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On Ricci curvature of CR-submanifolds with rank one totally real
distribution
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Abstract

In a recent paper, Bang-yen Chen obtained sharp inequalities between the maximum Ricci
curvature and the squared mean curvature for arbitrary submanifolds in real space forms and
totally real submanifolds in complex space forms ([6, 7]). In this paper we give sharp inequalities
between the maximum Ricci curvature and the squared mean curvature for arbitrary submani-
folds in complex space form. Moreover we investigate CR-submanifolds in complex space forms
and in the nearly Kaehler six-sphere which realize the equality case of the inequalities mentioned
above.
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1 Introduction

Let M™ be an n-dimensional submanifold of an m-dimensional manifold M™. Denote by h the
second fundamental form of M™ in M™. Then the mean curvature vector H of the immersion is
given by H= %trace h. A submanifold is said to be minimal if its mean curvature vector vanishes
identically. Denote by D the linear connection induced on the normal bundle TLM™ of M™ in M™,
by R and R the Riemann curvature tensors of M and of M™ respectively, and by RP the curvature
tensor of the normal connection D. Then the equation of Gauss and Ricci are given respectively by

RX,Y)Z = (AnypX,W)- {Anx.2)Y, W)+ R(X,Y)Z (1.1)

RP(X,Y3€,m) = R(X, Yi£,m) + ([, A)(X), Y) (12)

for vectors X,Y,Z, W tangent to M and £,7n normal to M, where A is the shape operator. For
the second fundamental form h, we define the covariant derivative Vh of h with respect to the
connection on TM @ T+ M by

(Vxh)(Y, Z) = Dx(h(Y, Z)) - M(VxY, Z) — K(Y, Vx2Z). (1.3)
The equation of Codazzi is given by
(R(X,Y)2)* = (Vxh)(Y, 2) - (Vyh)(X, Z). (14)

The Ricci tensor S and the scalar curvature 7 at a point p € M™ are given respectively by
S(X,Y) = ¥"  (R(ei, X)Y, &) and 7 = Y, S(e;, €;), where {e1,...,en} is an orthonormal basis
of the tangent space T,M™".
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Let Ric denote the maximum Ricci curvature function on M™ defined by
Ric(p) = max{S(X, X)|X € T/M"}, pe M™, (1.5)

where TI} M™ is the unit tangent vector space of M™ at p.

When M is a submanifold of an almost Hermitian manifold M, a subspace V of TpM is called
totally real if JV is contained in the normal space T,;"M of M at p. The submanifold M is called
totally real if each tangent space of M is totally real; and M is called a CR-submanifold if there
exists a differential holomorphic distribution H on M such that the orthogonal complement H*
of H in TM is a totally real distribution ([2]). A CR-submanifold is called proper if it is neither
totally real (i.e., H-=TM) nor holomorphic (i.e., H=TM).

Let M be a (2n+1)-dimensional CR-submanifold with dim H* = 1 and we put H* = Span{ean+1}-
We denote the tangential component of JX by PX. Then (P, ezn41,w!, g) defines an almost contact
metric structure on (M, g), where w!(X) := g(ezn4+1,X) and g is an induced metric ([16]). M is
said to be normal if the tensor field Sys defined by

Su(X,Y) = [PX, PY] + P2[X,Y] — P|X, PY] - P[PX,Y]+2dw1(X,Y)eams1 (1.6

vanishes ([1]).

For the maximum Ricci curvature and the squared mean curvature H2 for n-dimensional sub-
manifolds in m-dimensional complex space forms M™(4c) of constant holomorphic sectional curva-
ture, we have the following:

2

TZTEs(n+2)c+%H2 for ¢>0, (1.7)
2

ms(n—l)c+%ﬂ2 for c¢<O. (18)

In case ¢ < 0 and dimM = 3, the inequality is known as Chen’s basic inequality (cf. [8]). In
[8] Chen has completely classified 3-dimensional proper CR-submanifold which satisfy the equality
case of (1.8).

In this article, we study proper CR-submanifolds with dim %+ = 1 of complex space forms
satifying the equality case of the inequalities (1.7) or (1.8). In particular, in case ¢ < 0, we are able
to establish the explicit representation of such submanifolds which are normal in an anti-de Sitter
space time via Hopf’s fibration, and in case ¢ > 0, classify 3-dimensional normal CR-submanifolds
satisfying the equality case of (1.7). The inequality (1.8) also holds for arbitrary submanifolds in
real space forms R™(c) of constant sectional curvature c, too ([6]). In the last section, we investigate
3-dimensional CR-submanifolds in the nearly Kaehler 6-sphere which realize the equality case of
the inequality.

2 Main Results

Theorem 1 Let M be a 3-dimensional CR-submanifold with dimHL = 1 in M™(4c), ¢ € {0,1}
satisfying the equality case of (1.7). Then M is normal if and only if it is one of the following.

(1) M is an open portion of a product submanifold C x R in C™"! x C,

(2) M is an open portion of a geodesic sphere of radius § in CP%(4).

Consider the complex number (m+ 1)-space C'I"+1 endowed with the pseudo-Euclidean metric go
given by go = —dz2odZ + }_j-; dz;dZ;, where Z denotes the complex conjugate of z;. On CTt! we
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define (z,w) = —zpWo+ Y _je; 2kWk. Put lemH(—r) ={z = (z0.21.....2m) € CT“ : (2, 2) = —r?},
It is known that H2™+1(—1) together with the induced metric g is a pseudo-Riemannian manifold
of constant sectional curvature —1, which is known as an anti-de Sitter space time.

We put H = {\ € C : AX = 1}. The quotient space Hi™*!(—1)/., under the identification
induced from the action, is the complex hyperbolic space CH™(—4) with constant holomorphic
sectional curvature —4. The almost complex structure J on CH™(—4) is induced from the canonical
almost complex structure J on C’{‘H, the multiplication by i, via the totally geodesic fibration:
72 H¥™H(-1) - CH™(-4).

We obtain the following general property.

Theorem 2 Let z : M — CH™(—4) be a (2n + 1)-dimensional C R-submanifold with dimH*=1 .
If M satisfies the equality case of (1.8), then H is parallel i.e., DH =0.

A submanifold is said to be linearly full in CH™(—4) if it does not lie in any totally geodesic
complex submanifold of CH™(—4).

Theorem 3 Let U be a domain of R®(n > 1). Define z: R2x U — C'ln'"1 by

p— s it )
Z(S, tvxl’m%"'ayl’y?) = (g(zla-”?y?)e ) 2n_2e )’ (21)
_2n—1

where |g|? = —22=1 and g(z1, . ..,y2)e** is a CR-submanifold of CT* such that the unit totally real
vector field is ,/%ﬁ:—fg;. Then (z,z) = —1 and the image 2(R? x U) is invariant under the group
H}. Moreover the quotient space z(R? x U)/.. is a (2n + 1)-dimensional CR-submanifold with
dim HL = 1 which satisfies the equality case of (1.8) under the condition that the shape operator Ay
with respect to the unit vector field n € H' has constant principal curvatures.

Conversely, in casen > 1 and m > n + 1, up to rigid motions of CH™(—4), every linearly full
(2n + 1)-dimensional CR-submanifold with dim M+ = 1 which satisfies the equality case of (1.8)
under the condition that the shape operator A, with respect to the unit vector field n € HL has
constant principal curvatures is obtained in such way.

3 The proof of Theorem 1

For arbitrary n-dimensional submanifolds M™ in complex space forms M™(4c), we have the follow-
ing.

Proposition 4 If M™ is an n-dimensional submanifold of complex space forms M™(4c), then the
mazimum Ricci curvature Ric of M™ satifies the following inequalities:

2
Ric < (n+2)c+ %HQ for ¢>0, (3.1)
L 2
Ric < (n—1)c+ %H2 for c<0. (3.2)
The equality case of (3.1) holds at a point p € M if and only if there exists an orthonormal basis
€1,...,€em at p such that ey, ..., e, are tangent to M and
- n—1
(a)Ric = S(en,en), ¢ Z(Jei, en)? = c, (3.3)
i=1
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(b)hs, =0, Zhs_hs = g, (3.4)
where 1$z_<__n—1 and n+1<s<2m.

The equality case of (3.2) holds at a point p € M if and only if there exists an orthonormal basis

€1,.-..,e2m at p such that ey, ..., e, are tangent to M and
. n-1
(a)Ric = S(en,€n), ¢ Z(Je,-, en)? =0, (3.5)
i=1
n—
(d)hs, =0, D h%=hs,, (3.6)

1
where 1<i<n—-1 and n+1<s<2m.

Proof: Put 6§ = 7 — n(n — 1)c — -—H2 3c||P||?, where ||P||? := Z,] 1{ei, Je;)2. Then from
the Gauss equation(1.1), we have n’"H2 = 2(6 + ||h||?), where ||h||? is the squared norm of the
second fundamental form In a similar way to the proof of theorem 1 in [7], we have S(ep,e,) <
(n—l)c+" H? 4+ 3c Y0 N Jei, en)?. 8

First we recall the followmg result on CR-submanifolds from [4].

Lemma 5 Let M be a CR-submanifold of a Kaehler manifold M. Denote by T*M = JHL @ v the
orthogonal decomposition of the normal bundle, where v is a complex subbundle of TL M. We have

(VuZz,X) = (J(A;zU0), X), (3.7)
AjeX = —AcJX, (3.8)

for vector fields Z in HL, £ in v, U in TM and vector field X in the holomorphic distribution M.

Proof of Theorem 1

Case 1: ¢ = 0. In this case we consider two cases for a unit vector field n € H* to be elther neL
or 1 ¢ L, where L is the orthogonal complement of {e3} in T, M and ej3 satisfies Ric = S(es, €3).

First, we consider the case where n ¢ L. If we choose e4 in such way that Jn = e4, then we
obtain that Aje,e3 = uge3z and 7 = e3 is a parallel vector field in the same way as lemma 8 in [8].
In general, for a (2n + 1)-dimensional CR-submanifold of M™(4c) which satisfies the condition that
AJesni1€2n+1 = H2n4+2€2n41 and ezn4 is parallel, we have the following relation ([14]).

—2¢(PX,Y) + 2(Agn4+2PA2n42X,Y) = (X p2n+2)(€2n+1,Y) (3.9)
—(Yponi2){€2n+1, X) + tton42(PA2ns2X,Y) — pons2(PAmy2Y, X),

where A2n+2 = Aeg,,.,.g = AJezn+1 .

We may assume that {e;,e2,e3} diagonalize the shape operator Aje, such that Je; = e3,
Ajeser = aey and Aje,ea = fBea. From (3.9) and proposition 4, we have 2a8 = u4(a + ) and
a + B = p4. This implies that a = 8 = 0. Then by applying (3.7), we have

< Ve, €2 — Ve,e1,63 >=< Vg, €3,€9 > — < Vg,e3,€1 >
=< J(Ae;;el)a e > —< J(Aeaeg),el >=0. (3.10)

Therefore H=Span{e;, e2} is integrable. Hence M is a CR-product(cf. [2]) by proposition 4 and
theorem 9.3 in [4]. Since the integral curve of e3 is an open portion of real line R and M is normal,
M is an open portion of C x R in C™.
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Next, we consider the case where n € L. We may assume that 7 = e; and Jn = e4. It follows
from (3.8) and proposition 4 that A; = 0 for § € v.

It is known that M is normal if and only if PAje, = Aje, P ([1]). From this fact and proposition
4, we have Aje,e1 =0, Aje, e = pgez, and Aje, e3 = pge3z. Thus we find

(Vesh)(e3,€1) = — < Ve,e1, €3 > pader,
(Vesh)(e2,e1) = — < Ve,er, e2 > pgder. (3.11)

The equation of Codazzi and (3.11) implies that < V.,e3 — Ve,ea,e1 > pg = 0. If we put W =
{r € M : pu4(p) # 0}, the above relation yields < V.,e3 — V¢ e2,e1 >= 0 on W, which implies that
H = Span{ey, e3} is integrable on W. Hence W is an open portion of a CR-product C x R and
pa = 0. It is a contradiction. Consequently we conclude that W is empty and M is an open portion
of a totally geodesic submanifold C x R.

Case 2: ¢ = 1. In this case, a unit vector field € H~ lies in L. Similarly to the proof in case
1, we have A¢ = 0 for £ € v. Hence, using

—Aje; X + Dx(Je3) = Vx(Jes) = J(Vxes) + Jh(X, e3), (3.12)

Dx(Je3) =0 for any X € TM.

Therefore, M is contained in a totally geodesic M 2(4). Since M is normal, we have Aje e; =0,
Aje,e2 = pgez, and Aje,e3 = pge3. This implies that M is a Hopf hypersurface. By virtue of
theorem 8 in [5], M is an open portion of a geodesic sphere of radius § of M 2(4). This completes
the proof of theorem 1.

In the same way as in the proof in case 1, by using (3.9), we obtain the following result.

Proposition 6 Let M be a (2n+1)-dimensional C R-submanifold with dim HL =1 in C™ satisfying
the equality case of (3.1). Then Ric = S(€ans1,€ans1) for ean+1 € HL if and only if M is an open
portion of a product submanifold N2* x R in C™~! x C, where N?* is a Kaehler submanifold in
cm1,

4 The proof of Theorem 2

In the same way as [8, 14], we have the following result using (3.8).

Lemma 7 Let z : M — CH™(—4) be a (2n + 1)-dimensional C R-submanifold with dimH*+=1 . If
M satisfies the equality case of (3.2), then the mean curvature vector H lies in JHL.

Proof of Theorem 2

Let {ej, ..., e2m} be an orthonormal frame field on M mentioned in proposition 4 such that egn+2
is parallel to the mean curvature vector field and {e;,...,eon+1} diagonalize the shape operator
Agp42 with respect to esn4o and moreover ey = Jeg—1(I = 1,...,n). Under the hypothesis, we
have H € JH* from Lemma 7. Without loss of generality we may assume that Jegn4+1 = eania.
Then, in the same way as the proof of lemma 5.4 in [14] we obtain that Jegn4 is a parallel normal
vector field i.e., D(Jegn+1) = 0. By choosing Y = egn 41 in (3.9), we get

X pon+1 = wl(X)ezn+142n+2- (4.1)
Now, by differentiating (4.1) and using (Vyw!)(X) = (PA2n+2Y, X), we obtain

Y (e2n+12n+2)w (X) — X (€2nt1M2n+2)w (Y)
+entiont2((PAont2 + A2n2P)Y, X) = 0. (4.2)
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By choosing Y = egny; in (4.2), we have X (eany1tont2) = €an+1(€2nt1t2n+2)w!(X). Combining
this and (4.2) yield
(e2n+1m2n+2){(PA2ni2 + A2n42P)Y, X) = 0. (4.3)

By choosing X = Y1, Jeg—; and Y = Y 1L ey in (4.3), we have ezn1p2nt2trace (Af"“) =0.
If M is nonminimal, we have ea,+1p2n42 = 0, since trace (A2"*!) # 0. Therefore this implies that
Uon+2 is constant. Hence we obtain DH =0. [ |

5 The proof of Theorem 3

Let {e1,...,€m+1} be an orthonormal basis mentioned in the proof of theorem 2. From now on
we shall assume that all principal curvatures of As,,92 are constant. Then we have the following
lemmas.

Lemma 8 Let {ey,...,e2n} be an orthonormal frame field of H with Aani2e; = Aie;. Then we have
foranyi€ {1,...,2n},

2n m
=14 M) 1
2 ( o A+ 2(Peiei))’ + - > (h¥¢h§,- — (hi; 2)) =0. (5.1)
J=L Aj#EN * J 1 J 2n+3

where h; = (Are;, €;5).

Proof: The proof is in the same way as the proof of lemma 2 in [3].

Lemma 9 As, 2 has at most three distinct principal curvatures.

Proof: The proof is separated into two cases.

Case 1: p%,,, = 4. We denote by o(H) the spectrum of Aani2|H, and for A € o(H) by T) the
subbundle of H formed by the eigenspace corresponding to the eigenvalue A. From (3.9) we obtain
for A€ o(H), X € T}, '

(2A — pon42)Agn42PX = (=2 + Apon+2)PX. (5.2)

Assume that there exists A € o(H) with A # §. We obtain from (5.2) that Az, 2PX = $PX for
X € T). Hence § is an eigenvalue. We denote by E; the eigenvectors corresponding to \; # $.

By the way, we have R(X, Y;Jeams1,€) = RP(X,Y; Jeans1, &) = O for any € € v by virtue of
D(Jean+2) = 0. Hence, the equation of Ricci yields

[A2ny2, Ag) =0. (5.3)

Relation (3.8) and (5.3) imply that (A, E;, E;) (A. X, X) — (A E;, X )2 = 0 for eigenvector X €
Te. Hence we have

> Pl +2PX,ENY) =5 3 (+2PX,E))#0,  (54)
i=1, Ai#% 2 J J=1, Aj£S

which contradicts (5.1). Therefore we obtain that o(X) = {$}.
Case 2: p3, ., #4.
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Assume that #o(H) > 2. Then we have the following orthogonal decomposition:

H = Ta1 @ JTal @ M ‘Tas @ JTas @ TA @ Tl—b2n+2“A’ (5'5)

nt2+y/ 4
where JT,, is the eigenspace corresponding to %‘%ﬁ—z, and A = “_‘iz_’i'i%_, moreover T
and Ty, ., are J-invariant, and A # «; from (5.2). We may assume that we can choose the
eigenvalue 8 € o(H) with 8 > 0 and that there are no further eigenvalues between 8 and 1 . Hence,

for all eigenvalues v € o(H), we have
“l1+By

B =
On the other hand by virtue of (3.8) and (5.3), we get

<0. (5.6)

Z > (<AXX> (Arej, e5) — (Arej, X)) =0 (5.7)

i=1, Aj#ay r—-2n+3
for each eigenvector X corresponding to a; (I = 1,...,s), and moreover, for each eigenvector Y’
corresponding to A

2
n m 1

Y 1o (A7) (Arese5) — (A, Y e5)?)
J=1, Aj#A r=2n+3 J

— f: (—1_(A,Y,Y> zt: (ArEj,Ej>)=0, (5.8)

r=2n+3 2x - Han+2 Jj=1, A]¢A

where E; are eigenvectors corresponding to pon+2 — A and ¢ = dimTy,,,,,—x. Similarly, for each
eigenvector Z corresponding to pop42 — A

2n m 1

>

J=1, AjFpznsa—A r=2n+3 H2n+2 ~

= i (-—-————1——— <ArZ, Z) i <ArEja E])) =0, (59)

r=2n+3 \ H2n+2 — 2A J=1, Aj#uan+2—A

T ((4rZ, Z) (Arej, e5) — (ArZ, €5)*)

where E; are eigenvectors corresponding to A and s = dim 7). We obtain from (5.1), (5.6), (5.7),
(5.8) and (5.9) that —1 + B = 0. Therefore #o(H) = 2. 11

Lemma 10 If m > n+ 1 and M is linearly full, then with respect to some suitable orthonormal
frame field {ei, ..., eam}, the second fundamental form of M in CH™(—4) satisfies

1
h(ezr—1, e2r—1) = [ 5—7 Jeon+1 + brér, | (5.10)
h(ezr, e27) = —1—J62n+1 — ¢rér, (5.11)
2n—1

2n
h(ezr—1,€2r) = ¢rJ&,  h(ezn+1, €2n41) = ﬁJ€2n+1 (5.12)
h(f,em+1) =0 , (5.13)

where r = 1,...,n, ¢, are functions, £, € v and f € L := Span{ey, ..., €2}

— 53 —



Proof: Suppose that H = T\®Ty,,,,-1. Let l and m (I > m) be the dimension of Ty and T}, ,_a,

respectively. Then we get (I — m),/p3, ., —4 = (2 — | — m)pon42. But it does not hold, since I,
m > 2.

Suppose that H = T, ® JTq,, where ay # fon+2, A, p2nt2 — A. Then by using (3.8) and (5.3),
we obtain that M is contained in a totally geodesic complex hyperebolic space CH™*1(—4), since
Jeon+1 is parallel. This is a contradiction.

Therefore, Ay, 42 has exactly two distinct eigenvalues. We denote the eigenvector corresponding
to the second eigenvalue a # poni2 by X. It follows from (5.2) that PX is also an eigenvector
corresponding to the eigenvalue 8 = %E‘—:%%—z-. Since A3, 42 has exactly two distinct eigenvalues,
we have # = puonyo or 8 = a.

We divide the proof into two cases.

First, let us suppose that As, 2 has two distinct eigenvalues pon 42 and uz_“i:t' i.e. pont2 = 6.

Then, using (3.8) and (5.3), we obtain that M is contained in a totally geodesic complex hyperebolic
space CH™*!(—4). This is a contaradiction.

Next, we consider the case where Asn42 has two distinct eigenvalues pon42 and a = 8. Then
from (5.5) we have H = T or T,,,,-x.

Consequentry, from proposition 3, replace esn+1 by —ean41 if necessary, we obtain that a =

71—_ and poni2 = 7.37"_- (]

Let M = m~1(M) denote the inverse image of M via the Hopf fibration 7 : HZ™*! _, CH m™(—4).
Then M is a principal circle bundle over M with time-like totally geodesic ﬁbers Let z : M —
HI™+1(—1) c CP*! denote the immersion of M in CT**!. Let V and V denote the metric connec-
tions of CT"*! and M, respectively. We denote by X* the horizontal lift of a tangent vector X of
CH™(— 4) Then we have (cf. [9])

Vx:Y* = (VxY)* + (R(X,Y))* + (JX,Y)V + (X,Y)z, (5.14)
Vx-V =VyX* = (JX)*, (5.15)
VvV = —2, (5.16)

for vector fields X,Y tangent to M, where z is the position vector of M in sz+1 and V =iz €
T H2m+1( 1)

Let Ey, ..., Eany1, & be the horizontal lifts of ey, . . ., e2n+1, &, respectively and let Eon 4o = iz,
and let {w]} be connection forms of M. Then, from lemma 10, (5.14), (5.15) and (5.16), we obtain

2n
Ve, _Eor_1 = Zw%r..l(E%-l)Ej + aiEony1 + ¢réy — iEonya, (5.17)
Jj=1
~ 2n .
Ve, _Eor = Zw%r(Ezr_l)Ej — aFEont1 + i) + Eopgo, (5.18)
=1
~ 2" o
Ve E2ro1 =Y wh_1(E2r)Ej + aBont1 + idr; — Eansa, (5.19)
i=1
-~ 2n .
VEQ,-E2T = ZW%,- (E2r)Ej + iaE2n+l - ¢r€: - iE2n+2, (5'20)
Jj=1
VEs_1 Eany1 = aEyy, (5-21)
VEgrE2n+l = —-QEQ,-_l, (5.22)
Vi1 Bont1 = 2naiBan i1 — iEony2, (5.23)
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V1 Banta = 652,,“5'%—1 = FEar, (5.24)

6E2,E2n+2 = 6l‘j'z,H.zl-;;Z‘ = —EQT-—I) (525)
VEmi1 Eont2 = VEy n Eony1 = iEon41, (5.26)
V Esni2Eont2 = iEony2, (5.27)

wherer=1,...,n,a= ,/;}_—T and
By using the above equations, we obtain the following lemma.

Lemma 11 M is a Riemannian product My x M, where My, My are integral submanifolds of
D, := Span{E,, ..., Ean,aEant+1 — Eant2} and Dy := Span{Ean41 — aEoni2}, respectively.

Proof: For X', Y' € D,, we have

Vx/(Eans1 — @Bons2) =0, VE, 1—aBsmsz(Eans1 — aBony2) =0,
Vx'Y' € D, VEg,.+1—aE'2,,+2X/ e D,.

Hence, D, and D, are totally geodesic in M and parallel. I
Moreover we obtain from (5.21)-(5.27) that

VEy_1(Eans1 — @Eont2) = Vi, (Bang1 — aEony2) =0,
Vo s1—Emsz(Bant1 — @Bany2) = (2na? — a® — 1)iEny1 = 0.

Hence, Z := Eop4+1 — aFop42 is a constant vector in CT“ along each integral manifold M, of D,.
From lemma 11, there exist coordinates {s,t,1,¥1,...,Zn,¥Yn} such that gs, 32—1—, ceey 3\‘3—" are
tangent to integral manifolds M, of D;, 3@5 = aFEopy1 — Eon+2 and gz = Fon4+1 — aFaonta. Without
loss of generality, we may assume that M, is defined by t = 0. We put Zg := Z|¢=o0.
Then we may assume Zp = (0,...,0, V1 —a?); up to rigid motions. Since (2, Zp) is constant
along M;, we can write
Z(S, O) Z1, Y1445 Tn, yn) = (‘I”l'; ceey \Ilmv C), (528)

where c is a constant determined by the initial conditions and ¥y,..., \I'm are functions. .
Since 25 + (1 — a?)iz = aEnt1 — Eanyo + (1 — 02?)Eont2 = a(Eany1 — aEony2) = aZ, we have

%‘—I's;’-' +(1-0®i¥; =0, c(l1-a)i=aVl-—a?, (1-ad)izn= a%it‘i, (5.29)
where 2; is a position vector of My in CP+!. Thus we have
2= (g(z1,...,yn)e” 17, 9—1—-—-—'_1_;2‘%%“-2-“) (5.30)
Since (z, 2) = —1, we have
~lgl® + 5 (_1202 =-1. (5.31)

We put Eony1 = 7;?‘!3(0E2n+1 — Eant2) and Egnys = 71%;,7(E2n+1 — aEony2). It follows from
(5.17)-(5.27) that M; is a CR-submanifold of CT* such that the unit totally real vector field is
1 "9 ‘

Vi—a? 9s
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Conversely, we consider the immersion mentioned in Theorem 3. We put Eon4o = (0, vV2n — 2(%),
Egnt1 = (—/2=22,0), Eans1 = —y/ 525 Em+1 + /2L Esnyo and Epnio = — 2 By +
,/-2—51_71:72,;4.2. Then by straight-forward computaions we can see that {E},..., Eon, Eont1, Eonia}
is an orthonormal basis of z(R? x U) and the second fundamental form of z2(R2? x U) in CT**!

satisfies
h(Ear—1, Eor—1) = ‘/ 2n1— liE2n+1 — iEony2 + drér, (5.32)
F(Bar—1, Ear1) = || 5 iBans1 — iBansz — oy, (5.33)
h(E2r—1, Ezr—1) = ideés, (X, Eant1) =0, (5.34)
h(Ean+1, E2nt1) = '_%%iE2n+l —iEon 42, (5.35)
X € Span{E,,...,Eo,}, ¢r are functions and f,. are unit normal vector fields perpendicular to

iEon+t1, tEony2.

Since iz is always tangent to z(R? x U), the image is invariant under the action of H1. Hence,
z(R? x U) is projectable via 7. The image 7(z(R? x U)) is a (2n+1)-dimensional proper CR-
submanifold of CH™(—4) whose holomorphic ditribution H is spanned by e; = m,(E}),...,en =
T+ (E2n) and H' is spanned by ezn+1 = e (Ean+1). From (5.32)-(5.35), we obtain that ey, . . ., €n, €gn+1
and & = m, (&) satisfy (5.10)-(5.13). This completes the proof of theorem 2.

In the rest of this section we shall determine normal CR-submanifolds in a complex hyperbolic
space satisfying the equality case of (3.2).

Corollary 12 In case n > 1 and m > n + 1, every linearly full (2n + 1)-dimensional normal CR-
submanifold with dimH* = 1 in CH™(—4) satisfying the equality case of (3.2) is obtained in the
same way as in theorem 3.

Proof: By using (3.9) and relation PA3pt+2 = APy, 42, we obtain that the shape operator A2 has

. . . n 2 -4 —_ 2 -4 .
at most three distinct constant eigenvalues pop 49, M and —-\C“"“ 2“"“ . The assertion
follows immediatly from theorem 3. §

6 CR-submanifolds in the nearly Kaehler six-sphere

It is well known that the unit six-sphere S%(1) has a nearly Kaehler structure J in the sense
that (VxJ)(X) = 0, for any vector field X tangent to S6(1), where V denote the Levi-Civita
connection related to the standard metric on S®(1) ([10]). For the maximum Ricci curvature Ric of
a 3-dimensional submanifold in S%(1), we have

Ric<2+ %H? (6.1)

F. Dillen and L. Vrancken have completely classified totally real submanifolds in the nearly Kaehler
six-sphere satisfying the equality case of (6.1) ([11]). An n-dimensional Riemannian manifold is
called quasi-FEinstein if Ricci tensor has an eigenvalue of multiplicity at least n — 1. R. Deszcz,
F. Dillen, L. Verstraelen and L. Vrancken proved that 3-dimensional totally real submanifolds in
S®(1) satisfying the equality case of (6.1) are quasi-Einstein ([12]). For proper CR-submanifolds,
we obtained the following.
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Theorem 13 Let M3 be a 3-dimensional proper CR-submanifold in S%(1). If M3 satisfies the
equality case of (6.1), then M3 is minimal quasi-Einstein.

Proof: By virtue of main theorem in [14], Ric # S(n,7) for a unit vector field n € H*. Let
{e1, €2, €3} be an orthonormal frame field on M3 such that Ric = S(e3, e3). We may assume that
* 1 = ey. Since (A¢JX, X) = — (A¢X, X) for any vector field X € H' and & € v, we obtain that the
second fundamental form satisfies

h(el, 61) = aJesy, h(eg, 62) = bJesy, h(eg, 63) = (a + b)Je2, (62)
h(ei, 62) = cJey + d&, h(el, e3) = h(ez, 63) =0, (63)

where a, b, ¢ and d are functions and £ € v. From (V,h)(e1, e3) = (Ve, h)(e2, €3), we get

(Vez €3, 62) d= (Vele3’ 61) da (64)
(ve1 €2 — vezel) 63) h(e3) 63) - (Veze31 61) h(ela el) + (Vel €3, 62) h(€2, 62) =0. (6‘5)

By using (VxJ)(Y) = —(VyJ)(X), we have the following:

_'AJezel + De] Jez = 6e1(-]e2) = _veze,'} + J(Vezel + Vele2 + 2h(61) 82))7 (6°6)
"AJeZCB + De3J62 = Vea (J62) = ezel + h(ela 62) + J(VezeS + Ve3e2)’ (6‘7)
J(Veye2) + Jh(ez, €2) = Ve, (Jeg) = —Aje, €2 + De,Jez. (6.8)

It follows from (6.6), (6.7) and (6.8) that an orthonormal basis {ej, eg, e3} satisfies

<Veéela 63) = 01 <vele2a 61) = 01 <V61627 63) = —a, (veze.'ia €2> = —¢,
(Veaez, 63) - 0, <V3362, €1> = —-qa— b, D33J62 = O- (6.9)

From (Ve, k)(es, e3) = (Ve h)(e1, €3), we obtain
(@+b)De,Jea =0, er(a+b)Jea = —(Ve,er,e3) (a+ b)Jes — (Vese3,e1) h(er,e1). . (6.10)

We put My := {p € M3|(a + b)(p) # 0}. Then D, Jes = 0 on My, which implies that
h(ei,e2) = d¢ = 0 by (6.6). If d = 0, (6.7) yields DJes = 0. Since h(X,Y) € Span{Jey} for any
tangent vector X, Y, we obtain that My is contained in a totally geodesic S4(1). Hence T'S*(1)|nm,
is spanned by {e1, ez, e3, Jea}. A result of Gray in [13] shows that this is impossible. Therefore,
a+b =0 on M3 Moreover by using (Ve,h)(e1,e1) = (Ve h)(es, €1), we have ac = 0. It follows
from the equation of Gauss that c =0, a2 =d2 =1 and S(X,Y) = 2 (X, e3) (Y, e3) for any tangent
vector X, Y. This proves the required result. §
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