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1. Introduction

A linear mapT :A — B is called a positive linear map if T(A*+) C B+, where A and B
are complex Banach *-algebras, and, A+ and B*+ are the sets of all finite sums of the
form x*x(xEA or x& B.) In[ 7], we investigated some properties of positive linear maps
of Banach *-algebras. In this paper, we shall also consider some properties of positive
linear maps of complex *-Banach algebras with an identity (namely, Banach *.algebras
with an isometric involution and an identity of norm one)

Let A be a complex *-Banach algebra with an identity ea. By |x|, we denote the
 norm of xEA. Moreover, we denote the well known pseud-norms on A as follows:

x]l1, a=sup {| f(x) |; f is positive linear functional on A such that f (ea)<1},
lxl2, a=sup {(f (x*x))*; f is positive linear functional on A such that f (ea)<1}.

Then we have |x];, 4 < ||x]s, 4 = |x||. If A is a C*-algebra, we have |x|;, a= |5,
A= | x| for every hermitian element x of A. Moreover {x EA; |x|;, a=0} and {xEA;
%]l 2, 4 =0} coincide with the *-radical R*)4 of A. We recall that, if A has an ide-
ntity, any positive linear map is self-adjoint (namely, T (#*)=(T(x))*). The notations
given in [ 7] will be quoted without notice.

2. Operator norm of positive linear map

In [7], we discussed the continuity of positive linear maps of Banach *-algebras.
In this section, we consider the operator norm of positive linear map of *-Banach al-
gebras with an identity.

We need the following definition.

DEeFINITION 2. 1. Let A and B be a *—Banach algebra and a C*—algebra respectively, and
T be a positive linear map of A into B. Then T is said to satisfy the stronger form of generali-
zed Schwarz inequality provided T(x*) T(x)=||T| T(x*x) for every x € A.

If T'(x) is of the form V*p(x)V for every x&A, where p is a *-representation of A on a
complex Hilbert space K, and H is a complex Hilbert space on which B acts, and Vis a
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bounded linear operator of H into K, then T satisfies the stronger form of generalized
Schwarz inequality. Indeed, let e be the identity element of A, then | Teal < | T, |(p
(ea)V)* (p(ea) V|| = | TI. Then, we have [(p(ea)V) (p(ead)V)* |< |T|. Thus, we

have (p(eaA)V) (p(ea)V)* < |T| -1, where I is the identity operator on K. Then, we
have

T(x*)T(x) = V*p(2)*VV*p(2DV
= V*p(2)*(p(ead V) (pleadV)*p(2)V
= V*p()* 1 T« Ip(x)V
= | T|V*p(x*2)V=|T| T(x*x).

PROPOSITION 2. 2. Let A and B be complex *-Banach algebras with an identity ea and
eB respectively, and T be a positive linear map of A into B. If B is *-semi-simple, then the
operator bound of T with respect to the norm | |1, B coincides with the norm |T(ea)|1, 5. In
barticular, if Bis a C*-algebra and T satisfies the stronger form of géneralized Schwarz
inequality, then the operator norm | T\ of T coincides with | T(ea)|.

Proor. It is clear that we have, for every 1A,
| Txll1, B<I| Teall, Bl x|l

Since |ea|=1, the first part of proposition follows.

Next, suppose B is a C*-algebra, and T satisfies the stronger form of generalized Sch-
warz inequality. Since T'(Ha)CHp (Ha and Hp mean the sets of all hermitian elements
of A and Brespectively), it follows, for every x&Ha,

1 7% = 1 Txl1,B < | Teally, Blx| = || Teal |x|.
Then, for every x&A, we have
1 Tx)2=|[(T%)* ()| = I TI | Tx*x|| = | T} || Teall ||x)2

Thus we have | T|<| Tea| which implies that | 7| = | Teal and completes the proof.
If A and B be C*-algebras, any positive linear map T satisfy the stronger form of
Generalized Schwarz inequality for unitary operators. Hence we have ||T|=|Te4|.

(see. [4], [51)

3. Extreme positive linear maps
In this section, we investigate the extreme points of a certain convex set consisting
of positive linear maps. We define Py(A, B) as follows:
Py(A, B) = {T:A—B: positive linear map such that | T o<1},

where | T)lo is the operator bound with respect to the pseud-norm || |, A. We shall show that
if B is symmetric and semi-simple, any multiplicative positive linear map in P, (4, B)
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is the extreme point of Py(A, B) A useful tool in the proof is the generalized Schwarz
inequality due to R. V. Kadison.
We need the following lemmas.

LemMmAa 3. 1. Let A and B be complex *-Banach algebras with an identity ea and eB res-
pectively and T be a positive linear map of A into B. Then we have T(R™*>4)C R™p.

Proor. For every x& A, we have

17214, B
= sup {|Ff(T(x))];f is positive linear functional on B such that f(ep)<1)}

=< | TCea)|1, B+sup {|g(x)|; g is positive linear functional on A such that g(ea)<1)
= | T(ea)|1,B|%|l1, . Therefore we have T(R™* 4)C R*p. q. e d.

In his paper [2], Kadison has proved the following tool in study of positive linear
maps.

LemMma 3. 2. (Generalized Schwarz inequality) Let A be a C*-algebra, and T be a
linear order-preserving map of A into the algebra of all bounded operators on some Hilbert
space such that |T|<1. Then we have T(a%) < (T(a))?for every a & Ha.

Now we have the following two lemmas.

LemMA 3. 3. Suppose that A is a *-Banach algebra and Bis a C*-algebra. Let T be a
Dositive linear map of A into B suchthat |T|o=1. Then T(a?)—(T(a))? is contained in B+
for every a & Ha.

Proor. Suppose that A is *-semi-simple. Let | ||,,4 be the C*-norm of A and C*
(A) be the completed C*-algebra of A with respect to | |2, 4, that is, the enveloping
C*.algebra of A. Since T is continuous on A with respect to the C*-norm | |;, 4, T may
be extended to a positive linear map T of the C*-algebra C*(A) into the C*.algebra B
such that | To<1. From lemma 3. 2, we have 7T(e2)—(T(a))2EB* for every acHa.

Next suppose that A is non *-semi-simple. Let R™*)4 be the *.radical of A. Then
the quotient *-Banach algebra A/R™) 4 is *-semi-simple. Let z be the canonical *-ho-
momorphism of A onto A/R™ 4. Since C*-algebra is *.semi-simple, T vanishes on
R™® 4 from lemma 3. 1. Thus we may define a linear map T of A/R™4 into Bby
?(n(x)): 1/“\(x) for every x&A. It is clear that T is a positive linear map of A/R(*)4
into B such that [|ﬂo_£_1. Therefore we have T'(a2) —(T(a))2=ﬁn(az))—(/l‘\(n(a)))z
€& B+ which completes the proof.

LemMA 3. 4. Let A and B be cc;mplex *.Banach algebras and T be a positive linear map
of A into B such that |T\o=1. If Bis symmetric, T(a2)—(T(a))? is contained in the norm
closure of BT for every a= Ha.

Proor. Let z be any *.representation of Bon a complex Hilbert spae H. Then z-T
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is a positive linear map of A into B (H) (the C*-algebra of all bounded linear operators
on H) such that |zoTJo=1. From lemma 3. 2, we have

2(T(a)—(T(@))D=T) (@)~ ((z-T) (a))? €E(BCH))*. |

Now let f be any positive linear functional on B. We denote the *-representation and
the cyclic vector associated to f by = and & respectively. Then we have

(T(@—(T(@))H=ms(T(@®)—(Ta)®) £r|£)=0.

Therefore T'(a?)—(T(@))? has a non-negative real spectrum. This implies that T(a?)
—(T(a))2cH*p=B* and so completes the proof.

DEFINITION 3. 5. Let A and B be eomplex *-Banach algebras. By a C*-homomorphism
we mean a positive linear map T such that T(a?)=(T(a))? whenever a is an element of Ha.
Of course any multiplicative element of P (A, B) is C*-homomorphism.

We have the following

THEOREM 3. 6. Let A and B be complex *-Banach algebras. If B is symmetric and
semi-simple, all C*-homomorphisms in Py (A, B) are extreme points of Py (A, B).

Since the proof is almost the same as that of Theorem 3.4 in [ 7], we omit.

RemarRk. We can replace the symmetricity and semi-simplicity on B by *-semi-
simplicity. Indeed, for any irreducible *.representation = of B on a complex Hilbert
space H, noT is C*-homomorphism in Py(4, B(H)). From lemma 3.3 and the argument
used in the proof of the theorem 3.4 in [ 7] applying to the map - T, the desired conclu-
sion follows.

We call that P;(A, B) is the set of all positive limear maps of A into B which
preserve the identity.

In the following, let A and B be C*-algebras with an identity. We denote the conju-
gate space of A and B by A*andB* respectively, and the canonical injection of a Banach
space into the second conjugate space by /. We may define a certain convex set similar
to P1(A, B) in L(B*, A*) which is the set of all bounded linear maps of B* into A*. In
the remainder of this section, we obtain some results on the connection between the ext-
reme point in P;(A.B) and the extremality of its adjoint in the certain convex set.

We define the set @;(B* .A*) of linear maps of B* into A* as follows:

Qi (B*, A*) :
= (S:B*—A*: linear. bounded with respect to the functional norm and S(Ep)C Ea)

where Ea and EB are the sets of all states of A and B res,bectively. It is clear that Q,(B*,
A*) is convex and T P;(A, B) if and only if T*€Q,(B*, A*).

ProrosiTION 3. 7. If T* is an extreme point in Qi(B*, A*), T is an extreme point of P;
(A, B).
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Proor. Suppose that there exist Ty, T,&Pi(A, B) such that T= -]é—( T, +T2). Then

T*:-%—( T+ T,*) with Ty*, To*€@Q (B*, A*). The extremality of T* implies T™=Ty*
=Ty*. Therefore we have T= Ty;= T, which completes the proof.

Next, .we consider the converse statement, that is, if TE P, (A, B) is an extreme
point, is T* the extreme point of @,(B*, A*)? we shall show that, for any C*-homomor-
phism T&EP;(A, B) (of course such a map is an extreme point of P;(4, B)), T* is an
extreme point in @;(B*, A*).

We need the following lemma.

LemMa 3.8. Suppose that A is a C*-algebra and B is a von Newmmn algebra acting on a
comlex Hilbert space. Let B, be the predual (the set of all ultra-weakly continuous linear
functionals on B). If T is an extreme point in P; (A, B), the restriction of T* on B, is an
extreme point of Q1 (By, A™).

Proor. It is clear that T*|B, (the restriction of 7% on B,) is contained in @; (B,,
A*). Suppose that there exist S;, So EQ; (B, A*) such that T*IB*=-;J—(SI+ S2). Since

the conjugate Banach space of the predual B, is B, we define two linear maps 73, T3 of
A into B in the following manner:

J (Ti(@)=5*{J(@)), J(Ty(a))=>S;*(J(a)) for every aEA.
It is clear that Ty, T,& P1(A, B). For every f&B, and a=A, we have

S1(H) (@)=5*(J(@)) (N=J(T1(e))(fH=T1(ad)=T1*(LH(aD.
Therefore, we have S;=T7*| B,. Similarly we have S;= Ty*|B,.

Now, since (T*| B*)*=.;_(sl*+sz*), we have, for every fEB and aE€A,
(T*[ By )*(Jadf, )=%~(31*CJ a) (N +S*(Jad (),
T*(f)(a)=—;—(f O EPEIEVCIEP]
f(Ta— _;_( Tya+ Tya))=0.

Since f is an arbitrary element of B,, we have Ta=—%( Tia+ Tea). Hence we have T=%

(T1+7T,). From the extremality of 7, we have T=T1=T, and therefore T*|B,=S5;=S,
which implies the extremality of T*| s, in @(B,, A*). The proof is completed.

From the above argument, if Bis a finite dimensional C*-algebra, T is extreme if
and only if T* is extreme.

ProprosITION 3. 9. Let A and B be C*-algebras and T be a C*-homomorphism in P; (A,
B). Then T* is an extreme point of Q; (B*, A*®).

Proor. Let = and C be the universal representation of B and the enveloped von
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Neumann algebra of B. Since = is non-degenerate, n(eg) is the identity operator on H
(the representation space of ). Thus n-T is a C*-homomorphism in P;(4, C) and
therefore T*on*| Co=(m-T)*| C, is an point of @,(C,, A*). If T*= ;(Sl +S;) with S,
S,EQ(B* A*), we have

T*on* | oy =2 (Siem* | cart-Spem*| ca).

From the extremality of (zoT)*c,, we have

T*or| co=S1°7*| cx="Sz°7* | Cse

Consequently, we have T*=S5;=S, which implies the extremality of T* in @,(B*, A*).
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