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a Quasifree State on a Self-Dual CCR Algebra

Hideki Kurose and Hidekazu Ogi

Abstract

In this paper, we prove the Tomita-Takesaki theorem for an
unbounded operator algebra given by the GNS-representation of a CCR

algebra with respect to a quasifree state in the self-dual formalism.

1. Introduction

In quantum physics, the annihilation and creation operators for
Bose particles satisfy the canonical commutation relations (CCR) and
it is important to study the CCR algebras generated by those objects
satisfying CCR. The CCR algebras have been studied by numerous
physicists and mathematicians for a long time.

In the theory of bounded operator algebras, it is well-Kknown
that the Tomita-Takesaki theorem plays an important role for a study
of structures of von Neumann algebras and for a study of KMS-states

(matematical objects for equiliblium states) on C*—dynamical systems.
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If we represent a CCR algebra as an operator algebra in a Hilbert
space, it is always unbounded. To avoid the difficulty coming from
the unboundedness we usually consider a bounded operator algebra
whose generators satisfy the Weyl-Segal commutation relations, but we
can not directly observe the annihilation and creation operators in‘
it. Thus it seems meaningful to study the unbounded operator algebra
as itself and to develope the Tomita~Takesaki theory in it. A
genefalization of Tomita-Takesaki theorem to general unbounded
operator algebras has been studied by several authors (for example,
see [51). But, for unbounded CCR algebras, as far as the authors
know, it has been scarcely done except [4)] and [6], in which the
Tomi ta-Takesaki theorem was proved under a special condition. The aim
of this paper is to prove the theorem for unbounded CCR algebras
under more general situation by using Araki's self-dual formalism.

In section 2, a self-dual CCR algebra and a quasifree state are
defined. And several results for these, which are known in [l1]1 and
[2), are stated.

In section 3, making use of the results in section 2, we prove
the Tomita-Takesaki theorem for an unbounded operator algebra given
by the GNS-representation of a CCR algebra with respect to a
quasifree state in the self-dual formalism.

The second author would like to express his hearty thanks to
Professor Kichi-Suke Saito for his constant encouragement and useful

comments.

2. Preliminaries
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In this section, we introduce several notations and well-known
results from [1] and [2].

1% Let K be a complex 1linear space., Let r¢-,-) be a
hermitian form on K X K and I be an anti-linear operator on K

such that
(1 r.=1 and r((rf, 'g) = - r(g, f) for f, g € K.

For this triplet (K, r,I'), let B be the free complex *-algebra

generated by {B(f) s f € K} and an identity 1, where the

be the two-sided ideal of B generated by the identity 1 and
(B(af+Bg) - «B(f) - BB(g), B(£)*B(g) - B(g)B(HH*-r(f, )1 : «, 8 € C,
f, 8 € K}. Then ¥ is *-invariant. The quotient x*-algebra B/% is
called a self-dual CCR algebra over (K,r,m) and denoted by
UK,r,['>. The self-dual CCR algebra U(K,r,I') can be considered as a

*-algebra generated by (B(f) : f € K) such that
L
B(f) = BT,

2) B(af + 8g) = aB(f) + BB(g),

|
|
|
|
|
: *-mapping is defined by B(f)* = B(Ir'f) for f € K. Futhermore, let ¥
* *
B(f) B(g) - B(g)B(f) = r(f, g)l for f, g € K.

We set ReK = {f € K : I'f = f}. Then it is clear that B(f) is
hermitian if and only if f € ReK.

Let (K’,r’,'" be an another triplet satisfying the same
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condition with (1). And 12t U be a linear operator from K into K°®
such that TI''U = UI' and r’(Uf, Ug) = r(f, g) for f, g € K. Then it
follows from the self-dual CCR algebras that there exists a unique

*-homomorphism < from 2U(K,r,I’) into AK’,r’,I'’) such that

u
(3) tU(B(f)) = B(Uf) for f € K.
Then it is easily checked that, if U is injective (resp.
U is also injective <(resp. surjective). In

surjective), then T
particular, if U is a bijective linear mapping of K satisfying
i = Uur and r(Uf, Ug) = r(f, g) for f, g € K, then U is called a

Bogoliubov transformation for (K,r,M and T is also called a

U
Bogoliubov automorphism of U(K,r,l).
A linear functional @ on a *-algebra U with an identity 1

is called a state if ¢ satisfies

®(1) = 1 and ©(A®A) > 0 for all A € 4.

For any state ¢ on A, there exist a Hilbert space Sw, a
representation nw of 2, and a cyclic vector Q¢ for nw(ﬂ) in
S¢ such that nw(A) is a closable linear operator with the domain

* * *
n¢(ﬂ)9¢’ Rw(A) o Hw(A ), and @(B A) = (nw(B)QG’ b8 (A)Q¢) for A, B

)

Q) is called a GNS

€ . i ’ " ’
| In this paper the triplet (Sw nw o

representation of 2 with respect to ¢.
Let (7] be a state on a self-dual CCR algebra UK, r, . If
nw(B(f)) is essentially selfadjoint for every f in ReK and

<w¢<f) = expinw(B(f)) ¢ f € ReK} satisfies the Weyl-Segal relations,
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that is,
1
= - €
ww(f)w (g) W (f + g)expzr(g, £) for every f, g Rek,

then ¢ is said to be regular. Further, let Rw be the von Neumann
algebra generated by (ww(f) : f € ReK).

2%) Let @ be a state on a self-dual CCR algebra - U(K,r,[). We
define a hermitian form s(-,*) and a positive semi~definite form

(*,) on K X K, respectively, by

s
(4) s(f, & = ¢(B(f) B&)),
(f, g)s = s(f, g) + s(I'g, ') for f, g € K.
Put Ns = (f € K : (f, f)s = 0} and let Ks be the completion of
K/Ns with respect to the inner product (+y*)g oOn K/Ns. Put f

= f + N, € K, for f €K and K = (f : f € K}. We can respectively
construct ry and rs from r and r such that the triplet
(Ks,rs,rs) satisfies the same conditions as (1) for (X,r,lM.
Futhermore, the form s on K X K 1is also canonically extended to a

positive semi-definite form on Ks X Ks‘ We denote it by the same

notation s. Since the two hermitian forms rs and s on Ks X KS

are continuous with respect to the inner product (‘,°)S on KS X Ks,
there exist bounded selfadjoint operators RS and S on Ks such

that



r (f, 8 = (f, R.Z) (f, g € X),
(5) s(f, g) = (%, sE)S (f, g8 € K),

0<S8S <1, FSSFS =1-S8, and S - FSSFS = Rs

Since nw(B(f)) = 0 if and only if (f, f)s = 0 (i.e. f € NS)
Lemma 3.4 of [1], we can define the *-representation E@

ﬂ(K.rs,Fs) by

| i@(B(?)) = m,(B(f)) for all f € K.

If we put a state @ on ﬂ(f,rs,rs) by the equation
W(A) = (Q¢, n¢(A)Q¢) for every A € ﬂ(K,rs,Fs),

then we can show that (E¢,5¢,9¢) is the GNS-representation
ﬂ(K.rs,rs) for o.
A state ¢ on UK,r,MN is called a quasifree state if

satisfies the following conditions: for every n = 1,2,---,

(B ). +B(f

1 )) = 0

2n-1

n
¢(B(f1)-°'B(f2n)) = E'H ®(B(f )B(f

j=1 s(j+n)))’

(i)

by

of

of

where the sum is over all permutations s satisfying s(l) < s(2)

¢+ < 8(n), s(j) < s(j+n), j = 1,2,¢++,n.
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If o is a quasifree state on A(X,r,'), then the mapping

(f1,°-°,fn) —_ ¢(B(f1)"'B(fn)): KX +++ X K— C

eM_ Ly my

is continuous for (°.-)s on K; that is, if j i £
fgm ))s converges to 0 as m, m' — ® (j = 1,--:,n), then
®dt™) -+ B£{™)))7  is a Cauchy sequence in C. Thus. for any
h, in K_ (j = 1,+-,n), if each sequence {f™)° (£¢M ¢ g
j s 13 ’ H .j m=1 J
converges to h for (+,*)_, then we can define a quasifree state

J S
a on ﬂ(Ks,rs,Fs) by the equation

¢(BCh > -+ BCh )) = lim (B¢ £™ ) ... B £M ),
n 1 n
HH(D
= 1im w(B(fim)) o B(f;m))).
m—)w

Let (n~’5~'9~) be the GNS-representation of ﬂ(Ks,rs,rs) with

e @ @
~ K . - - s
respect to ®. We may identify 53 = 5¢, and Qa = Q¢. Since
nw(ﬂ(K,r,F))Q¢ = na(?l(K,rs,I's))Qa = na(ﬂ(Ks,rs,Fs))Qa, the domain of

i, is different from that of nw and, for every A € U(K,r,['), the
(€]

restriction A (A gk oy, 0f (R to  m,(UK,r,rNHQ
(p (p ’ 14

equals to nw(A).

<

Conversely, let a be a state on ﬂ(Ks,rs,Fs) such that

~ % ~ K
(h h,) = w(B(hl) B(h2)) + w(B(hz)B(hl) ) (hl, h2 € Ks),

1 "27s
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and let o be a *-homomorphism such that
x(B(f)) = B(f + Ns) (f € K).

Then ¢ = ¢ - @ is a state on U(K,r,[') such that

* *
(fl’ f2)s = ¢(B(f1) B(fz)) + w(B(fz)B(fl) ) (fl' f2 € K).
We may identify 5~ = 5¢, and QN = Q@’ But the domain of n, is
@ @ @
different from that of nx_. If ¢ is a quasifree state on

ﬂ(Ks,rs,Fs), then ¢ is also a quasifree state on U(K,r,l).

Therefore, this implies that every representation of AK,r,IM)
with respect to a quasifree state ¢ is almost equivalent to that of
ﬂ(Ks,rs,rs) with respect to a quasifree state ¢.

30) Next we will summarize some main results in (1] and [2}.

Theorem. Keep the notations in 1%) and 2°).

(i) There exists a one-to-one correspondense between quasifree
states ¢ on ﬂ(K,r,F) and hermitian forms s on K X K by the
equality (4).

(ii) Any quasifree state on 2U(K,r,[) is regular.

(iii) Let ® be a quasifree state on AKK,r,I'). I1f the
associated operator S on K does not have an eigenvalue 0, then

S

Qw is a cyclic and separating vector for R¢.
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It follows from (iii) that there exist a modular operator A and

a modular conjugation J on 5¢ such that

it -{t
(6) J J = “ i = .
Rw R¢ and A ﬂwA mw for all t € R
The aim of this paper is to show that A and J coincide with Au
and Ju which are a modular operator and a modular conjugation
constructed by the unbounded CCR algebra nw(ﬂ(K,r.r)), respectively.
Further we show that the same equalities for n¢(ﬂ(K,r,F)) as in

(6) hold. To prove those we need a few more notations which are used

in [11 and [21 for the proof of the above theorem.

Keep the notations in 1°) and 2%y and put Ké = Ks ® KS,
ré(flegl, fzegz) = rs(fl, fz) - rs(gl, g2), Fé = FS ® Fs, and
(f1$g1, fzegz)s = (£, £o04 * (gl, Byl g
1/2 1/2
+ 2(f1. S (1 S) g2)s
1/2 _ 1/2
+ 2(g1, S (1 S) fz)s’
respectively. Then the triplet (Ké,ré,ré) and the positive
semidefinite form (',-)é satisfy the same conditions as (K,r,[)
and (-,-)S, respectively. In 20), the triplet (Ks,rs,rs) and a
inner product (-,~)s on Ks are induced from (K, r,I™ and a
positive semidefinite form C(y*) on K, respectively. By the same

s
way, we can construct a triplet (Rs’?s’fs) and a inner product

. Iy A * L] . . ! ’ 3

(-, )S on ﬁs from (Ké,rs,rs) and (-, )s on Ks, respectively.
Further we can define operators ﬁs and "s and a positive
semidefinite form ns(-,') which satisfy the following equalities



which correspond to (5):

A - A
R (hy, hy) = (hy, ﬁshz)s.
=1
ns-2(1+ﬁs),
T (h,, h,) = (h,, W h "
s 1 27 T 1’ s 27s?

m = -
o< M <1, fs sﬁs 1-m.
For the proof of the theorem in 30) a construction of one more
triplet (k,?.?) is needed. But it is not needed for our purpose, so
we will not mention further results in [1] and (2] except the

following proposition..

Proposition. Let ¢ be a quasifree state on a self-dual CCR
algebra 2U(K,r,[) and keep the notations in 2°) and 3°). We denote by
o the canonical *-homomorphism from 2(X,r,I") into ﬂ(ﬁs,?s,fs)
defined by (3). Then there exists a quasifree (precisely, Fock type
(c.f. [11,121)) state & on AR_,?,f> such that & - « = o.
Furthermore, if the operator S does not have an eigenvalue 0, then

the cycliec vector is also cyclic for nA(a(ﬂ(K,r{r))). where

Y

(SG,KA,QA) denotes the GNS-representation of ﬂ(ﬁs,?s,fs) with
® @

respect to $.

The above proposition implies that we may identify the GNS-
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representation spaces (Sw,Qw) of UK,r,['Y with respect to ¢ and

(SA,QA) of ﬂ(ﬁs,?s,fs) with respect to 6. But we must remark that

o 9
the domain of nw(ﬂ(K.r,F)) is strictly included that of

A .
na(ﬂ(ﬁs,rs.fs)) in general.

3. A Generalization of the Tomita-Takesaki Theorem

In this section, we prove the Tomita-Takesaki theorem for an
unbounded operator algebra given by the GNS-representation of a CCR
algebra with respect to a quasifree state in the self-dual formalism.

Let ® be a quasifree state on U(K,r,'). Suppose that the
associated operator S on Ks does not have an eigénvalue 0. If we

1

put H = log{S(1-8)" Y, then we can uniquely construct a

S
one-parameter group {t(expitHs))tGR of Bogoliubov *x-automorphisms
(c.f. (3)) and a one-parameter unitary group (Ts(expitHs)}tGR such
that

itH

T(expitH ) (B(£)) = B(e °f) (f € K.,

Ts(expﬂtHs)na(A)Qa = na(r(expitHs)A)Qa (A € ﬂ(Ks.rs,rs)).

respectively. Let 86 be an infinitesimal generator of Ts(expitHs).

Then we have

it8 _ . '
e = Ts(expttHs).
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1f we define a mapping mo on Ké by the equation

o, (fég) = Fsgersf for every f, g € KS,

0

then we can canonically construct a mapping ® on ﬁs from mo

Ké. Let <T(w) be a mapping on ﬂ(ﬁs,?s,fs) defined by

on

i i o= i, N i
r(m)(% ¢ B(h]) B(hné)) = % ¢, Bloh?) B(whni) (h; € RS).

Then there uniquely exists an antiunitary involution TTT () on §

S

<>

determined by

A
T, (@R, (AXQ, = n (t(@)AQ, (A € ﬂ(ﬁs’rs’fs))'

s & & 8 &

n

For a modular operator and a modular conjugation constructed by

the unbounded CCR algebra nw(ﬂ(K,r,F)), we have the following result.

Lemma 3.1. Let P be a quasifree state on AWK, r,['). If the
associated operator S on Ks does not have an eigenvalue 0, then

the mapping

*
Su s AQ@ — A Q¢ (A € Rw(ﬂ(K,r,r)))

is closable and the polar decomposition of S is given by the

following
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where {u = T"S(w), and Au

Proof. For any f € 9(S~
1/2.-1/2

"ﬂA[B(({'(l—S) S rs

3

QA(B(h)*B(h)) (where
@

ns(h, h) .

1

2

A

A
{(h, h)s + rs(h, h)}

/2

1 1 1
2{" (1-3) rsf+(1 S)

/

+ I-1-s)! 2rsf+(1—S)1

Hence we have

m, [B(((-(1-8)"
)

From this equality, we have

-8
e .

1/2

), we have

A 2
f)ersf) )JQAH

@

1/2,-1/

({-(1-8) S

h

/ 1

2 2 -
stﬂs + I-(1-8)s8

/ 1

h-¢1-8)s~

2 2
st"s

/25‘1/2rsf}ersf)A)JQ
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st}$rsf) ))

/2 1/2 2
st+s stﬂs

/2 1/2 2
rsf+S stﬂs)

¢

0.



)

A
Tn (Q)HQEB((fQO) )1Q

A
n [BC(oer £))1Q
b7 T TS,

n, IBCC(1-5) /257120 4g0y7y g
) s o

-8/2 A%
e RA[B((fQO) )] QA'

1 ?

Note that, for £, g € 92(s 1/2y,

B((o®£)M)B((g®0)")

B((g®0)™)B((0d£) ) + ?s<fs((oef)A), (g00)™)

B((g®0)")B((08f)").

1/2

Hence we have, for f, g € 2(S ),

s &

T, (@)1, [B((£©0)™)In [B((g00)")1Q
6 A

= Tp (@) [B((fQO)A)JT“ ()Ty (0)r [B((gGO)A)JQ
¢ ¢

S

n

7 [BC(oer_ £)™)1n
(/ﬁ S

¢

¢

(4

A
[ S ¢

Ty (@), [B((£0)")1T, (o), 1BC((1-5)1/2571/2r_ge0)*) 10
s ®

s 8

tB(((1—S)1/zs'1/2rsg90)">19A
()

nAtB(((1—5)1/25'1/2rsg00)A)JnA[B((oersf)A)JQ

& &
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nA[B(((1—8)1/28_1/2rsg$O)A)JHA[B(((1—5)1/25_1/2rsf00)A)]QA
% & h

e-@/2n

6[B((g$0)A)J*nA[B((fQO)A)J*QA
¢ ¢

= e'g/z(nA[B((feO)A>JnAtB<(geo>A)J)*QA.
A & %

Put

Ay = 3 e, [BC(£700)M) 1o n [B((£L 80)™)1 (1t € 9(s71/2),.
T ' @ n ;

By the same way, we have

’ -8/2
T, (0)A.Q = e AQ .
%% %
Thus we have
e 872y, Ag,) = (¥, T (@A Q) for all w € 9ce9/2y,
r s %

Put

_ £ Ay, £ A £
A1 = 2 ctnA[B((g1$O) | nA[B((gn.QO) )]QA (gj € KS).
L (¢} ¢ ya @
Since G is a quasifree state and ((fQO)A, (fQO)A)g = (f, f)s for
. £ @ L -1/2
all f € Ks, there exist sequences {fj,m)m=1 (fj,m € 2(S )) such
that
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S e (BC(ff @0)™)1-+-n [B((£f @010
g £ 6 1,m 6 ni,m G

converges to A1 in $ . Thus we have

A
¢

8/2

@82y, A%y = b, T. (@A,Q.) for all ¥ € De-8/2y,
17°A m 16

@ s

This implies that

AR, € 9782
o
and so
-8/2 , %
T, (W)A,Q = A.Q
ns 1 6 1 6
By replacing A1 with AT, we have
Ty (w)A;Q = e-e/zAIQA.
s ® o

Hence we have, for all A2 € na(ﬂ(Ks’rs’rs))'

T -8/2
~ = € AZQ .

*
Ty (w)AzQ N
s @ @

From this, it follows that
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*

-8/2 _
Tn (w)e A2Q~ = AZQ~

s ® ¢

Moreover we have, for all A € nw(ﬂ(K,r,F)),

T. (e 820 = a%p

ﬂs @ @
Let S be the mapping on § defined by
u,2 a
%
Su’z(AzQN) = AzQN for every A2 € nN(ﬂ(Ks,rS,Fs)).
P (4 @
Since S cT (w)e_g/2 S is closable and
u,2 "s > Yu,2
-8/2
S = T, (0)(e | ).
u,?2 ﬂs Q(Su,z)
Hence we have
- -8/2
S = T, (0)(e | ).
u,?2 ﬂs Q(Su,z)
We shall show that (e-e/zlg(s ,> is selfadjoint. At first, note
u, 2
that (e-9/2|9(s )) is symmetric. Moreover the range of
u,?2
(e_g/zlg(S > £ il is dense in §_, because
u,?2 P
Range((e—g/zlﬁ(s ) il)
u,2
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-8/2

> Ranze(<e *iDI @™y, T >>9)
] S N
(7] (1

= na(ﬂ(Ks'rsnrs))an

This implies that (ene/zlg(S )) is essentially selfadjoint and so
u,2

(e-e/zl ) is selfadjoint. Thus we have
9(3u 2)

-8/2 _ =8/2
(e Iﬁ(su y) = e .

2

Further, since (e—9/2|9(s )) = (e-e/zla(S ,)» we have
u’ u

2

-8/2 - .—-8/2

By the uniqueness of the polar decomposition, this completes the

proof.

In the following ©proposition, we show that Au and Ju
coincide with a modular operator and a modular conjugation

constructed by Rw. respectively.

Proposition 3.2, Let ¢ be a quasifree state on HUWK,r,I'). If
the associated operator S on KS does not have an eigenvalue 0,

then the mapping
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*
S BQ¢ —— B Q¢ (B € Rw)

is closable, and S, = S .
b u

Proof. In order to prove Proposition 3.2, it is sufficient to

show that the graph G(gb) of §b coincides with that of §u'

First, we shall show that G(Sb) c G(§u). At first, note that
G(Sb) c G(Sblm) (where R is the set of all polynomials of elements

of {W(f) ¢ f € ReK}). Since

(nt)~1

. N n
€ ,
o i nw(B(f)) Q¢ (f ReK)

"M 8§

W (f)Q =
@ @ n
by the Weyl-Segal relations, it follows that G(Sblﬁ) c G(§u). Thus we
have G(Sb) c G(§u). This implies that Sb is closable and G(§b)
c G(Su).

Next, we prove that G(Su) c G(gb). To do this, we note that,

€ , s

for each & nw(ﬂ(K r,F))Q¢
£

— ‘: * & 0 l:
g = 2 cinw(B(fl)) nw(B(fn'))Q (fj

€ ReK, ¢. € ().
7)) £
L 4

Moreover

(Ww(tlfl)—w¢(0))'"(Ww(tmfm)-w

1 . -1
(Ltm)

¢(O))Q¢

(itl)-

tends to nw(B(f ))'°'nw(B(fm))Q¢ in § as t. tends to 0 in R

1 @ 7
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for each 4 = 1,--:,m. Thus we have G(S) c G(S,) and so G(§u) c

b
G(§b). This completes the proof.

We now introduce the commutant of nw(ﬂ(K,r.F)).

Definition 3.3. Suppose that ¢ is a state on UK,r,I'). The
commutant of n¢(ﬂ(K.r,F)), denoted by nw(ﬂ(K,r,F))”, consists of all

bounded operators C on Sw such that
- *
(wl, an(A)wz) = (nw(A )¢1, C¢2)
for all ¢1, wz € nm(ﬂ(K,r,F))Qw and A € U(K,r,M.

Lemma 3.4. Let ¢ be a quasifree state on UX,r,['). If the
associated operator S on KS does not have an eigenvalue O, then
nw(ﬂ(K,r,F)) = Rw.

Proof. If C € n¢(ﬂ(K,r,F))”. then we have
n - n
(R¢(B(g)) 51, CEZ) = (51, an(B(g)) ﬁz)

for all 81, €2 € nw(ﬂ(K,r,F))Q¢ and g € ReK. Thus we have

"

n n .n n
(i nch( £)) &1. CE.)D (51, Ci nw(B(g)) €2).

2

and so

H

(W (-g)ﬁl, Cﬁz)
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Hence we have Ww(g)C = wa(g). This implies that C € Rg.

Let R be the von Neumann algebra generated by (W ((?QO)A):

& Y

f € ReK). Then we have

Rw = JufR(pJu = Tns(m)ﬂans(w) = Tns(m)y

TTT (0),
S

¢

by the Tomita-Takesaki theorem and Proposition 3.2. Now, for any f

€ ReK, g € K, and wl, wz € nw(ﬂ(K,r,F))Qw, we have

<(?eo>")'rTT <m>¢2]

@ s

*xK
(nw(B(g) )wl, Tns(w)w

n ' —_

= 1im (n (B(g)®w,, T (w)( S mty L1iMg (B((fQO)A))m)T (@)¥ ),

4 , 1 m A 7 m 2
n-o s m=1 P S

n -— —
= lim (nA<B((rgeO)A))wl, ( > (m!) 1(-i)mnA<B((oef)A))m)w2)

n-oe ¢ m=1 @
a -1 m - A m — A
= lim (wl, ( 2 m!) T (-i)'m (BCoet) ") )n (B((g®0) ))Wz)
noeo m=1 G 6

n
-1.m —_ Ao
E (m!) “4i7n, (B((f®0)")) ]Tn (w)n¢(B(g))w2)

= 1lim (¢ , T (w)(
1 m 1 (€ s

n->o S m

- A
[wl’ Tns(m)W((fGO) )Tns(w)nw(B(g))Wz).

By the same process, we have, for any A € UK, r, M,
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* . -
(n¢(A )Wl, Tns(w)PT“S(w)Wz) = (Wl, Tns(w)PTns(m)nw(A)Wz).

where P is any polynomial generated by (WA((?OO)A) + f € Rek}.
(7]
Hence, we have, for any W” € Rg and A € UKK,r,[),

¢

% ] - "
(nw(A )wl, W Wz) = (¥ W”r (A)¢2).

1’ @

This implies that nw(ﬂ(K.r,r))“ o) ﬁ&. This completes the proof.

Finally, we prove the Tomita-Takesaki theorem for an unbounded
operator algebra given by the GNS-representation of a CCR algebra

with respect to a quasifree state in the self-dual formalism.

Theorem 3.5. Let ¢ ©be a quasifree state on UK, r,T')Y. If the

associated operator S on Ks does not have an eigenvalue 0, then

Su = Sb’ and Ju(nw(ﬂ(K,r,r)) ) Ju = nw(ﬂ(x,r,r)) .

itHs _ -
Moreover, if e maps K onto K, then

tn‘p(?i(K,r,F))A—it = n,UCK,r,F)) for all ¢t € R.

i
Au u

Proof. The last equality follows from the fact that the mapping

A — AztA is a Bogoliubov *-automorphism on nw(ﬂ(K,r,F)).

Remark. Let K be the set of all rapidly decreasing functions
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on

R as in [5]. In this case, they proved the generalized Tomita-
0

Takesaki theorem for Hs with a trace class operator e -. Thus our

result is a generalization of [51].

[11
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{31
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(71
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