{j\geq:_{0}}$ and $t=(t_{j})_{j\geq:_{0}}(s=(s_{j})_{j\leq i_{0}}$ and $t=(t_{j})_{j\leq i_{O}}$ ,
resp. ) be $mys$ with $s_{i_{0}}\neq t_{i_{0}}$ and cmss. Then,

$\lim infj\rightarrow\infty|s_{j}-t_{j}|>0$ , ( $\lim_{j\rightarrow}\underline{\inf_{\infty}}|s_{j}-t_{j}|>0$ , resp.)

The following is for Lemma 3.4.

Lemma 3.3. Let $t=(t_{j})_{i\leq j\leq k}$ be a b-segment. Then,

$H(t;i, k)\geq-|t_{k}-u|+H(i, k;t_{i}, u)$ if $t_{i}+L(k-i)>u>t_{i}$

$H(t;i, k)\geq-|t_{i}-u|+H(i, k;u,t_{k})$ if $t_{k}-L(k-i)<u<t_{k}$

Pmof. Let $S=\{v|the$ first inequality is satisfied for any $u$ with $t_{i}<v<$
$u<t_{k}\}$ . Then, $ S\neq\emptyset$ . Let $v_{k}=\inf S$ . Suppose $v_{k}>t_{i}$ and $v=(v_{j})_{i\leq j\leq k}$ ,
$v_{i}=t_{i}$ , is a b-segment. Then, for any $u$ with $v_{k-1}<u<v_{k}$ , we have

$H(t;i, k)\geq-|t_{k}-v_{k}|+H(i, k;t_{i}, v_{k})$

$=-|t_{k}-v_{k}|+H(i, k-1;t_{i}, v_{k-1})+H(v_{k-1}, v_{k})$

$\geq-|t_{k}-v_{k}|-|v_{k}-u|+H(i.k-1;t_{i}, v_{k-1})+H(v_{k-1}, u)$

$\geq-|t_{k}-u|+H(i, k;t_{i}, u)$ ,

contradicting the choice of $v_{k}$ . Thus, $v_{k}=t_{i}$ . In the same way we can prove
the remaining part.
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The following inequality plays an important role in the study of the re-
lation between the straightness of billiard geodesics and the minimum set of
displacement functions.

Proposition 3.4. Let $s=(s_{j})_{i\leq J\leq k}$ and $t=(t_{j})_{i\leq J\leq k}$ be b-segments. Then,

$|H(t;i, k)-H(s;i, k)|\leq|t_{i}-s_{i}|+|t_{k}-s_{k}|$ .

Pmof. From Proposition 3.1 we have three cases:

(1) $ T(s)\cap T(t)=\emptyset$ .

(2) $T(s)\cap T(t)$ consists of one point.

(3) $T(s)\cap T(t)$ consists of two points.

Case (1): Suppose $t_{i}>s_{i}$ and $t_{k}>s_{k}$ . In this case we have two possibilities;
(i) $t_{i}<s_{k}$ and (ii) $t_{i}>s_{k}$ .

We first suppose (i) $t_{i}<s_{k}$ . Then,

$H(t;i, k)\geq-|t_{k}-s_{k}|+H(i, k;t_{i}, s_{k})$

$\geq-|t_{k}-s_{k}|-|t_{i}-s_{i}|+H(i, k;s_{i}, s_{k})$

$=-|t_{k}-s_{k}|-|t_{i}-s_{i}|+H(s;i, k)$ .

In the same way we have

$H(s;i, k)\geq-|s_{i}-t_{i}|+H(i, k;t_{i}, s_{k})$

$\geq-|t_{i}-s_{i}|-|t_{k}-s_{k}|+H(t;i, k)$ .

We suppose (ii) $t_{i}>s_{k}$ this time. Let $s^{a_{i}},$ $s^{a_{k}}$ , for $a=0,$ $\ldots,$
$n$ , be such

that

(a) $s_{i}=s^{0_{i}}<s_{i}^{1}<\cdots<s^{n_{i}}=t_{i}$ .

(b) $s_{k}=s^{0_{k}}<s_{k}^{1}<\cdots<s^{n_{k}}=t_{k}$ .

(c) $s_{i}^{a+1}<s^{a_{k}}<s_{i}^{a+1}+L(k-i)$ for $a=0,$ $\ldots,$
$n-1$ .

Rom the first conclusion we have

$|H(i, k;s^{a_{i}}, s^{a_{k}})-H(i, k;s_{i,k}^{a+1}s^{a+1})$ I $\leq|s_{i}^{a+1}-s^{a}i|+|s^{a+1}-s^{a}|$
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for all $a=0,$ $\ldots$ , $n-1$ . Hence, we have

$|H(t;i, k)-H(s;i, k)|\leq\sum_{a=0}^{n-1}|H(i, k;s_{t}^{a}, s^{a_{k}})-H(i, k;s_{i}^{a+1}, s_{k}^{a+1})|$

$\leq|t_{i}-s_{i}|+|t_{k}-s_{k}|$

Case (2): Let $u=(u_{j})_{i\leq j\leq k}$ be a bsegment from $u_{i}=s_{i}$ to $u_{k}=t_{k}$ . As the
limit of the Case (1) we have

$|H(t;i, k)-H(u;i, k)|\leq|t_{i}-s_{i}|$

$|H(s;i, k)-H(u;i, k)|\leq|t_{k}-s_{k}|$ .

Therefore, we get

$|H(t;i, k)-H(s;i, k)|\leq|t_{i}-s_{i}|+|t_{k}-s_{k}|$ .

Case (3): In this case $t_{i}=s_{i}$ and $t_{k}=s_{k}$ , and $H(t;i, k)=H(s;i, k)$ . Thus,
the equality sign holds true.

4 Displacement function and slope
Let $q,p\in Z$ with $0<|p/q|<1$ . We define the displacement function
$D=D(q,p)$ : $X\rightarrow X$ as

$D(s_{i})=D(q,p)(s_{i})=H(i,i+q;s_{i}, s_{i}+pL)$

for any $ s_{i}=(i, s_{i})\in$ X. This is equivalent to that $D(s_{i})=H(i,$ $i+$

$q;s_{i},$ $U(q,p)(s_{i}))$ for any $ s_{i}\in$ X. In this section $D$ mean$sD(q,p)$ unless
otherwise stated.

Since $C$ is a strictly convex simple closed curve with length $L$ , we have
the periodic property of the displacement functions.

Lemma 4.1. $D((i, s))=D((j, s+kL))$ for any integers $i,j,$ $k$ and any $s\in R$ .
Proposition 3.4 proves that the displacement functions are continuous in

X.

Lemma 4.2. $|D(s_{i})-D(t_{i})|\leq 2|t_{i}-s_{i}|$
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Let $s=(s_{j})_{j\in Z}$ be a b-curve and $x_{j}=c(s_{j})$ for all $ j\in$ Z. We call
$s=(s_{j})_{j\in Z}$ a periodic b-curve with period $(q,p)$ if $s_{j+q}=s_{j}+pL$ for all
$j\in Z$ . This implies that $x=(x_{j})_{i\leq j\leq i+q}$ is a periodic billiard ball trajectory
in $C$ for each $ i\in$ Z. The first variation formula and Lemma 2.1 show the
following existence lemma of periodic billiard ball trajectories.

Lemma 4.3. There exist $s_{i}$ in X such that $D(s_{i})=\min\{D(s)|s\in\{i\}\times R\}$ .
If $s=(s_{j})_{i\leq j\leq i+q}$ is a b-segment from $s_{i}$ to $s_{i+q}=s_{i}+pL$ , then the extension
of $s=(s_{j})_{i\leq j\leq i+q}$ as a b-curve is with period $(q,p)$ .

Pmof. The extension $s=(s_{j})_{j\in Z}$ is given by $s_{j}=U(q,p)^{k}(s_{h})=(j, s_{h}+kpL)$

if $j=kq+h,$ $0\leq h<k$ . In fact, $s=(s_{j})_{1\leq i\leq q+1}$ defined above is a bcurve
since $H(s;1,q+1)=H(s;0, q)$ . $\square $

The periodic b-geodesic $s=(s_{j})_{j\in Z}$ is said to be minimal if $D(s_{j})=$

$\min\{D(s)|s\in\{j\}\times R\}$ .

Proposition 4.4. Suppose $D$ assumes its minimum at $s_{i}$ . Then, there ex-
ists a unique minimal periodic b-geodesic through $s_{i}$ with period $(q,p)$ . The
minimal periodic b-geodesic is a b-stmight line.

Pmof. Let $s=(s_{j})_{j\in Z}$ and $t=(t_{j})_{j\in Z}$ be two minimal periodic b-geodesics
through $s_{i}$ with period $(q,p)$ . Suppose $s_{i+1}<t_{i+1}$ . Since $s=(s_{j})_{i\leq j\leq i+q}$

and $t=(t_{j})_{i\leq j\leq i+q}$ are b-segments, Proposition 3.1 proves that $T(s)\cap T(t)=$

$\{s_{i}, s_{i+q}\}$ . This means that $s_{i+q-1}<t_{i+q-1}$ . However, $s_{i+q}=t_{i+q},$ $s_{i+q+1}<$

$t_{i+q+1}$ , since $s$ and $t$ are periodic. This is impossible because $(s_{i+q-1},$ $s_{i+q}$ ,
$s_{i+q+1})$ and $(t_{i+q-1}, t_{i+q}, t_{i+q+1})$ are both bcurves and because of Lemma 2.5.
Hence, $s_{i+1}=t_{i+1}$ and $s=t$ .

By the same reasoning any minimal periodic bgeodesics with period $(q,p)$

do not cross. Since minimality and periodicity are invariant under transla-
tions $U(k, l)$ in X, $s^{\prime}=U(k, l)s$ is also a minimal periodic b-geodesic with
period $(q,p)$ for any minimal periodic b-geodesic $s$ with period $(q,p)$ . There-
fore $s^{\prime}$ and $s$ do not cross. Suppose a minimal periodic b-geodesic $s=(s_{j})_{j\in Z}$

with period $(q,p)$ is not a b-straight line. Then, there is a positive integer
$n$ such that a sub-b-geodesic $s=(s_{j})_{0\leq j\leq nq}$ is not a b-segment, and, in par-
ticular, $D(nq, np)(s_{0})\neq\min D(nq, np)$ . Let $t_{0}$ be such that $D(nq, np)(t_{0})=$

min $D(nq, np)$ and $t=(t_{j})_{j\in Z}$ the minimal periodic bgeodesic with period
$(nq,np)$ . Since $t^{k}=U(q,p)^{k}t$ is a minimal periodic b-geodesic with period
$(nq, np)$ for each $k\in Z,$ $t^{k}$ do not intersect each other if $t^{1}\neq t$ . However,
this is impossible because $t_{nq}^{n}=t_{0}+npL=t_{nq}$ . Therefore, $t^{k}=t$ for
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any $k\in Z^{+}$ , and, in particular, $H(O, nq;t_{0}, t_{nq})=H(t;0, nq)=nH(t;0, q)$ .
Hence, $nH(s;0, q)=H(s;0, nq)>H(t;0, nq)=nH(t;0, q)$ . This is a con-
tradiction to that min $D(q,p)=H(s;0, q)\leq H(t;0, q)$ . This states that $s$ is
a b-straight line. $\square $

This proves the following.

Theorem 4.5. If $D(q,p)$ is constant in X, then $R^{2}$ is foliated by minimal
periodic b-geodesics with period $(q,p)$ which are b-stmight lines.

The following shows the converse of Proposition 4.4.

Lemma 4.6. If a periodic b-geodesic $s=(s_{j})_{j\in Z}$ with period $(q,p)$ is a b-
stmight line, then it is minimal.

Pmof. Let $m=\min\{D(q,p)(u)|u\in\{i\}\times R\}$ . Let $t=(t_{j})_{j\in Z}$ be a minimal
periodic b-geodesic with period $(q,p)$ . By Proposition 3.4 we have

$nH(s;i,i+q)=H(s;i,i+nq)$

$<|t_{i}-s_{i}|+|t_{i+\mathfrak{n}q}-s_{i+nq}|+H(t;i, i+nq)$

$=2|t_{i}-s_{i}|+nH(t;i,i+q)$

$=2|t_{i}-s_{i}|+nm$ .

Hence,
$D(q,p)(s_{0})=H(s;i, i+q)\leq\frac{2|t_{i}-s_{1}|}{n}+m$ ,

and, therefore, we see that $D(q,p)(s_{0})\leq m$ as $ n\rightarrow\infty$ . Since $m$ is the
minimum of $D(q,p)$ , it follows that $D(q,p)(s_{0})=m$ . $[]$

It is stated in Theorem 9.37 of [17] that there exists a periodic b-curve
with period $(q,p)$ which is not minimal. The following is a sufficient condition
for that there is a“maximal” periodic geodesic with period $(q,p)$ .

Proposition 4.7. Let $s_{i}\in\{i\}\times R$ be such that $ D(s_{i})=\max\{D(s)|s\in$

$\{i\}\times R\}$ and $s=(s_{j})_{i\leq j\leq i+q}$ a b-segment $fmms_{i}$ to $s_{i+q}=s_{i}+pL$ . Let
$s=(s_{j})_{j\in Z}$ be the extension of $s$ as a b-curve. Suppose a sub-b-segment
$s=(s_{j})_{i\leq j\leq q+1}$ is a b-segment. Then, $s=(s_{j})_{j\in Z}$ is a periodic b-geodesic
unth period $(q,p)$ .
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Proof. We will prove that $U(q,p)s_{i+1}=s_{i+q+1}$ . Suppose $U(q,p)s_{i+1}\neq s_{i+q+1}$ .
Then, we have

$H(s_{i+q}, s_{i+q+1})+H(i+q+1, i+2q+1;s_{i+q+1}, U(q,p)s_{i+q+1})$

$>H(U(q,p)s;i+q,$ $i+2q+1$ ),

and, hence,

$H(i, i+q;s_{i+q+1},U(q,p)s_{i+q+1})$

$=H(i+q+1, i+2q+1;s_{i+q+1}, U(q,p)s_{i+q+1})$

$>H(U(q,p)s;i+q,$ $i+2q$) $>H(i, i+q;s_{i}, U(q,p)s_{i+q})$ ,

contradicting the choice of $s_{i}$ . $\square $

Let $s=(s_{j})_{j\geq i_{0}}$ ( $s=(s_{j})_{j\leq i_{0}}$ , resp. ) be a b-curve. We define the slope
$\alpha(s)$ of $s$ as follows.

$ a(s)=\lim\inf\frac{s_{j}}{j}j\rightarrow\infty$ $(a(s)=\lim_{j\rightarrow}\underline{\inf_{\infty}}\frac{s_{j}}{j},$ $resp.)$

Proposition 4.8. Let $s=(s_{j})_{j\in Z}$ be a periodic b-curve with period $(q,p)$ .
Then,

$a(s)=\lim_{j\rightarrow\pm\infty}\frac{s_{j}}{j}=\frac{pL}{q}$ .

Pmof. Let $j=iq+k(0\leq k<q)$ . Then,

$a(s)=\lim_{j\rightarrow\pm\infty}\frac{s_{1q+k}}{iq+k}=\lim_{i\rightarrow\pm\infty}\frac{s_{k}+ipL}{iq+k}=\frac{pL}{q}$ .

$\square $

Lemma 4.9. Let $s=(s_{j})_{j\geq i_{0}}$ ($s=(s_{j})_{j\leq i_{O}}$ , resp.) be a my. Then,

$\alpha(s)=\lim_{j\rightarrow\infty}\frac{s_{j}}{j}$ ( $\alpha(s)=\lim_{j\rightarrow-\infty}\frac{s_{j}}{j}$ , resp.)

exists.

Pmof. Suppose
$\lim_{j\rightarrow}\inf_{\infty}\frac{s_{j}}{j}<\frac{pL}{q}<\lim_{j\rightarrow}\sup_{\infty}\frac{s_{j}}{j}$
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where $p,$ $q\in Z^{+}$ . By Proposition 4.4 we have a periodic b-straight line
$s^{\prime}=(s_{j}^{\prime})_{j\in Z}$ with period $(q,p)$ . Since $\alpha(s^{l})=pL/q$ because of Proposition
4.8, the b-ray $s$ intersects the b-straight line $s^{\prime}$ many times, contradicting
Proposition 3.1.

The statement of the other case $s=(s_{j})_{j\leq i_{0}}$ is proved in the same way. $\square $

As an application we can prove the following.

Proposition 4.10. Let $s=(s_{j})_{j\in Z}$ be a b-straight line. Then,

$\alpha(s)=\lim_{j\rightarrow\pm\infty}\frac{s_{j}}{j}$

exists.

The slope is continuous in the set of all bstraight lines as seen in the
following.

Lemma 4.11. Let $s^{n}=(s_{j}^{n})_{j\in Z}$ be a sequence of b-stmight lines. If the
sequence $s^{n}$ converges to a b-stmight line $t=(t_{j})_{j\in Z}$ , then $a(s^{n})\rightarrow\alpha(t)$ as
$ n\rightarrow\infty$ .

Proof. Suppose for indirect proof that $\lim\sup_{n\rightarrow\infty}\alpha(s^{n})=\alpha>\alpha(t)$ . Then,
there exists a subsequence $s^{m}$ such that $\alpha(s^{m})>\alpha(t)$ converges to $\alpha>\alpha(t)$ .
We can find a periodic b-straight line $u=(u_{j})_{j\in Z}$ with period $(q,p)$ such
that $\alpha>pL/q=\alpha(u)>a(t)$ and $s_{j}^{m}>u_{j}$ for any $j\geq 0$ and $t_{j}<u_{j}$

for sufficiently large $j$ . The existence of such a bstraight line $u$ implies that
$s^{m}$ cannot converges to $t$ , a contradiction. Therefore, $\lim\sup_{n\rightarrow\infty}\alpha(s^{n})\leq$

$\alpha(t)$ . In the same way we can prove that $\lim\inf_{n\rightarrow\infty}a(s^{n})\geq\alpha(t)$ . These
inequalities complete the proof.

The following theorem due to Bangert ([1]) will be needed later. Here we
give a proof which is different from his.

Theorem 4.12. (Theorem 3.13 in [1]) Let $s=(s_{j})_{j\in Z}$ be a b-stmight
line, then either $U(q,p)s=s$ or $ T(U(q,p)s)\cap T(s)=\emptyset$ for any $q,p\in Z$ with
$0<p/q<1$ .

Pmof. Suppose $q>0,$ $ T(U(q,p)s)\cap T(s)\neq\emptyset$ and $T(U(q,p)s)\neq T(s)$ . Then,
Proposition 3.1 states that $T(U(q,p)s)\cap T(s)$ consists of a single point. Let
$i_{0}\in Z$ be such that the intersection is between $i_{0}$ and $i_{0}+q$ . We have two
cases (1) $(U(q,p)s)_{j}>s_{j}$ for all $j>i_{0}+q$ and (2) $(U(q,p)s)_{j}<s_{j}$ for all
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$j>i_{0}+q$ . For the case (2) we can have the same contradiction as the case
(1), so we take care of (1) only.

Let $s^{k}=U(q,p)^{k}s$ for $ k\in$ Z. Then, $s_{j}^{k}=s_{j-kq}+kpL$ for all $ j\in$ Z. Recall
Lemma 3.2 which states that there exists a positive $\delta$ such that $ s_{j}^{1}-s_{j}>\delta$

for all $j\geq i_{0}+q$ and $ s_{j}-s_{j}^{1}>\delta$ for all $j\leq i_{0}$ . Since, for $n>0$ ,

$s_{i_{0}+nq}^{n}-s_{i_{0}+nq}=\sum_{k=1}^{n}s_{i_{0}+nqi_{0}+nq}^{k}-s^{k-1}$

$=\sum_{k=1}^{n}s_{i_{0}+(n-k+1)q}^{1}-s_{i_{0}+(n-k+1)q}>n\delta$,

we have
$a(s)\leq\frac{p}{q}L-\frac{\delta}{q}$ .

On the other hand, we have, $for-n<0$ ,

$s_{i_{0}-nq}-s^{-n_{i_{0}-nq}}=\sum_{k=0}^{n-1}s_{i_{0}-nq}^{-k}-s_{i_{0}-nq}^{-(k+1)}$

$=\sum_{k=0}^{n-1}s_{i_{0}-(n-(k+1))q}^{1}-s_{i_{0}-(n-(k+1))q}<-n\delta$ ,

and, hence,
$\alpha(s)\geq\frac{p}{q}L+\frac{\delta}{q}$ ,

contradicting the above inequality. $\square $

The diameter $d$ of $C$ is by definition

$d=\max\{|c(s)-c(t)||s, t\in R\}$ .

The diameter is characterized by a billiard ball trajectory as follows.

Lemma 4.13. A b-stmight line $s=(s_{j})_{j\in Z}$ is with period $(2, 1)$ if and only
$if|c(s_{j+1})-c(s_{j})|$ is the diameter of $C$ for all $j\in Z$ .

Pmof. Suppose $|c(t_{1})-c(t_{0})|$ is the diameter of $C$ where $0\leq t_{0}<L$ and
$t_{0}<t_{1}<t_{0}+L$ . Let $t=(t_{j})_{j\in Z}$ be a b-curve which is the extension of $(t_{0}, t_{1})$ .
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Then, $t_{2j}=t_{0}+jL,$ $t_{2j+1}=t_{1}+jL$ for any $j\in Z$ which are the parameters
of the endpoints of a diameter of $C$ . Hence, we have

$H(i,j;t_{i},t_{j})\geq\sum_{k=i}^{j-1}H(t_{k}, t_{k+1})=H(t;i,j)$

for all $i<j$ . This implies that $t$ is a periodic bstraight line with period
$(2,1)$ , proving the “if’ part.

The “only if‘ part follows from Lemma 4.6 and the definition of the
diameter. In fact, $D(2,1)$ assumes its minimum at $t_{j}$ for all $j\in Z$ such that
$c(t_{j})$ is an endpoint of the diameter.

Lemma 4.14. Let $s=(s_{j})_{j\in Z}$ be a b-straight line. Suppose there exists an
$i\in Z$ such that the segment $T(c(s_{i}), c(s_{i+1}))$ of the billiard ball trajectory is
perpendicular to $\dot{c}(s_{i})$ , namely $s_{i+1}=s_{i-1}+L$ . Then, $|c(s_{j+1})-c(s_{j})|$ is the
diameter of $C$ for any $j\in Z$ .

Pmof. According to Theorem 4.12, we see $U(2,1)s=s$ since $s_{i+1}=s_{i-1}+L$ ,
and, therefore, the b-straight line $s$ has period $(2,1)$ . Lemma 4.13 states that
$|c(s_{j+1})-c(s_{j})|$ is the diameter of C.

The following lemma is obvious because of Proposition 2.9 and the defi-
nition of the slope, since the Birkhoff theorem states (Theorem 12.2.13 and
Corollary 12.2.14 in [17]) that a closed simpule curve not null-homotopic in
$\Omega$ which is invariant under $\varphi$ is the graph of a Lipschitz continuous function
$C\rightarrow(-1,1)$ .

Lemma 4.15. Let $f$ be a closed simple curve not null-homotopic in $\Omega$ invari-
ant under the billiard ball map $\varphi$ and let $W$ be a foliation of X by b-curves
which are determined by all points $\overline{x}\in f$ . Then, those b-curves are b-stmight
lines and have the same slope.

The following theorem due to Bangert ([1]) plays an important role in the
proof of Theorem 1.1. Here $M_{a}$ denotes the set of all bstraight lines with
slope $\alpha=aL$ where $0<a<1$ .
Theorem 4.16. (Theorem 4.1 in [1]) If $a$ is an irrational number wzth
$0<a<1$ , then $M_{a}$ is totally ordered, namely either $t=s$ or $ T(t)\cap T(s)=\emptyset$

holds true for any $s$ and $t\in M_{a}$ .
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Here is the proof of the theorem which is different from Bangert’s. Lem-
mas 4.17 to 4.21 are for the proof of the theorem. Let

$\Omega(s)=\{s^{*}|s^{*}=\lim_{n\rightarrow\infty}U(-j_{n}, k_{n})s,j_{n}\rightarrow\infty\}$ ,

$B(s)=\{U(q,p)s|q,p\in Z\}$

and $\overline{B(s)}$ its closure.

Lemma 4.17. $\lim\sup_{j\rightarrow\infty}$ I $ s_{j}-t_{j}|<\infty$ .

Pmof. Suppose there exists a sequence $j_{n}$ such that $j_{n}\rightarrow\infty,$ $t_{j}$. $-s_{j}$. $\rightarrow\infty$

as $ n\rightarrow\infty$ . If we set $s^{\prime}=U(O, k)s$ , then $s_{j}^{\prime}-s_{j}=kL$ . Hence we can
find a kstraight line such that $ T(s^{l})\cap T(t)\neq\emptyset$ and $\alpha(s^{\prime})=\alpha(s)=aL$ .
Since $(U(k, m)t)_{j}-(U(k, m)s^{l})_{j}=t_{j-k}-s_{j-k}^{\prime}$ , there exist $k,$ $m\in Z$ such
that $T(U(k, m)t)$ intersects $T(U(k, m)s^{\prime})$ between $0$ and 1. We denote them
as $t$ and $s$ again instead of $U(k, m)t$ and $U(k, m)s^{\prime}$ . Let a positive integer
$q$ be such that $3L<t_{q}-s_{q}$ . Let a positive integer $p\in Z$ be such that
$s_{q}+L<s_{0}+pL<s_{q}+2L$ . Then, the interval $[s_{0}, s_{0}+L]$ in $\{0\}\times R$ is
translated to the interval $[s_{0}+pL, s_{0}+(p+1)L]$ in $\{q\}\times R$ by $U(q,p)$ . Notice
that it is contained in the interval $[s_{q}, t_{q}]$ in $\{q\}\times R$ . Let $u=(u_{j})_{j\in Z}$ be
a minimal periodic geodesic with period $(q,p)$ such that $u_{0}\in[s_{0}, s_{0}+L$).
Then, $T(u)$ intersects both $T(t)$ and $T(U(O, 1)s)$ between $0$ and $q$ . Hence,
we have the ineqality

$aL=\alpha(t)>a(u)=\frac{p}{q}L>a(U(0,1)s)=a(s)=aL$ .

a contradiction. $\square $

Lemma 4.18. Let $s,$ $t\in M_{a}$ . Then, there exist $s^{*}\in\Omega(s)$ and $t^{*}\in\Omega(t)$ such
that $U(q,p)s^{*}$ does not intersect $t^{*}for$ all $q,p\in Z$ .

Pmof. Let $j_{n},$ $k_{n}\in Z$ be a sequence such that $(U(-j_{n}, k_{n})t)_{0}=t_{j_{n}}+k_{n}L$

converges in $\{0\}\times R$ as $ j_{n}\rightarrow\infty$ . Since $|t_{j}-s_{j}|$ is bounded for $j>$
$0$ because of Lemma 4.17, there exist subsequnces $j_{m}$ and $k_{m}$ of $j_{n}$ and
$k_{n}$ such that $s_{j_{m}}+k_{m}L$ converges in $\{0\}\times R$ . Then, the intersections
$T(U(-j_{m}, k_{m})t)\cap T(U(-j_{m}, k_{m})s)$ go away to the backward infinity. Thus,
$s^{*}=\lim_{m\rightarrow\infty}U(-Jm’ k_{m})s$ does not intersect $t^{*}=\lim_{m\rightarrow\infty}U(-j_{m}, k_{m})t$ . The
same argument can be applied to $U(q,p)s$ . $\square $
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Lemma 4.19. Let $s,$ $t\in M_{a}$ . Assume that $U(q,p)s$ does not intersects $t$ for
all $q,p\in Z$ . Then, $\Omega(s)=\Omega(t)$ .

Pmof. Let $u\in\Omega(s)$ and $u=\lim_{n\rightarrow\infty}U(-j_{n}, k_{n})s$ . Set $s^{n}=U(-j_{n}, k_{n})s$ .
We can suppose without loss of generality that $s^{n}$ is monotone in the sense
that $s_{j}^{n}$ is monotone for each $j\in Z$ , say $s_{j}^{n}<s_{j}^{n+1}$ . If we find $q_{\mathfrak{n}},p_{n}\in Z$

such that
$s_{j}^{n}\leq(U(q_{n},p_{\mathfrak{n}})t)_{j}\leq s_{j}^{\mathfrak{n}+1}$

for all $j\in Z$ , we conclude that $u\in\Omega(t)$ , and, hence, $\Omega(s)\subset\Omega(t)$ . To
prove this inequality, let $s^{n+1}=U(a, b)s^{n}$ for some $a,$ $ b\in$ Z. Let $I^{n_{i}}=$

$U(-a, -b)^{i}([s_{-ai}^{\mathfrak{n}}, s_{-ai}^{n+1}])$ where $[s_{-ai}^{n}, s_{-ai}^{n+1}]\subset\{-ai\}\times R$ for a positive
$i$ . Then, $I^{n_{i}}\subset\{O\}\times R$ . Let $I^{n_{i}}=[x_{i}, y_{i}]$ for all $i>0$ . Then, we see

$y_{i+1}=(U(-a, -b)^{i+1}s^{n+1})_{0}$

$=s_{-a(i+1)}^{n+1}-b(i+1)L$

$=(U(a, b)s^{n})_{-\mathfrak{a}(i+1)}-b(i+1)L$

$=s_{-ai}^{n}-bL$

$=(U(-a, -b)^{i}s^{n})_{0}$

$=x_{i}$

Since $x_{i}=y_{i+1}>x_{i+1}$ for all $i>0$ , the sequence $x_{i}$ is monotone decreas-
ing. It is not bounded from below. In fact, if it is not true, then we have a
limit point $z$ , and, hence,

$z=\lim_{i\rightarrow\infty}(U(-a, -b)^{i}s^{n})_{0}=U(a, b)\lim_{i\rightarrow\infty}(U(-a, -b)^{i-1}s^{n})_{0}=U(a, b)z$ ,

which implies that the limit b-straight line $u$ has slope $\alpha(u)=bL/a$ , contra-
dicting the continuity of the slope. So we have

$\bigcup_{i=0}^{\infty}I_{i}^{n}=(-\infty, s_{0}^{n+1}]$ .

Thus, there exist $k_{0}$ and $i_{0}$ such that $t_{0}+k_{0}L\in I^{\mathfrak{n}_{i_{0}}}$ . Then,

$(U(-a, -b)^{i_{0}}s^{n})_{0}\leq t_{0}+k_{0}L\leq(U(-a, -b)^{i_{0}}s^{\mathfrak{n}+1})_{0}$

and, in other words,

$s_{j}^{\mathfrak{n}}\leq(U(a, b)^{i_{0}}U(0, k_{0})t)_{j}\leq s_{j}^{\mathfrak{n}+1}$

for all $j\in Z$ because of our assumption. We set $q_{n}=ai_{0}$ and $p_{\mathfrak{n}}=bi_{0}+k_{0}$ .
The other inclusion relation $\Omega(t)\subset\Omega(s)$ is proved by the same way.
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Lemma 4.20. Let $s,$ $t\in M_{a}$ . Then, $\Omega(s)=\Omega(t)$ .

Proof. Let $s^{*}\in\Omega(s),$ $t^{*}\in\Omega(t)$ be as in Lemma 4.19 for $s$ and $t$ . Then, each
pair $s$ and $s^{*},$ $s^{*}$ and $t^{*},$ $t^{*}$ and $t$ satisfies the assumption of Lemma 4.17,
and, hence, we have

$\Omega(s)=\Omega(s^{*})=\Omega(t^{*})=\Omega(t)$

$\square $

Set $\Omega(a)=\Omega(s)_{0}$ where $s\in M_{a}$ and $\Omega(s)_{0}=$ { $s_{0}^{*}\in R$ I $s^{*}\in\Omega(s)$ }.
Notice that $\Omega(a)\subset\overline{B(t)}$ for any $t\in\overline{B(s)}$ . Let $\bigcup_{\lambda}O^{\lambda}=R-\Omega(a)$ and
$O^{\lambda}=(x^{\lambda}, y^{\lambda})$ . Since $x^{\lambda},$ $y^{\lambda}\in\Omega(a)$ , we see that there exist $u^{\lambda}$ and $v^{\lambda}$ in $\overline{B(t)}$

such that $u_{0}^{\lambda}=x^{\lambda}$ and $v_{0}^{\lambda}=y^{\lambda}$ . Notice that there is no b-straight line with
slope $aL$ in the strip $[T(u^{\lambda}), T(v^{\lambda})]$ .

Lemma 4.21. $v_{i}^{\lambda}-u^{\lambda_{j}}\rightarrow 0$ as $ j\rightarrow\pm\infty$ .

Proof. Since $a$ is irrational, $[U(-j, k)u^{\lambda_{j}}, U(-j, k)v_{j}^{\lambda}]$ in $\{0\}\times R$ are mu-
tually disjoint. Moreover, when they are translated into $\{0\}\times[u_{0}^{\lambda},$ $u^{\lambda_{0}}+$

$L]$ by some $U(O, m)$ , they are also mutually disjoint. Therefore, we have
$\sum_{j=-\infty}^{\infty}$ I $u_{j}^{\lambda}-v^{\lambda_{j}}|\leq L$ . The lemma follows from this. $\square $

Pmof of Theorem 4.16: Let $s,$ $t\in M_{a}$ . Suppose $s_{0}\in O^{\lambda}$ and $t_{0}\in O^{\mu}$ . If
$\lambda\neq\mu$ , then $s\in[T(u^{\lambda}), T(v^{\lambda})]$ and $t\in[T(u^{\mu}), T(v^{\mu})]$ . Hence $T(s)$ does not
intersect $T(t)$ , since $ O^{\lambda}\cap O^{\mu}=\emptyset$ . If $\lambda=\mu$ , then $|s_{j}-t_{j}|\leq$ I $u_{j}^{\lambda}-v_{j}^{\lambda}|\rightarrow 0$

as $ j\rightarrow\pm\infty$ . It follows from Lemma 3.2 that $T(s)$ does not intersect $T(t)$ if
$s\neq t$ .

Since the slope is invariant under all translations, the following is a direct
consequence of Theorem 4.16.

Theorem 4.22. Let $a=aL$ where $a$ is an irmtional number with $0<a<1$
Suppose there passes a b-stmight line thmugh any point $s_{0}\in\{O\}\times R$ with
slope $a$ . Then, those b-stmight lines yield a foliation of X which is invariant
under all tmnslations, and, therefore, corresponds to a closed simple curve
not null-homotopic in $\Omega$ invariant under the billiard ball map $\varphi$ .

We say that a b-ray $s=(s_{j})_{j\geq i_{1}}$ is maximal if any extension $t=(t_{j})_{j\geq i_{2}}$ ,
$i_{2}<i_{1}$ , of $s$ as a bcurve is not a b-ray.
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Lemma 4.23. Let $\alpha=aL$ where $a$ is a number with $0<a<1$ . Suppose
there exists a unique b-my $s=(s_{j})_{j\geq i}$ from any point $s_{i}$ in X with slope $\alpha$ .
Then, any maximal b-my with slope $a$ is a b-stmight line, and, hence, those
stmight lines yield a foliation of X which is invariant under all tmnslations.

Pmof. Suppose there exists a maximal b-ray $s=(s_{j})_{J\geq i_{0}}$ which is not a $k$

straight line. Let $k$ be an integer such that $k\leq s_{i_{0}}<k+L$ . For each $t_{i_{0}-1}$

with $k-L\leq t_{i_{0}-1}<k+L$ let $t=(t_{j})_{j\geq i_{0}-1}$ be a unique b-ray from $t_{i_{0}-1}$

with slope $\alpha$ as in the assumption. Since $t_{i_{0}}$ continuously depends on $t_{1_{0}-1}$ ,
there exists a $t_{i_{0}-1}=s_{i_{0}-1}$ such that $t_{i_{0}}=s_{i_{0}}$ . The uniqueness of brays from
$s_{i_{0}}$ with slope $a$ implies that the bray $t=(t_{j})_{j\geq i_{0}-1}$ with $t_{i_{0}-1}=s_{i_{0}-1}$ is an
extension of $s=(s_{j})_{j\geq i_{0}}$ , contradicting the maximal property of $s$ .

5 Billiard asymptote
Let $s=(s_{j})_{j\geq i_{0}}$ be a b-ray. In order to develop the theory of parallels due
to H. Busemann, we first define the Busemann function of a b-ray $s$ in the
configuration space as

$B_{s}(i,t_{i})=B_{s}(t_{i})=\lim_{n\rightarrow\infty}\{H(i,n;t_{i}, s_{n})-H(s;i_{0}, n)\}$

for any $(i,t_{i})\in X$ (see [2], [6], [10]). Lemmas 5.1 to 5.5 prove that the limit
of the right-hand side exists, and, hence, the Busemann function is defined.
In the same way we define the Busemann function of a bray $s=(s_{j})_{j<i_{0}}$ as
$ n\rightarrow-\infty$ instead of $ n\rightarrow\infty$ . We states the properties and $proo\overline{f}s$ for
only the case $s=(s_{j})_{j\geq i_{0}}$ . However, the same properties are true under the
suitable change of the expression unless otherwise stated.

Lemma 5.1. $\lim_{j\rightarrow\infty}s_{j}=\infty$ .

Pmof. If $\{s_{j}\}_{j\geq i_{0}}$ is bounded above, then $s_{j}$ converges to a real number $a$ as
$ j\rightarrow\infty$ , since $\{s_{j}\}_{J\geq:_{o}}$ is monotone increasing. In particular, $|s_{j}-s_{j+1}|\rightarrow$

$0$ as $ j\rightarrow\infty$ . Then, $H(s_{j}, s_{j+1})\rightarrow 0$ as $ j\rightarrow\infty$ . Let $s_{i_{0}+1}^{\prime}$ be a point in
X such that

$H(s_{i_{0}}, s_{i_{0}+1})>H(s_{i_{0}}, s_{1_{0}+1}^{\prime})+H(s_{i_{0}+1}^{\prime}, s_{i_{0}+1})$ .
Then, there exists a $k_{0}$ such that

$H(s_{1_{0}}, s_{i_{0}+1})-H(s_{1}o’ s_{i}^{l}o+1)-H(s_{i_{0}+1,:_{0+1}}^{\prime}s)$

$>H(ss)-H(ss)-H(ss)$ .
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Let $s^{\prime}=(s_{j}^{\prime})_{j\geq i_{0}}$ be given by $s_{i_{0}}^{\prime}=s_{i_{0}},$ $s_{i_{0}+1}^{\prime}=s_{i_{0}+1}^{\prime},$ $s_{j}^{\prime}=s_{j-1}$ for
$i_{0}+2\leq j\leq k_{0}-1$ and $s_{j}^{l}=s_{j}$ for $k_{0}\leq j$ . Then, we have

$H(s^{\prime};i_{0}, k_{0})=\sum_{j=i_{0}}^{k_{0}-1}H(s_{j}^{\prime}, s_{j+1}^{\prime})$

$=H(s_{i_{0}}, s_{i_{0}+1}^{\prime})+H(s_{i_{0}+1}^{\prime}, s_{i_{0}+1})$

$+\sum_{j=i_{0}+1}^{k_{0}-3}H(s_{j}, s_{j+1})+H(s_{k_{0}-2}, s_{k_{0}})$

$<H(s_{i_{0}}, s_{i_{0}+1})+\sum_{j=i_{0}+1}^{k_{0}-3}H(s_{j}, s_{j+1})$

$+H(s_{k_{0}-2}, s_{k_{0}-1})+H(s_{k_{0}-1}, s_{k_{0}})$

$=H(s;i_{0}, k_{0})$ .

This contradicts that $s$ is a b-ray. $\square $

Lemma 5.2. $\ell;=\lim\sup_{j\rightarrow\infty}(s_{j+1}-s_{j})<L$ .

Pmof. Suppose $\ell=L$ . Then, there exists a $k_{0}$ such that

$H(ss)-H(ss^{\prime})-H(s^{\prime}s)$

$>H(ss)-H(ss)-H(ss)$ ,

since $s_{j+1}-s_{j}=L$ implies that $H(s_{j+1}, s_{j})=0$ . From this we can get the
same contradiction as in the proof of Lemma 5.1. $\square $

Lemma 5.3. There enists a b-segment from $(i, t)$ to $(n, s_{n})$ for sufficiently
large $n$ .

Proof. Let $\ell<\ell^{\prime}<L$ . There exists a $k_{0}$ such that $s_{k+1}-s_{k}\leq\ell^{\prime}$ for all
$k\geq k_{0}$ . Hence, for any $(i, t)\in X$ we have

$s_{n}-t=(s_{n}-s_{n-1})+\cdots+(s_{k_{0}+1}-s_{k_{0}})+(s_{k_{0}}-t)$

$<\ell^{\prime}(n-k_{0})+(s_{k_{0}}-t)<L(n-i)$

for sufficiently large $n$ . Lemma 2.7 proves the existence of a b-segment from
$(i, t)$ to $(n, s_{n})$ . $\square $
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Lemma 5.4. There exists a $k_{0}$ such that $H(i, n;t, s_{n})-H(s;i_{0}, n)$ is mono-
tone decreasing in $n\geq k_{0}$ .

Pmof.
$H(i,n;t, s_{n})-H(s;i_{0}, n)$

$=\{H(i, n;t, s_{n})+H(s_{\mathfrak{n}}, s_{n+1})\}-\{H(s;i_{0}, n)+H(s_{\mathfrak{n}}, s_{n+1})\}$

$\geq H(i,n+1;t, s_{\mathfrak{n}+1})-H(s;i_{0},n+1)$ .

Let $t^{n}$ be a sequence of bsegments from $(i, t)$ to $s_{n}$ . Choose a subsequence
$t^{m}$ which converges to a b-ray, say $u=(u_{j})_{j\geq i}$ . Since $u$ is a b-ray, $s_{0}$ can be
joinned to $u_{k_{0}}$ by a b-segment for sufficiently large $k_{0}$ .

Lemma 5.5. $H(i, n;t, s_{\mathfrak{n}})-H(s;i_{0}, n)$ is bounded below.

Proof. Since $H(s;i_{0}, m)\leq H(i_{0}, k_{0};s_{i_{0}}, t_{k_{0}}^{m})+H(k_{0}, m;t_{k_{0}}^{m}, s_{m})$ , we have

$H(i, m;t, s_{m})-H(s;i_{0},m)\geq H(i, k_{0};t, t_{k_{0}}^{m})-H(i_{0}, k_{0};s_{i_{0}},t_{k_{0}}^{m})$ .

The right-hand side converges to some number as $ m\rightarrow\infty$ . Hence, the
left-hand side is bounded below for all $n$ because of Lemma 5.4. [:]

These prove that the Busemann function of a kray $s$ can be defined. The
following lemma states that Busemann functions are continuous.

Lemma 5.6. Let $s=(s_{j})_{j\geq:_{0}}$ be a b-my. Then,

$|B_{s}(i,t_{i})-B_{s}(i, u_{i})|\leq|t_{i}-u_{i}|$

for any $(i, t_{i}),$ $(i, u_{i})\in X$ .

Pmof. This is because

$|\{H(i, n;t_{i}, s_{n})-H(s;i_{0},n)\}-\{H(i,n;u_{i}, s_{n})-H(s;i_{0},n)\}|$

$=|H(i,n;t_{i}, s_{\mathfrak{n}})-H(i,n;u_{i}, s_{n})|\leq|t_{i}-u_{i}|$ .

The last inequality comes from Proposition 3.4. $[]$

The following lemma shows that a Busemann function is invariant under
any translation.
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Lemma 5.7. Let $s^{\prime}=U(q,p)s$ , namely, $s_{j}^{\prime}=s_{j-q}+pL$ . Then,

$B_{s}(i-q, t-pL)=B_{s^{\prime}}(i, t)$

for any $(i, t)\in X$ .

We remember how to find a parallel to a straight line $K$ in the Euclidean
geometry. The way of defining the Busemann functions follows this process.
A Busemann function is like a height function along a straight line $K$ .

Lemma 5.8. Let $t,$ $u\in R$ and $i\in Z,$ $m\in Z^{+}$ such that $t<u<t+mL$ .
Then,

$B_{s}(i, t)\leq H(i, i+m;t, u)+B_{s}(i+m, u)$

Pmof.
$B_{s}(i, t)=\lim_{n\rightarrow\infty}\{H(i, n;t, s_{n})-H(s;i_{0}, n)\}$

$\leq\lim_{n\rightarrow\infty}\{H(i, i+m;t, u)+H(i+m, n;u, s_{n})-H(s;i_{0}, n)\}$

$=H(i, i+m;t, u)+B_{s}(i+m, u)$

$\square $

In the Euclidean geometry the equality sign holds true if $u$ is in the
parallel line through $t$ to $s$ . This lemma motivates us to define something
just like parallels. Let $t=(t_{j})_{j\geq i_{1}}$ be a C-curve. We say that $t$ is a co-b-my
to a bray $s=(s_{j})_{j\geq i_{0}}$ if

$B_{s}(i,t_{i})=H(i, i+m;t_{i}, t_{i+m})+B_{s}(i+m, t_{i+m})$

for any $i\geq i_{1}$ and $m>0$ .
We say that a C-curve $t=(t_{j})_{j\in Z}$ is a b-asymptote to a b-ray $s=(s_{j})_{j\geq i_{0}}$

if any sub-bcurve $t=(t_{j})_{j\geq i}$ of $t$ is a co-bray to $s$ . We say that a C-curve
$t=(t_{j})_{j\in Z}$ is a b-pamllel to a $b$ straight line $s=(s_{j})_{j\in Z}$ if sub-b-curves
$(t_{j})_{j\geq i}$ and $(t_{j})_{J\leq i}$ are co-brays to $b_{\neg}rays(s_{j})_{j\geq 0}$ and $(s_{j})_{j\leq 0}$ respectively for
each $i\in Z$ .

First we should prove the following.

Lemma 5.9. If $t=(t_{j})_{j\geq i_{1}}$ is a co-b-ray to a b-ray $s=(s_{j})_{j\geq:_{0}}$ , then $t$ is a
b-my.
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Pmof. For each $j\geq i_{1}$ and $m>0$ we have

$H(j,j+m;t_{j},t_{j+m})=B_{s}(j, t_{j})-B_{s}(j+m,t_{j+m})$

$=\sum_{k=0}^{m-1}\{B_{s}(j+k, t_{j+k})-B_{s}(j+k+1, t_{j+k+1})\}$

$=\sum_{k=0}^{m-1}H(t_{j+k},t_{j+k+1})$

$=H(t;j,j+m)$ .

Lemma 5.10. Let $s=(s_{j})_{j\geq i_{0}}$ and $t=(t_{j})_{j\geq i_{1}}$ be b-mys. If $\lim_{j\rightarrow\infty}|s_{j}-t_{j}|=$

$0$, then $B_{s}(i, u)=B_{\ell}(i, u)-B_{t}(i_{0}, s_{i_{0}})$ for any $(i, u)\in X$ and they are co-b-
mys to each other.

Pmof. For any $(i, u)\in X$ we have

$B_{s}(i, u)=\lim_{\mathfrak{n}\rightarrow\infty}\{H(i,n;u, s_{\mathfrak{n}})-H(s;i_{0}, n)\}$

$=\lim_{n\rightarrow\infty}\{H(i,n;u,t_{n})-H(i_{0},n;s_{i_{0}}, t_{\mathfrak{n}})\}$

$=B_{t}(i,u)-B_{t}(i_{0}, s_{1_{0}})$

The following proves the remaining part.

$B_{s}(i, t_{i})=B_{\ell}(i.t_{i})-B_{t}(i_{0}, s_{i_{0}})$

$=H(i,i+m;t_{i},t_{i+m})+B_{\ell}(i+m,t_{i+m})-B_{\ell}(i_{0}, s_{i_{0}})$

$=H(i, i+m;t_{i},t_{i+m})+B_{s}(i+m,t_{i+m})$ .

If $t^{\mathfrak{n}}=(t_{j}^{n})_{i_{1}\leq j\leq n}$ be a bsegment from $t_{i_{1}}^{\mathfrak{n}}$ to $s_{n}$ and a sequence $t_{i_{1}}^{n}$ is
bounded, then there exists a sub-sequence $t^{m}$ which converges a b-ray. It is
a parallel in Euclidean geometry. In our geometry we have the same result.

Lemma 5.11. Let $t^{m}=(t_{j}^{m})_{i_{1}\leq j\leq n}$ be a b-segment from $t_{i_{1}}^{m}$ to $s_{\mathfrak{n}}$ . If a
sequence $t^{m}$ converges to a b-my $t=(t_{j})_{j\geq i_{1}}$ , then $t$ is a co-b-my to $s$ .
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Proof. Since

$H(i, m;t_{i}^{m}, s_{m})-H(s;i_{0}, m)$

$=H(i, i+k;t^{m_{i}}, t_{i+k}^{m})+H(i+k, m;t_{i+k}^{m}, s_{m})-H(s;i_{0}, m)$

for all $k\in Z^{+}$ , we have

$B_{s}(i, t_{i})=H(i, i+k;t_{i},t_{i+k})+B_{s}(i+k,t_{i+k})$ .

This equation states thatt isaco-b-ray to s. $\square $

The following shows that sub-brays of a co-bray $t$ are the unique co-brays
if the starting point is not the terminal point of $t$ .

Proposition 5.12. Let $t=(t_{j})_{j\geq i_{1}}$ be a co-b-my to $s$ and let $i_{2}>i_{1}$ . If
$u=(u_{j})_{j\geq i_{2}}$ is a co-b-my to $s$ with $u_{i_{2}}=t_{i_{2}}$ , then $u$ is a $sub\leftarrow b$-my of $t$ ,
namely, $u_{j}=t_{j}$ for $j\geq i_{2}$ .

Pmof. Since $t$ and $u$ are b-curves we have only to prove that $(t_{i_{2}-1}, t_{i_{2}}, u_{i_{2}+1})$

is a bcurve (see Lemma 2.2). Since

$H(i_{2}-1, i_{2}+1;t_{i_{2}-1}, u_{i_{2}+1})$

$\geq B_{s}(i_{2}-1, t_{i_{2}-1})-B_{s}(i_{2}+1, u_{i_{2}+1})$

$=H(t_{i_{2}-1}, t_{i_{2}})+B_{s}(i_{2}, t_{i_{2}})-B_{s}(i_{2}+1, u_{i_{2}+1})$

$=H(t_{i_{2}-1}, t_{i_{2}})+H(u_{i_{2}}, u_{i_{2}+1})$

$\geq H(i_{2}-1, i_{2}+1;t_{i_{2}-1}, u_{i_{2}+1})$ ,

we have

$H(i_{2}-1, i_{2}+1;t_{i_{2}-1}, u_{i_{2}+1})=H(t_{i_{2}-1}, t_{i_{2}})+H(t_{i_{2}}, u_{i_{2}+1})$ .

Combined with Lemma 2.1, this completes the proof.

We have a property of a b-parallel.

Proposition 5.13. Let $s=(s_{j})_{j\in Z}$ be a b-straight line. If a b-curve $t=$

$(t_{j})_{j\in Z}$ is a b-pamllel to $s$ , then $B_{s}(j,t_{j})+B_{-s}(j,t_{j})$ is a constant for $j\in Z$

where -s is a b-my $(s_{j})_{j\leq i_{0}}$
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Pmof. Since $t=(t_{j})_{j\in Z}$ is a b-parallel to $s$ , we have that
$B_{s}(i,t_{i})=H(i, i+m;t_{i}, t_{i+m})+B_{s}(i+m, t_{i+m})$

$B_{-s}(i+m,t_{i+m})=H(i,i+m;t_{i}, t_{i+m})+B_{-s}(i, t_{i})$

for all $i\in Z$ and $m\in Z^{+}$ Therefore, we see that

$B_{s}(i,t_{i})+B_{-s}(i,t_{i})=B_{s}(i+m,t_{i+m})+B_{-s}(i+m, t_{i+m})$

This completes the proof.

The following lemma states that we can alter “any $m$
’ in the definition

of co-brays to “some”.
Lemma 5.14. Let $t=(t_{j})_{j\geq i_{1}}$ be a b-curve such that

$B,(i_{1},t_{i_{1}})=H(i_{1},i_{1}+k;t_{i_{1}},t_{i_{1}+k})+B_{s}(i_{1}+k,t_{i_{1}+k})$

for some $k>0$ . Then, $t$ is a co-b-ray to $s$ .
Pmof. Let $u=(u_{j})_{j\geq i_{1}+k}$ be a co-b-ray to $s$ with $u_{i_{1}+k}=t_{i_{1}+k}$ . We first
claim that $u$ is a sub-bcurve of $t$ . In fact,

$H(i_{1}, i_{1}+k+1;t_{i_{1}}, u_{*1+k+1})$

$\geq-B_{s}(i_{1}+k+1, u_{i_{1}+k+1})+B_{s}(i_{1},t_{i_{1}})$

$=-B_{s}(i_{1}+k+1, u_{i_{1}+k+1})+B_{s}(i_{1}+k,t_{i_{1}+k})+H(i_{1}, i_{1}+k;t_{i_{1}},t_{i_{1}+k})$

$=H(u_{i_{1}+k}, u_{i_{1}+k+1})+H(i_{1},i_{1}+k;t_{i_{1}}, t_{i_{1}+k})$

$\geq H(i_{1}, i_{1}+k+1;t_{i_{1}},u_{i_{1}+k+1})$ ,

and, in particular, $(t_{i_{1}}, \ldots, t_{i_{1}+k}, u_{i_{1}+k+1})$ is a ksegment. This proves the first
claim.

We will show that the condition on co-brays is satisfied. ${\rm Re} call$ that $u$

is a co-kray to $s$ . The equation in the definition of co-b-rays is satisfied for
$i\geq i_{1}+k$ and $m>0$ . Let $i_{1}\leq i<i_{1}+k$ and $m>0$ . Then,

$B_{s}(i,t_{i})$

$\geq-H(i_{1},i;t_{i_{1}}, t_{i})+B_{s}(i_{1},t_{i_{1}})$

$=-H(i_{1}, i;t_{i_{1}},t_{i})+H(i_{1}, i_{1}+k;t_{i_{1}},t_{i_{1}+k})+B_{s}(i_{1}+k,t_{i_{1}+k})$

$=H(i, i_{1}+k;t_{i},t_{i_{1}+k})+B_{s}(i_{1}+k,t_{i_{1}+k})$

$=H(i, i_{1}+k;t_{i},t_{i_{1}+k})+H(i_{1}+k,i_{1}+k+m;t_{i_{1}+k},t_{i_{1}+k+m})$

$+B_{s}(i_{1}+k+m,t_{i_{1}+k+m})$

$\geq H(i, i_{1}+k+m;t_{i},t_{i_{1}+k+m})+B_{s}(i_{1}+k+m,t_{i_{1}+k+m})$

$\geq B_{s}(i,t_{i})$ ,
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and, thus,

$B_{s}(i, t_{i})=H(i, i+m;t_{i}, t_{i+m})+B_{s}(i+m, t_{i+m})$

for any $i+m\geq i_{1}+k$ . For the remaining case we suppose $i+m<i_{1}+k$ .
Then

$B_{s}(i, t_{i})$

$\geq-H(i_{1}, i;t_{i_{1}}, t_{i})+B_{s}(i_{1}, t_{i_{1}})$

$=-H(i_{1}, i;t_{i_{1}}, t_{i})+H(i_{1}, i_{1}+k;t_{i_{1}}, t_{i_{1}+k})+B_{s}(i_{1}+k, t_{i_{1}+k})$

$=H(i, i+m;t_{i_{1}}, t_{i+m})+H(i+m, i_{1}+k;t_{i+m}, t_{i+k})+B_{s}(i_{1}+k, t_{i_{1}+k})$

$\geq H(i, i+m;t_{i}, t_{i+m})+B_{s}(i+m, t_{i+m})$

$\geq B_{s}(i, t_{i})$ .
These prove that $t$ satisfies the condition on co-brays. $\square $

As an application we prove the following.

Proposition 5.15. Let $s=(s_{j})_{j\in Z}$ and $s^{\prime}=(s_{j}^{\prime})_{j\in Z}$ be periodic b-curves
with period $(q,p)$ . If $s$ and $s^{\prime}$ are b-stmight lines, then one is a b-pamllel to
the other.

Proof. By Lemma 4.6 we have that $H(s;i, i+q)=H(s^{\prime};i, i+q)$ . Hence, we
have

$B_{s}(i+q, s_{i+q}^{\prime})=\lim_{n\rightarrow\infty}\{H(i+q, n;s_{i+q}^{\prime}, s_{n})-H(s;0, n)\}$

$=\lim_{n\rightarrow\infty}\{\{H(i, n-q;s_{i}^{l}, s_{n-q})-H(s;0, n-q)\}$

$+\{H(s;0, n-q)-H(s;0, n)\}\}$

$=B_{s}(i, s_{i}^{\prime})-H(s;i, i+q)$

$=B_{s}(i, s_{i}^{l})-H(s^{\prime};i, i+q)$

$=B_{s}(i, s_{i}^{l})-H(i, i+q;s_{i}^{\prime}, s_{i+q}^{\prime})$ .

$TheLemmafollowsfromLemma5.14$ . $\square $

Proposition 5.16. Let $s=(s_{j})_{j\in Z}$ be a periodic b-straight line with period
$(q,p)$ and $t=(t_{j})_{j\in Z}$ a b-stmight line with slope $\alpha(t)=pL/q$ and $ T(t)\cap$

$ T(s)\neq\emptyset$ . Then, $t$ coincides with $s$ .
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Pmof. Let $s^{\prime}=(s_{j}^{\prime})_{j\in Z}$ where $s_{j}^{\prime}=s_{j}-L$ for all $ j\in$ Z. Let $t$ and $s$ cross
at $j_{0}$ or between $j_{0}$ and $j_{0}+1$ . Suppose $s_{j}>t_{j}$ for all $j>j_{0}+1$ because
the statement for the other case is proved in the same way. Combined with
Lemma 5.11 and Proposition 5.12, Proposition 5.15 states that a sequence
of b-segment$ss^{n}=(s_{j}^{n})_{j_{0}-1\leq j\leq n}$ from $s_{j_{0}-1}$ to $s_{n}^{\prime}$ converges to a sub-b-ray
$s=(s_{j})_{j\geq j_{0}-1}$ of $s$ . Hence, $t$ crosses $s^{\prime}$ , otherwise we have a contradiction that
$s^{n}$ crosses $t$ twice for sufficiently large $n$ . Thus, there exists a $c\in Z^{+}$ such that
$s_{j}^{\prime}>t_{j}$ for all $j>qc+j_{0}$ . For each $j>qc+j_{0}$ we see that $(U(qc,pc-1)^{k}s)_{j}=$

$s_{j}^{\prime}$ is monotone decreasing for $k\in Z^{+}$ and $(U(qc,pc-1)^{k}t)_{j}$ is monotone
increasing for $k\in Z^{+}$ because of Theorem 4.12 (see Theorem 3.13 in [1]).
Therefore, we have the following.

$s_{kqc+jo}-t_{kqc+jo}\geq s_{jo}+kpcL-t_{kqc+j_{0}}$

$\geq s_{jo}+k(pc-1)L-(U(qc,pc-1)^{k-1}t)_{kqc+jo}+kL$

$=(U(qc,pc-1)^{k}s)_{kqc+jo}-(U(qc,pc-1)^{k-1}t)_{kqc+jo}+kL$

$=(U(qc,pc-1)s)_{qc+jo}-t_{qc+jo}+kL$

$\geq kL$

for all $k\in Z^{+}$ . Thus, we have

$a(s)-\alpha(t)\geq\frac{L}{qc}$

contradicting that $\alpha(t)=pL/q$ . Therefore, $t$ coincides with $s$ . $\square $

Combined with Lemma 4.15 and Theorem 4.16 (see Theorem 4.1 in [1]
$)$ , the folowing lemma is a simple modification of Theorem 4.12 in [2] which
is important in the proof of the differentiability of a leaf $f$ with irrational
slope.

Lemma 5.17. Let $a$ be an arbitmry irrational number with $0<a<1$ .
Suppose there exists a $\varphi$-invariant dosed simple curve $f$ not null-homotopic
in $\Omega$ such that $\alpha(\overline{x})=aL$ for all $\overline{x}\in f$ . Let $W$ be a foliation ofX by b-curves
which is determined by all points $\overline{x}\in f$ . Then, all b-stmight lines in $W$ are
b-pamllels to each other.

6 Billiard parallel and caustic
The purpose of this section is to prove Theorem 6.10.
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Let $0=(0,0)$ and $A=(0, a)(a>0)$ in Euclidean plane E. Let $a(s)=$
$(x_{1}(s), y_{1}(s))$ and $\beta(s)=(x_{2}(s), y_{2}(s))$ be curves in $E$ such that $a(O)=0$ ,
$\beta(0)=A$ , and $\alpha,$

$\beta$ are of class $C^{1}$ with $x_{1^{l}}(0)>0,$ $x_{2^{l}}(0)<0$ . Let $t(s)$ be
the y-coordinate of the intersection point $T(O, A)\cap T(a(s), \beta(s))$ where $x_{i^{j}}$

means the derivative of $x_{i}$ with respect to its parameter.

Lemma 6.1.
$t(0)=\frac{\det(a^{\prime}(0)\beta(0))}{x_{1}(0)-x_{2}^{\prime}(0)}$

Pmof. We have that

$t(s)=\frac{x_{1}(s)y_{2}(s)-y_{1}(s)x_{2}(s)}{x_{1}(s)-x_{2}(s)}=\frac{\det(a(s)\beta(s))}{x_{1}(s)-x_{2}(s)}$

for any $s$ sufficiently close to $0$ . This prove$s$ the lemma. $\square $

This lemma shows the following.

Lemma 6.2. Let $\psi$ : $C\rightarrow C$ be an orientation preserving homeomorphism
such that $\psi$ is of class $C^{1}$ . Let $g(s)=\psi(c(s))$ for all $ s\in$ R. Then, there
exists a closed continuous curve $K$ in the domain bounded by $C$ such that
any segment $T(c(s), g(s))$ is a tangent line to $K$ .

Let $B$ be the closed domain bounded by $C$ . Let $x=(x_{j})_{j\in Z}$ be a billiard
ball trajectory in $C$ and let $\gamma$ : $(-\infty, \infty)\rightarrow B$ be the unit speed broken
segments such that $\gamma(t_{j})=x_{j}$ for all $ j\in$ Z. Let $Q=Q_{j}$ be the reflection
with respect to the tangent line to $C$ at $\gamma(t_{j})$ which is by definition $Q(X)=$

$X-2<X,$ $N>N$ where $X$ is any vector at $\gamma(t_{j})$ and $N$ is the inward unit
normal vector to $C$ . Then, $\dot{\gamma}(t_{j}+0)=Q(\dot{\gamma}(t_{j}-0))$ . Let the angle between
$\dot{c}(t_{j})$ and $T(x_{j}, x_{j+1})$ be $\theta_{j}$ for any $ j\in$ Z. We say that $Y(t),$ $-\infty<t<\infty$ ,
is a perpendicular Jacobi vector field along $\gamma$ if $Ys$atisfies the following (see
[16]).

1. $Y$ is of class $C^{\infty},$ $Y^{\prime\prime}(t)=0$ and $\langle\dot{\gamma}(t), Y(t)\rangle=0$ in each interval
$[t_{j}, t_{j+1}]$ .

2. $Y(t_{j}+0)=Q(Y(t_{j}-0))$ for any $j\in Z$ .

3. $Q(Y‘(t_{j}-0))-Y^{\prime}(t_{j}+0)=(2\kappa(t_{j})/\sin\theta_{j})Y(t_{j}+0)$ where $\kappa(t_{j})$ is the
geodesic curvature of $C$ at $\gamma(t_{j})$ with respect to the inward unit normal
vector to $C$ .
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Let $\gamma_{u}$ : $(-\infty, \infty)\rightarrow B$ be a variation through billiard ball trajectories
with unit speed such that $\gamma_{0}(t)=\gamma(t)$ for any $t\in(-\infty, \infty)$ . Let

$Y(t)=\frac{\partial\gamma_{u}}{\partial u}|_{u=0}(t)$

for any $t\in(-\infty,\infty)$ . If $\langle Y(a),\gamma^{\prime}(a)\rangle=0$ for some $a\in R$ , then $Y(t)$ is a
perpendicular Jacobi vector field along $\gamma$ . Any perpendicular Jacobi vector
field is given in this way. Let $K$ be the envelope curve of a variation $\gamma_{u}$

through billiard ball trajectories with unit speed and let $\gamma$ be tangent to
$K$ at $a_{\lambda},$

$\lambda\in\Lambda$ . Then, $\gamma(a_{\lambda})$ are conjugate points to each other along
$\gamma)$ since the perpendicular component of the variation vector field $Y$ is a
nontrivial perpendicular Jacobi vector field with $Y(a_{\lambda})=0$ for any $\lambda\in\Lambda$ .
We sometimes call such point $s$ focal points to $C$ along $\gamma$ .

We say that the conjugate points of a nontrivial perpendicular Jacobi
vector field $Y(t),$ $-\infty<t<\infty$ , along $\gamma$ sepamte the boundary if there exists
a sequence $\{a_{j}\}_{j\in Z}$ such that $\gamma(a_{j})$ lie in $T(x_{j}, x_{j+1})$ and $Y(a_{j})=0$ for any
$j\in Z$ . Let $B$ be the domain surrounded by $C$ in E. Let $\gamma_{u}$ : $(-\infty, \infty)\rightarrow B$

be a variation through billiard ball trajectories such that the b-curves in X for
all $\gamma_{u}$ correspond to $k$asymptotes to the bstraight line in X for $\gamma=\gamma_{0}$ . Then,
$T(x(u)_{j},x(u)_{j+1})$ intersects $T(x_{j}, x_{j+1})$ for any $j\in Z$ where $x(u)_{j}=\gamma_{u}(t_{j})$ .
From this it follows that there exists a nontrivial perpendicular Jacobi vector
field along $\gamma$ whose conjugate points separate the boundary.

Let $J$ be the set of all nontrivial perpendicular Jacobi vector fields along
$\gamma$ whose conjugate points separate the boundary. We prove the following.

Lemma 6.3. Let $\gamma$ : $(-\infty, \infty)\rightarrow B$ be a billiard ball tmjectory which
corresponds to a b-stmight line in X. Then, $ J\neq\emptyset$ .

Proof. Suppose for indirect proof that $ J=\emptyset$ . Then, we have a perpendicular
Jacobi vector field $Y(t),$ $t\in(-\infty, \infty)$ , along $\gamma$ such that there exist $i_{0}$ and
$j_{0}\geq i_{0}+2$ with $Y(i_{0})=0$ and $Y(t)\neq 0$ for all $t\in(t_{j_{0}}, t_{jo+1}$ ] where $\gamma(t_{j})\in C$ .
Let $\gamma_{u}$ : $(-\infty, \infty)\rightarrow B$ be the variation through billiard ball trajectories
such that $\gamma_{0}=\gamma,$ $\gamma_{u}(t_{jo}(u))\in C,$ $\gamma_{u}(t_{0}(u))=c(u),$ $\gamma_{u}(t_{i_{0}}(u))=\gamma(t_{1_{0}})$ and
its variation vector field is Y. Then, $\gamma_{u}((t_{j_{0}}(u), t_{jo+1}(u)$ ]) do not cross to
one another for sufficiently small $u\geq 0$ . Let $\theta(u)$ be the angle between
$\dot{c}(u)$ and the oriented segment $T(\gamma_{u}(t_{j_{0}}(u)),\gamma_{u}(t_{jo+1}(u)))$ and let $\theta_{1}(u)$ be the
angle between $\dot{c}(u)$ and the oriented segment $T(\gamma_{u}(t_{j_{0}}(u)), \gamma(t_{j_{0}+1}))$ . Since
the neighborhood of $T(\gamma(t_{j_{0}}), \gamma(t_{jo+1}))$ is foliated by segments $T(\gamma_{u}(t_{j_{0}}(u))$ ,
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$\gamma_{u}(t_{jo+1}(u)))$ , we see that $\theta(u)>\theta_{1}(u)$ for any $u<0$ and $\theta(u)<\theta_{1}(u)$ for
any $u>0$ . Hence, there exists a $u_{0}$ such that

$\sum_{i=i_{0}}^{jo}H(\gamma(t_{j}), \gamma(t_{j+1}))>\sum_{i=i_{0}}^{j_{0}-1}H(\gamma_{u_{0}}(t_{j}(u_{0})), \gamma_{u_{O}}(t_{j+1}(u_{0})))$

$+H(\gamma_{u_{0}}(t_{jo}(u_{0})), \gamma(t_{jo+1}))$ ,

contradicting the straightness of $\gamma$ . $\square $

Assume that $ J\neq\emptyset$ and $Y\in J$ such that $\{a_{j}\}_{j\in Z}$ is the set of all param-
eters for its conjugate points with $t_{j}<a_{j}<t_{j+1}$ for any $j\in Z$ . Let $Y_{m}$ be
a perpendicular Jacobi vector field along $\gamma$ such that $Y_{m}(t_{0}+0)$ is constant
for $m\in Z$ with $Y_{m}(t_{0}+0)\perp\gamma^{\prime}(t_{0}+0),$ $\Vert Y_{m}(t_{0}+0)\Vert=1$ and $Y_{m}(t_{m})=0$ .
Let $S_{m}=\{b(m)_{j}|Y_{m}(b(m)_{j})=0, t_{j}<b(m)_{j}<t_{j+1}\}$ .

To continue the discussion we need a lemma conceming the distribution
problem of conjugate points (see [16] and [18]).

Lemma 6.4. (Separation property) Suppose $\gamma(b)$ is the first conjugate
point to $\gamma(a)$ with $a<b$ . Any nontrivial perpendicular Jacobi vector field $Y$

along $\gamma$ with $Y(a)\neq 0$ or $Y(b)\neq 0$ has a unique zero point $\gamma(t_{0})$ at $t_{0}\in(a, b)$ .

Pmof. Let $e(t),$ $t\in R$ , be a vector field along $\gamma$ such that $\langle\dot{\gamma}(t), e(t)\rangle=0$

and $||e(t)||=1$ for each interval $[t_{j}, t_{j+1}]$ and $e(t_{j}+0)=Q(e(t_{j}-0))$ . Any
perpendicular Jacobi vector field $Y$ along $\gamma$ is written in such a way that
$Y(t)=y(t)e(t)$ for any $ t\in$ R. Then, $y(t)$ is continuous for $t\in R$ and it
satisfies

$y^{\prime}(t_{j}+0)=y^{\prime}(t_{j}-0)-\frac{2\kappa(t_{j})}{\sin\theta_{j}}y(t_{j})$

for all $j\in Z$ . Thus, if $Y$ and $Z$ are perpendicular Jacobi vector fields along
$\gamma$ , then $y^{\prime}(t)z(t)-y(t)z^{\prime}(t)$ is constant for all $ t\in$ R. By the assumption
there exists a nontrivial perpendicular Jacobi vector field $Y$ along $\gamma$ such
that $y(a)=y(b)=0,$ $y^{\prime}(a)=1$ and $y(t)>0$ for any $t\in(a, b)$ . Since
$\gamma(b)$ is the first conjugate point to $\gamma(a)$ , we have $y^{\prime}(b)<0$ . Let $Z$ be a
nontrivial perpendicular Jacobi vector field along $\gamma$ such that $Z(t)=z(t)e(t)$

and $Z(a)\neq 0$ , say $z(a)>0$ . Since $y^{\prime}(b)z(b)=z(a)$ , we have $z(b)<0$ .
Therefore, there exists a $t_{0}\in(a, b)$ such that $z(t_{0})=0$ , proving the existence
of zeros.

Suppose there exists another zero point of $z$ . Let $\gamma(t_{1})$ is the first con-
jugate point $\gamma(t_{0})$ with $t_{0}<t_{1}\leq b$ . Since $z^{\prime}(t_{0})z^{\prime}(t_{1})<0$ and $y(t_{0})z^{\prime}(t_{0})=$
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$y(t_{1})z^{\prime}(t_{1})$ , we have a zero point of $Y$ between $t_{0}$ and $t_{1}$ , a contradiction. This
proves the uniqueness of existence of zeros. $\square $

The separation property of conjugate points shows that $t_{j}<a_{j}<b(m)_{j}<$

$t_{j+1}$ for all $j\leq m-2$ . The sequence $\{b(m)_{0}\}_{m>2}$ is monotone decreasing and
bounded. Therefore, the limit $Y_{f}=\lim_{m\rightarrow\infty}Y_{m}$ exists and $Y_{f}\in J$ . In the
same manner the limit $Y_{b}=\lim_{m\rightarrow-\infty}Y_{m}$ exists and $Y_{b}\in J$ . Let $\{\underline{b}_{j}\}_{j\in Z}$ and
$\{\overline{b}_{j}\}_{j\in Z}$ be the sequence of parameters such that $Y_{b}(\underline{b}_{j})=0,$ $Y_{f}(\overline{b}_{j})=0$ and
$t_{j}<\underline{b}_{j}\leq\overline{b}_{j}<t_{j+1}$ for any $j\in Z$ . We notice the following.

Lemma 6.5. $\underline{b}_{j}$ and $\overline{b}_{j}$ continuously depend on the billiard ball trajectories
$\gamma$ .

Lemma 6.6. Let $ J\neq\emptyset$ . Then, $J$ is $a$ one-dimensional vector space if and
only if $Y_{f}=Y_{b}$ .

The following is a condition that $Y_{f}=Y_{b}$ .

Lemma 6.7. Let $x=(x_{j})_{j\in Z}$ be a billiard ball trajectory in $C$ which corre-
sponds to $\gamma$ in $E$ and a b-stmight line $s=(s_{j})_{j\in Z}$ in X. Suppose there exists
a variation thmugh b-pamllels in X for $x(u)=(x(u)_{j})_{j\in Z}$ to a b-stmight line
in $X$ for $x=(x_{j})_{j\in Z}$ such that $x(O)=x$ . Then, $J$ is $a$ one-dimensional
vector space where $J$ is defined as above.

Pmof. Let $\gamma_{u}$ : $(-\infty, \infty)\rightarrow B$ be billiard ball trajectories corresponding
to $x(u)$ with $x(u)_{0}=\gamma_{u}(0),$ $t_{0}=0$ . Let $0<\epsilon<\min\{b\lrcorner\overline{b}-b\}$ and $S$ the
$\epsilon/2$-ball around $\gamma(\epsilon)$ . Then $S$ is foliated by $\gamma_{u}$ . We define a function $F_{\pm s}$ on
$S$ as

$F_{\pm s}(\gamma_{u}(t))=B_{\pm s}(0, s_{0}(u))\pm t$

where $s(u)=(s_{j}(u))_{j\in Z}$ is bparallels in X corresponding to $x(u)$ . Suppose
$Y_{f}(\epsilon)=Y_{b}(\epsilon),$ $Y_{f}^{\prime}(\epsilon)\neq Y_{b}^{\prime}(\epsilon)$ . If $Y_{f}(t)=y_{f}(t)e,$ $Y_{b}(t)=y_{b}(t)e$ where $e$

is the unit vector perpendicular to $\dot{\gamma}_{0}(\epsilon)$ , then $y_{b^{\prime}}(\epsilon)<y_{f^{\prime}}(\epsilon)<0$ . Roughly
speaking, $y_{b^{\prime}}(\epsilon)$ and $y_{f^{\prime}}(\epsilon)$ are the geodesic curvature of $F_{-s}^{-1}(\epsilon)$ and $F_{s}^{-1}(\epsilon)$ ,
respectively. Hence, it is impossible that $F_{s}+F_{-s}$ is constant on $S$ (see
Proposition 5.12).

We will show a differentiability condition of invariant circles of the biliard
ball map $\varphi$ .
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Lemma 6.8. Let $\Gamma(s)=(x(s)_{0}, u(s)_{0}),$ $(x(s)_{0}=c(s))$ , be a closed simple
curve not null-homotopic in $\Omega$ which is invariant under $\varphi$ and let $x(s)=$
$(x(s)_{j})_{j\in Z}$ be the sequence of billiard ball trajectories such that $\varphi(x(s)_{0}, u(s)_{0})$

$=(x(s)_{1}, u(s)_{1})$ for any $s\in R$ . Suppose the family of b-straight lines for $x(s)$

are b-parallels to each other. Then, $x(s)_{1}$ is of class $C^{1}$ for $s\in R$ .

Proof. Let $Y^{s}$ be the unique nontrivial perpendicular Jacobi vector field along
$\gamma_{s}$ whose cojugate points separate the boundary. Then, $Y^{s}$ is continuous for
$s\in R$ because of Lemma 6.6 and Lemma 6.7. Let $W_{s}(t_{1}+0)$ be a tangent
vector to $C$ such that $W_{s}(t_{1}+0)=Y^{s}(t_{1}+0)+r(s)\dot{\gamma}_{s}(t_{1}+0)$ for some
$r(s)\in R$ . Then, $W_{s}$ is continuous for $s\in R$ also. Since

$x(s)_{1}=\int_{0}^{s}W_{s}(t_{1}+0)ds+x(0)_{1}$ ,

we see that $x(s)_{1}$ is of class $C^{1}$ for $s\in R$ . $\square $

The following is the remark of a role of diameter.

Lemma 6.9. Let $\psi$ : $(-\infty, \infty)\rightarrow\Omega$ be a closed simple curve not null-
homotopic in $\Omega$ which is invariant under $\varphi$ . Let $g(s)=\pi(\varphi(\psi(s)))$ for $s\in R$

where $\pi$ : $\Omega\rightarrow C$ is the natuml projection. Let $\theta(s)$ be the angle between
$T(c(s), g(s))$ and $\dot{c}(s)$ for any $s\in R$ . Suppose $T(c(s), g(s))$ is not a diameter
of $C$ for any $s\in R$ . Then, either $\theta(s)$ is always greater than $\pi/2$ or less that
$\pi/2$ .

Pmof. Notice that all billiard ball trajectories determined by $T(c(s), g(s))$ are
bstraight lines in the configuration space (see Birkhoff’s theorem mentioned
preceding Lemma 4.15). Suppose there exists an $s_{0}$ such that the angle
between $T(c(s_{0}),g(s_{0}))$ and $\dot{c}(s_{0})$ is equal to $\pi/2$ . Then, the bcurve for the
billiard ball trajectory determined by $T(c(s_{0}), g(s_{0}))$ is a periodic bstraight
line with period $(2,1)$ in the configuration space because of Lemma 4.13,
and, hence, $T(c(s_{0}), g(s_{0}))$ is a diameter of $C$ , a contradiction. Since $\theta(s)$ is
$continuousfors\in R$ , the lemma is proved. $\square $

The following theorem is a condition that a coustic is a continuous curve.

Theorem 6.10. Let $\psi$ : $(-\infty, \infty)\rightarrow\Omega$ be a closed simple curve not null-
homotopic in $\Omega$ which is invariant under $\varphi$ . Let $g(s)=\pi(\varphi(\psi(s)))$ for any
$s\in R$ where $\pi$ : $\Omega\rightarrow C$ is the natuml pmjection. Suppose the b-stmight
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lines for billiard ball trajectories determined by $T(c(s), g(s))$ are b-parallels
to each other. Then, there exists a closed continuous curve $K$ in the domain
$B$ bounded by $C$ such that any segment $T(c(s), g(s))$ is a tangent line to $K$

for any $s\in R$ .

Pmof. Since the bstraight lines for billiard ball trajectories determined by
$T(c(s),g(s))$ are bparallels to each other for all $s\in R,$ $g(s)$ is of class $C^{1}$

because of Lemma 6.8. Lemma 6.2 shows that there exists a closed continuous
curve $K$ in the domain bounded by $C$ such that any segment $T(c(s), g(s))$ is
a tangent line to K. $\square $

7 Proof of Theorem 1.1
Let $\Sigma$ be the space of all bcurves in X with natural topology. For any
$ s=(s_{j})_{j\in Z}\in\Sigma$ and any $a\in R$ let $s+a=(s_{j}+a)_{j\in Z}$ . We define a
equivalence relation $s\sim s^{\prime}$ in $\Sigma$ as $s^{l}=s+pL$ for aome $p\in Z$ . Then, there
exists the natural homeomorphism from $\Omega$ to $\Sigma/\sim$ . Let $\sigma$ : $\Sigma\rightarrow\Sigma/\sim\approx\Omega$

be the natural projection.
Let $k$ : $[0, a]\rightarrow\Omega$ be a curve with $ k(O)=\overline{x}\in\Omega$ and $s=(s_{j})_{j\in Z}$ a

bcurve in X for $\overline{x}$ . Then, there exists a unique curve $\ell$ : $[0, a]\rightarrow\Sigma$ such
that $\sigma(\ell(t))=k(t)$ for any $t\in[0, a]$ and $\ell(0)=s$ . We say that the curve $p$ is
the lift of a curve $k$ into $\Sigma$ .
Lemma 7.1. Let $\overline{x}\in\Omega$ be such that the corresponding b-curve $s$ in X $is$

a b-stmight line with its slope $\alpha=aL$ where $a$ is an irrational number with
$0<a<1$ . Let $f$ be a closed simple curve in $\Omega$ containing $\overline{x}$ (not a point).
Suppose there exists an $i\in Z$ such that $f,$ $\varphi(f),$

$\cdots,$
$\varphi^{i-1}(f)$ are mutually

disjoint and $\varphi^{;}(f)=f$ . Then, $f$ is a closed simple curve not null-homotopic
in $\Omega$ and invariant under $\varphi$ .

Proof. Let $\Gamma=\{U(q,p)s|q,p\in Z\}$ and $\overline{\Gamma}$ the closure of $\Gamma$ in X. Let
$A=\{u_{0}|u\in\overline{\Gamma}\}$ and $M=\bigcup_{j=0}^{1-1}\dot{\psi}(f)$ . Then, the number of connected
components of $M$ is finite. All elements $\dot{\psi}(\overline{x})$ contained in $M$ . If $\dot{\psi}(\overline{x})$ is
contained in a connected component $f_{1}$ of $M$ , then $\varphi^{k}(\overline{x})$ which is sufficiently
close to $\varphi^{;}(\overline{x})$ is also contained in $f_{1}$ . Let $\mu$ : $A\rightarrow\overline{\Gamma}$ be a map given by
sending $u_{0}$ to the bstraight line $u$ through $u_{0}$ . The map $\mu$ is well-defined
and a homeomorphism because of Theorem 3.13 in [1] (see Theorem 4.12).
Let $R-A=\bigcup_{\lambda\in\Lambda}O^{\lambda}$ where $O^{\lambda}$ is an open interval which is a connected
component of $R-A$ for each $\lambda\in\Lambda$ and $\Lambda$ is a countable set.

–112–



The points $u_{0}$ in $A$ are devided into two types.

1. There exists a sequence of points $(u^{n})_{0}$ in $A$ which is monotone de-
creasing and conveges to $u_{0}$ .

2. $u_{0}$ is the lower bound of $O^{\lambda}$ for some $\lambda\in\Lambda$ .

Let $g$ be the lift of $f$ into $\Sigma$ containing $s$ . In order to find a curve in $\Sigma$

which connects $s$ and $s+L$ we have only to prove that $s+L\in g$ because
$s\in g$ . Let $S=$ { $u_{0}$ I $u=(u_{j})_{j\in Z}\in\overline{\Gamma}\cap g$} $\subset A$ . Then, $S$ contains $s$ . Set
$u_{0}=\max S\cap[s_{0}, s_{0}+L]$ . For indirect proof we suppose $u_{0}<s_{0}+L$ .

Suppose $u_{0}$ is of type (1). Let $(u^{n})_{0}\in A$ be a sequence which is monotone
decreasing and converges to $u_{0}$ . Then, $\mu((u^{n})_{0})$ tends to $\mu(u_{0})$ . Hence,
$\sigma(\mu(u_{0}))$ and $\sigma(\mu((u^{n})_{0}))$ are contained in the same connected component of
$M$ for sufficiently large $n$ . This contradicts that $u_{0}=\max S\cap[s_{0}, s_{0}+L]$

because $\mu(u_{0})$ is connected to $s$ by a subarc of $g$ and $\mu((u^{n})_{0})$ is connected
to $\mu(u_{0})$ by a subarc of $g$ .

Suppose $u_{0}$ is of type (2). Namely, $u_{0}$ is the lower bound of $O^{\lambda}$ for
some $\lambda\in\Lambda$ , say $O^{\lambda}=(u_{0}, v_{0})$ . Since $\mu(u_{0})=u=(u_{j})_{j\in Z}\in\overline{\Gamma}$ and
$\mu(v_{0})=v=(v_{j})_{j\in Z}\in\overline{\Gamma}$ are not periodic, it follows that $u_{j}-u_{k}\neq 0$

$(mod L)$ and $v_{j}-v_{k}\neq 0(mod L)$ for any $j\neq k$ . Therefore, $\sum^{\infty}$

$u_{j}<L$ . Hence, $v_{j}-u_{j}\rightarrow 0$ as $ j\rightarrow\infty$ . Since $v_{j}=(U(-j,0)v)_{0}^{-}=-\infty^{v_{j}}$,
$u_{j}=(U(-j, 0)u)_{0},$ $\sigma(U(-j, O)v)=\varphi^{;}(\sigma(v))$ and $\sigma(U(-j, O)u)=\dot{\psi}(\sigma(u))$ ,
it holds that $d_{\Omega}(\dot{\not\in}(\sigma(v)), \varphi^{;}(\sigma(u)))\rightarrow 0$ as $ j\rightarrow\infty$ . Thus, we see that
$\dot{\psi}(\sigma(v))$ and $\dot{\psi}(\sigma(u))$ are contained in the same connected component $f_{2}$ of
$M$ , and, hence, $\sigma(v)\in\varphi^{-j}(f_{2}),$ $\sigma(u)\in\varphi^{-j}(f_{2})$ for suffciently large $j$ . This
implies that $v_{0}\in S\cap[s_{0}, s_{0}+L]$ , a contradiction.

Since $f$ is a closed simple curve not null-homotopic in $\Omega$ and $\varphi$ preserves
the natural measure of $\Omega$ (see [17]), it is impossible that $ f\cap\varphi(f)=\emptyset$ .
Therefore, $\varphi(f)=f$ by assumption. $\square $

Pmof of Theorem 1.1 : Let $a=aL$ where $a$ is an irrational number with
$0<a<1$ . Let $s^{\alpha}$ be a bstraight line in X with slope $\alpha$ . By assumption
and Lemma 7.1 we can get a $\varphi$-invariant closed simple curve $f_{\alpha}$ containing
$\sigma(s^{\alpha})$ which is not null-homotopic in $\Omega$ . Since $F$ is closed in the set of all
closed subsets in $\Omega$ , all $f\in F$ are closed simple curves not null-homotopic in
$\Omega$ . Theorem 1.1 follows from this and Bialy’s theorem.
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8Convex billiards having poles
We begin with the following lemma.

Lemma 8.1. Suppose there exists a pole $x\in C$ . Then, for any $(q,p),$ $ q,p\in$

$Z^{+},$ $p/q<1$ , there exists a periodic b-stmight line $s=(s_{j})_{j\in Z}$ with perzod
$(q,p)$ such that the strip $[T(s), T(\overline{s})]$ is foliated by b-stmight lines where $\overline{s}=$

$(s_{j})_{j\in Z},$ $s_{j}=s_{j}+L$ for any $j\in Z$ .

Proof. Let $t=(t_{j})_{j\in Z}$ be a periodic bgeodesic with period $(q,p)$ such that
$H(t;i, i+q)=\min D(q,p)$ . Let $\overline{t}=(\overline{t}_{j})_{j\in Z},\overline{t}_{j}=t_{j}+L$ . Let $r_{m}\in[T(t),T(\overline{t})]$

be a sequence of poles such that $ r_{m}\rightarrow\infty$ as $ m\rightarrow\infty$ . Since any point
$(i, r)$ with $t_{i}\leq r\leq\overline{t}_{1}$ can be connected by the unique bcurve in the strip
$[T(t), T(\overline{t})]$ to $r_{m}$ for sufficiently large $m$ , we have a family of bstraight lines
$r=(r_{j})_{j\in Z}$ passing through the points $(i, r)$ with $t_{i}\leq r\leq\overline{t}_{\dot{*}}$ . It remains to
prove that the family of b-straight lines $r=(r_{j})_{j\in Z}$ is a foliation of the strip
$[T(t), T(\overline{t})]$ . Define a map $\Psi_{i}$ : $[t_{i},\overline{t}_{i}]\rightarrow[t_{i+q},\overline{t}_{i+q}]$ as $\Psi_{i}(r_{i})=r_{i+q}$ . From
Proposition 5.15 we see that $\Psi_{i}(t_{i})=t_{i+q}$ and $\Psi_{i}(\overline{t}_{i})=\overline{t}_{i+q}$ . This fact and
Proposition 5.12 show that $\Psi_{i}([t_{i},\overline{t}_{\dot{*}}\})=[t_{i+q},\overline{t}_{i+q}]$ and all bstraight lines $r$

are contained in the strip $[T(t), T(t\approx)]$ .
The following shows a distinguished role of poles.

Theorem 8.2. Suppose there is a pole $x\in C$ . Then, for any $(q,p),$ $q,p\in Z^{+}$ ,
$p/q<1$ , there passes a minimal periodic billiard ball trajectory thmugh $x$ with
period $(q,p)$ .

Pmof. Let $s=(s_{j})_{j\in Z}$ be a periodic bstraight line with period $(q,p)$ and
$\overline{s}=(\overline{s}_{j})_{j\in Z}$ with $\overline{s}_{j}=s_{j}+L$ . If $s_{0}$ is a pole, we have nothing to prove.
Suppose $u_{0}$ with $s_{0}<u_{0}<s_{0}+L=\overline{s}_{0}$ is a pole. Let $u=(u_{j})_{j\in Z}$ be a
bgeodesic with $u_{q}=u_{0}+pL$ , namely it is the extension of the bsegment
connecting $u_{0}$ and $u_{q}$ . We first prove that $(u_{j})_{j\leq 0}$ or $(u_{j})_{j\geq 0}$ stays in the
strip $[T(s),T(\overline{s})]$ . Suppose both $(u_{j})_{j\leq 0}$ and $(u_{j})_{j\geq 0}$ do not lie in the strip
$[T(s), T(\overline{s})]$ . Suppose $(u_{j})_{j\geq 0}$ cross $s=(s_{j})_{J\geq 0}$ . Then, $(u_{j})_{j\leq 0}$ cannot cross
$(\overline{s}_{j})_{j\leq 0}$ . In fact, set $\overline{u}=(\overline{u}_{j})_{j\in Z},\overline{u}_{j}=u_{j-q}+pL$ . $Ifu=(u_{j})_{j\in Z}$ crosses $\overline{s}$

at $j$ or between $j$ and $j+1$ , then $\overline{u}$ crosses $\overline{s}$ at $j+q$ or between $j+q$ and
$j+q+1$ . Similarly, if $u=(u_{j})_{j\in Z}$ crosses $s$ at $k$ or between $k$ and $k+1$ , then
$\overline{u}$ crosses $s$ at $k+q$ or between $k+q$ and $k+q+1$ . Since $\overline{u}_{q}=u_{0}+pL=u_{q}$ ,
we see that $\overline{u}_{j}>u_{j}$ for $j<q$ and $\overline{u}_{j}>u_{j}$ for $j>q$ . However, this is
impossible because $u$ and $\overline{u}$ are bgeodesics. Hence, the only possible case is
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that $(u_{j})_{j<0}$ crosses $(s_{j})_{j\leq 0}$ also. However, we see a contradiction as follows.
Let $W=\overline{\{}v$ } be a foliation of the strip $[T(s), T(\overline{s})]$ by bstraight lines $v$ and let
$P_{W}$ : $\bigcup_{j=-\infty}^{\infty}\{j\}\times[s_{j},\overline{s}_{j}]\rightarrow\{0\}\times[s_{0},\overline{s}_{0}]$ be a projection along the foliation
$W$ . Namely, $P_{W}(k, w)$ is given as follows. Take $v=(v_{j})_{j\in Z}\in W$ such that
$v_{k}=w$ and $P_{W}(k, w)=v_{0}$ . Since $u=(u_{j})_{j\in Z}$ crosses $s$ twice when it goes
out the strip $[T(s), T(\overline{s})]$ , the set { $P_{W}(j,$ $u_{j})|u_{j}$ lies in the strip $[T(s),$ $T(\overline{s})]$ }
has it $s$ maximum $v_{0}$ . This contradicts that both $v=(v_{j})_{j\in Z}\in W$ passing
through $v_{0}$ and $u$ are bgeodesics (see Lemma 2.5).

Suppose $(u_{j})_{J\geq 0}$ stays in the strip $[T(s), T(s^{l})]$ . We will prove that $u=$
$(u_{j})_{j\in Z}$ is a periodic bray with period $(q,p)$ . Let $u^{1}=U(q,p)u=(u_{j}^{1})_{j\geq q}$

where $u_{j}^{1}=u_{j-q}+pL$ . Suppose $u^{1}=U(q,p)u\neq u$ , say $u_{2q}^{1}>u_{2q}$ . Set
$v=\bigcup_{k=0}^{\infty}((U(q,p)^{k}u)_{j})_{kq\leq j\leq(k+1)q}$ . For any $m\in Z^{+}$ set $u^{k}=U(q,p)^{k}u$ and
$(U(q,p)^{k}u)_{mq}=:u_{mq}^{k}$ for $k=0,$ $\cdots m-1$ . Then, $u_{mq}<(U(q,p)u)_{mq}<$

$<(U(q,p)^{m-1}u)_{mq}$ . By Lemma 3.3 and Proposition 3.4,

1 $u_{0}-s_{0}|+|u_{mq}-s_{mq}|+H(s;0, mq)\geq H(0, mq;u_{0}, u_{mq})$

$=H(0, q;u_{0}, u_{q})+H(q, mq;u_{q}, u_{mq})$

$|u_{mq}-u_{mq}^{1}|+H(u;q, mq)\geq H(q, mq;u_{q}^{1}, u_{mq}^{1})$

$=H(q, 2q;u_{q}^{1}, u_{2q}^{1})+H(2q, mq;u_{2q}^{1}, u_{mq}^{1})$

$|u_{mq}^{1}-u_{mq}^{2}|+H(u^{1}; 2q, mq)\geq H(u^{2};2q, mq)$

$=H(u^{2};2q, 3q)+H(u^{2};3q, mq)$

1$u_{mq}^{m-2}-u_{mq}^{m-1}|+H(u^{m-2};(m-1)q, mq)$

$\geq H(u^{m-1}; (m-1)q, mq)$ .
Therefore, we have

1 $ u_{0}-s_{0}|+|u_{mq}-s_{mq}|+|u_{mq}-u_{mq}^{1}|+\cdots$

$+|u_{mq}^{m-2}-u_{mq}^{m-1}|+H(s;0, mq)$

$\geq H(u;0, q)+H(u^{1}; q, 2q)+\cdots+H(u^{m-1};(m-1)q, mq)$ .

and, hence,

$|u_{0}-s_{0}|+|u_{mq}^{m-1}-s_{mq}|+mH(s;0, q)\geq mH(u;0, q)$

Dividing both sides by $m$ and taking $m$ to the infinity, we have

min $D(q,p)=H(s;0, q)\geq H(u;0, q)$
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From this we see that $H(u;0, q)=\min D(q,p)$ , and, hence, $u$ is a minimal
periodic bgeodesic with period $(q,p)$ .

$\square $

Lemma 8.3. Suppose there exists a pole $ x\in$ C. Then, for any $(q,p)$ ,
$q,p\in Z^{+},$ $p/q<1$ , and any $s_{0}$ corresponding to a pole, there passes a
minimal periodic b-geodesic $s=(s_{j})_{j\in Z}$ with period $(q,p)$ such that the strip
$[T(s), T(\overline{s})]$ is foliated by b-straight lines and the foliation $W$ corresponds to
$a$ not null-homotopic $\varphi$-invariant closed curve in the phase space $\Omega$ , where
$\overline{s}_{j}=s_{j}+L$ for all $j\in Z$ .

Proof. As was seen in Theorem 8.2, there exists a minimal periodic bgeodesic
$s=(s_{j})_{j\in Z}$ containing a pole $s_{0}$ . Let $\overline{s}=(s_{j})_{j\in Z},\overline{s}_{j}=s_{j}+L$ . We have
a foliation $W$ of the strip $[T(s), T(\overline{s})]$ as the limit of bsegment$s$ emanating
from poles $\overline{s}_{mq}=s_{mq}+L$ , and, therefore, any element of $W$ is a co-bray of
$\overline{s}$ . We have to prove that it corresponds to a not null-homotopic $\varphi$-invariant
closed curve in $\Omega$ . We define a map $\beta$ : $[s_{0},\overline{s}_{0}]\rightarrow[s_{1},\overline{s}_{1}]$ as $\beta(u_{0})=u_{1}$

where $u=(u_{j})_{j\in Z}\in W$ . We will prove that $\beta(u_{1})=u_{2}$ if $u_{1}\in[s_{0},\overline{s}_{0}]$ and
$\beta(u_{1}-L)=u_{2}-L$ if $u_{1}\in[s_{1},\overline{s}_{1}]-[s_{0},\overline{s}_{0}]$ . Suppose $u_{1}\in[s_{0},\overline{s}_{0}]$ . Let
$v=(v_{j})_{j\in Z}$ such that $v_{j}=\overline{s}_{j+1}$ for all $j\in Z$ , namely, $v=U(-1,0)\overline{s}.$ . Then,
$v$ and $\overline{s}$ are co-brays to each other. Let $\overline{v}=(\overline{v}_{j})_{j\geq 0}$ be the co-bray to $v$ from
$(0, u_{1})$ . Then, $\overline{v}$ is a co-b-ray to $\overline{s}$ , since $\overline{s}$ is the unique co-bray to $v$ passing
through $\overline{s}_{0}$ . This implies that $\beta(\overline{v}_{0})=\overline{v}_{1}$ . Since the pair $(0, u_{1})$ and $v$ were
translated from $(1, u_{1})$ and $\overline{s}$ by $U(-1,0)$ , we see that $\overline{v}$ is translated to the
co-bray to $\overline{s}$ from $(1, u_{1})$ by $U(1,0)$ . Therefore, $\beta(u_{1})=\beta(\overline{v}_{0})=\overline{v}_{1}=u_{2}$ .

Suppose $u_{1}\in[s_{1},\overline{s}_{1}]-[s_{0},\overline{s}_{0}]$ . Then, by using $U(-1, -1)$ instead of
$U(-1,0)$ , we can prove the remaining part.

9 Proof of Corollaries 1.2 to 1.5
Proof of Comllaries 1.2, and 1.5: By Theorem 4.5 and Lemma 4.6 we $s$ee
that the assumptions of Corollary 1.2 and 1.5 are equivalent. Let $W_{(qp)}$ be
a foliation of X by minimal periodic bgeodesics with period $(q,p)$ . Then,
$W_{(q,p)}$ corresponds to a simple closed curve not null-homotopic in $\Omega$ . Those
$\varphi$-invariant closed curves yield a foliation $F$ of $\Omega$ by simple curves. Corollaries
follow from Theorem 1.1.

Pmof of Comllary 1.3: Theorem 8.2 and Lemma 4.6 state that $D(q,p)$

is constant in X for all $q,p\in Z^{+}$ . Corollary 1.3 follows from Corollary 1.5.
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Proof of Comllary 1.4 : Lemma 8.3 show $s$ that for any $(q,p)$ with $p/q<1$

there is a foliation $W$ of X by b-straight lines such that $W$ contains b-straight
lines with period $(q,p)$ . Since those b-straight lines are given as the limit of
b-rays emanating from divergent poles, the monotone property implies that
all b-straight lines in $W$ are with period $(q,p)$ . The assumption of Corollary
1.5 is satisfied.

10 Divergence property
In this section we prove Corollary 1.6.

Pmof of Comllary 1.6: Let $q,p\in Z^{+}$ with g.c.$d(q,p)=1,$ $p/q<1$ .
We prove that the configuration space X is foliated by minimal periodic
bgeodesics with period $(q,p)$ , which is equivalent to that all displacement
functions $D(q,p)$ are constant in X. Then, Corollary 1.5 proves Corollary
1.6.

Suppose $D(q,p)$ is not constant in X. Theorem 9.3.7 in [17] states that
there exist at least two b-curves with period $(q,p)$ one of which is not minimal
if $D(q,p)$ is not constant in X. Let $s=(s_{j})_{j\in Z}$ be a minimal periodic $k$

geodesic with period $(q,p)$ and let $t=(t_{j})_{j\in Z}$ be not a minimal b-curve with
period $(q,p)$ such that $|t_{0}-s_{0}|\leq L/2q$ . Because of how to make $t$ we know
that $t$ does not cross $s$ . Since $t$ is not a bray, we have a co-b-ray $ t^{\prime}=(t_{j}^{\prime})_{j\geq 0}\neq$

$t$ to $s$ with $t_{0}^{\prime}=t_{0}$ which lies between $t$ and $s$ . Then, $dis_{\infty}(t, t^{\prime})\leq L/2q$ , and,
hence, by assumption, we have that $t=t^{\prime}$ , a contradiction. This implies that
$D(q,p)$ is constant.

11 Proof of Theorem 1.7
Let $f$ be a $\varphi$-invariant simple closed curve not null-homotopic in $\Omega$ . The
Birkhoff theorem states that $f$ is a graph of a Lipschiz continuous function
$C\rightarrow(-\infty, \infty)$ . From this it follows that $f$ yields a foliation of b-straight
lines in X which is invariant under all translations. Therefore, the slope $a(\overline{x})$

is constant for any $\overline{x}\in f$ . Hence, we are allowed to write $a(f)$ . We begin
with the following lemma.

Lemma 11.1. Let $f$ be a $\varphi$-invariant simple closed curve not null-homotopic
in $\Omega$ unth slope $\alpha(f)\neq L/2$ . Suppose $f$ makes a caustic $K$ which lies in $C$ .
If $K$ is simple, then $K$ is a convex curve.
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Pmof. Let $x=(x_{j})_{j\in Z}$ denote the billiard ball trajectory in $E$ determined
by $\overline{x}\in f$ and $\psi(x_{0})$ the point in $K$ where $T(x_{0}, x_{1})$ is tangent to $K$ . Since $K$

is a simple curve, the map $\psi$ : $C\rightarrow K$ is such that $\psi^{-1}(y)$ is a connected
set for any $y\in K$ . In order to see the convexity of $K$ it is sufficient to prove
that $\psi$ preserves the orientation because the slope of $T(x_{0}, x_{1})$ is monotone
increasing with respect to the usual xy-coordinate in E. Suppose for indirect
proof that $\psi(y)$ move$s$ for $y\in C$ along the reverse orientation of $K$ . Then, $K$

is the union of locally concave curves. We assume without loss of generality
that $\psi(y_{1})$ lies in the left side of the line containing $T(y_{0}, y_{1})$ at $y_{0}\in C$ . Let
$z(x_{0})\in K$ be a point through which $T(x_{0}, x_{1})$ goes across $K$ from the inside
to the outside. As $x_{0}$ moves along $C$ until $x_{1}$ arrives at $x_{2}$ , the point $z(x_{0})$

moves and passes through $\psi(y_{1})$ in $K$ . Since $\psi(x_{1})$ moves from $\psi(y_{1})$ along
the reverse orientation of $C$ , there exists an $x_{0}$ such that $\psi(x_{1})=z(x_{0})$ .
Then, the segment $T(x_{2}, x_{1})$ coinsides with $T(x_{0}, x_{1})$ . Hence, $T(x_{1}, x_{2})$ is
perpendicular to $C$ at $x_{1}$ , and, therefore, $\alpha(f)=L/2$ because of Lemma
4.14, 4.13, and 4.15. It contradicts the assumption $\alpha(f)\neq L/2$ .

We will prove Theorem 1.7 and Corollary 1.8.
Proof of Theorem 1.7: Let $s^{\mathfrak{n}}=(s_{j}^{n})_{j\in Z}$ be the configuration for $\overline{x}\in f_{n}$

such that $c(s^{\mathfrak{n}_{0}})$ is an endpoint of the diameter of $C$ . Each caustic $K(f_{n})$ lies
in the sector made of segments $T(c(s_{-1}^{n}), c(s^{n_{0}}))$ and $T(c(s^{n_{0}}), c(s^{n_{1}}))$ , since
$K(f_{n})$ is a simple closed convex curve (see Lemma 11.1). Let $t=(t_{j})_{j\in Z}$ be
the minimal periodic bgeodesic with period $(2, 1)$ such that $t_{0}=s_{0}$ , namely
$T(c(t_{0}), c(t_{1}))$ is a diameter of $C$ . Since $s_{-1}^{n}\rightarrow t_{-1},$ $s^{n_{0}}=t_{0},$ $s^{n_{1}}\rightarrow t_{1}$ as
$ n\rightarrow\infty$ , the sequence of caustics $K(f_{\mathfrak{n}})$ converges to a segment $T=T(a, b)$
which lies in a diameter $T(c(t_{0}), c(t_{1}))$ . Let $x=c(u_{0})$ be any point in $C$ such
that $x\neq c(t_{0})$ and $x\neq c(t_{1})$ . Let $u^{n}=(u_{j}^{n})_{j\in Z}$ be the sequence of bstraight
lines such that $T(c(u^{\mathfrak{n}_{0}}), c(u^{n_{1}}))$ are tangent to $K(f_{n})$ and $u^{\mathfrak{n}_{0}}=u_{0}$ . Then,
the segments $T^{n}(x)_{-}=T(c(u_{-1}^{n}), c(u^{n_{0}}))$ and $T^{n}(x)_{+}=T(c(u^{n_{0}}), c(u^{n_{1}}))$

from $x$ are tangent to $K(f_{n})$ . Since $K(f_{n})$ are simple convex closed curves,
the sequence of segments $T^{n}(x)_{-}$ and $T^{n}(x)_{+}$ converges to segments $T(x)_{-}$

and $T(x)_{+}$ which pass through the endpoints $a$ and $b$ of $T$ . The length of
$T(a,x)\cup T(b, x)$ is constant in $x\in C$ , since $T(x)_{-}$ and $T(x)_{+}$ lie in a billiard
trajectory, so that the angles of $T(x)_{+}$ and $T(x)_{-}$ with the tangent line of
$C$ are equal. This states that $C$ is an ellipse. This completes the proof of
Theorem 1.7.

Pmof of Comllary 1.8: It is enough to note that the assumption is the
same as in Theorem 1.7.
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