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1. Introduction and Summary

Let F(x) be a probability distribution function on the real line R. Assuming the sin-
gular part to be identically zero, it is well known that F(x) is uniquely decomposed into
F(x) =F;(x)+ F3(x) where F;(x) is an absolutely continuous function and F>(x) is a pure
step function with steps of magnitude, say, S; at the points x=uxi, i =+1, +2, and that
finally both F;(x) and F,(x) are non-decreasing. Let X;, X5, --- be independent, identically
distributed random variables with the same distribution function F(x). As in MURTHY
[31, we call R(x)=1—F(x) the reliability function. If x is any point of continuity of the
distribution F(x) and if the density at x is denoted by f(x), Z(x)=f(x)/(1—F(x)) will
be also refered to as the hazard rate.

We consider the problem of estimating the jump S: corresponding to the saltus x=x;
based on random samples X, X5, ---. Also, considered are the problems of estimating of
the reliability function R(x) and the hazard rate Z(x). This problem was considered by
MurtHY [3]. He gave consistent classes of estimators in [3], while in this paper we
shall give strong consistent classes of sequential estimators where that { Y»} is a strong
consistent class of estimators of Y means that with probability one Y»—Y as n—oo.

This paper consists of five sections. In section 2, auxiliary results will be given for
proving results in section 3 and 4. In section 3 we shall give a strong consistent class of
sequential estimators of the jump S;. In section 4 strong consistent classes of sequential
estimators of the reliability function will be given. Section 5 will give strong consistent
classes of estimators for the hazard rate. In section 3 to 5, we assume that the singular
part of the distribution F(x) is identically zero.

2. Auxiliary Results
Lemma 2.1, 2.2 and 2.3 are due to WATANABE [4] and [5], while Lemma 2. 4 is due
to BRAVERMAN and PyaTniTskir [1].

LemMMA 2. 1. ([4]). Let {Ax} be a sequence of non-negative numbers. Suppose that
there exist three sequences of non-negative numbers {an}, {bn} and {Ln}, a positive constant
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L and a positive integer ny such that
2 1 An+1S 1—8pn41) AntLaps1bpi1+ Ly

for all nz=mny,

@ 2 i‘. an=oco0 and lim an=0,
N n—roo

2. 3) Aim bn=0,

2 4 §1h<w.

Then, it holds that lim An=0.

n—roo

Further, if Ln=0 for all n=1in (2. 1) and {bn} is a sequence of positive numbers such
that

(2. 5) (A1—au41)bn/bpr1<1—aa,4q Jor all n=ny,
where a is some positive constant and in this case {bn} need not satisfy the condition (2. 3),
then there exists a constant C>0 such that

2. 6 An<Cebn for all n>1.

LemMma 2. 2. ([6]). Let {Un} and {Va) be two sequences of random variables on a
probability space (2, N, P). Let {An} be a sequence of sub-o-fields of A, UnC Wy +1CA, where
Un and Va are measurable with respect to Wn for each n=1. Furthermore, let {an} be a se-
quence of non-negative numbers satisfying (2. 2). Suppose that the following conditions are
satisfied :

@ D Un=0 a.s. foralln=1,
2. 8 ETU;]1< o0,
(2. 9) E[Unq.ll%n] < (l—dn+1) Un+Va a.s.

forall n=1,
@100 . BEVal1<e.

Then, it holds that 1im Un=0 a.s. and Aim E[fUx]=0.
7n—>00 —»00

LemMA 2. 3. ([56]1). Let {Un} be a sequence of random variables on a probability space

(2, %, P). Let {Nn) be a sequence of sub-o-fields of A, NnC W41 CA, where Un is measurable

with respect to Un for each n=1. And let {an} and {va} be two sequences of positive num-

bers. Suppose that there exist a positive integer ny and two positive numbers 0<M< o and

0<2<1 satisfying
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(2.11) Un=0  a.s. for all n=ny,
(2.12) M= Un, a.s.,
(2 13) E[Un+1 l?In] < (1~an+1) Un+1)”+1 a. S.

for all n=n,,

(2.14) (1=au+1) Wp/Vat1)*<1  for all n=n,,

(2. 15) §1v1; 2 o,

Then for any 3>>0 there exists a positive constant C(8) such that
P{Un< C(3) svn? Sfor all n=ny} >1-4.
Lemma 2. 4. ([11). Let {Sa} be a sequence of non-negative numbers satisfying
Sp+1< A—7@p41)Sn+Laik, for all n>1

where r >0, L>0 and an>0.
Suppose that there exist a positive number 2 (0<2<2) and a positive integer ny such that

(A—7@y41) (@n/@n+1)*<1 for all n>=ny,

and

i % A< co.

n=1
Then, there exists a positive constant C such that
Sn~< Canl f01’ all n>1.
3. Estimation of the jump S; at the saltus x; of the distribution F(x)

In this section we shall give a strong consistent class of sequential estimators of the
jump Si. Let K(») be a real-valued Borel measurable function on R and satisfying

(K1 K(»=0 forall yER,
(K 2) I~ KGyay=1,
(K 3) | K(ay+o.
Let {4} be a sequence of real numbers satisfying
(H) hn >0 for all n=1, 2, --- and ’}im hn=0.

Let {as} be a sequence of real numbers satisfying
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(A D 1>a.>0 forall n=1,2, -,
(A. 2) glanzoo’
(A 3) ni’;la,z.<oo.
We set
3. 1) 6= K(»dy,

where K(y) satisfies (K1), (K2) and (K3).
Also U(x) is defined as follows:

Uk)=1 for x>0
=0  for x<0.
Since G(0)==0 from (K3), D« (x, ) can be defined as follows:
Du(%, ) =[G(h7! (x— ) —U(y—2)1/G(0)

for all =1 and all x, y=R.
Now, we shall give sequential estimators of the jump S; as follows:

(A) Hy(x)=0  for all x&R
Hy1(%) =Hn (%) +@p41{ Dps1(%, Xppa1) —Ha ()}
for all >0 and all xER,
The following lemma presents an asympotic unbiasedness of S:.

LemMA 3. 1. Let X be a random variable with the distribution F(x). Suppose that K(y)
satisfies (K1), (K2) and (K3) and {hn} satisfies (H). Then if Si is any jump corresponding
to the saltus x=x; of the distribution F(x), it holds that

Lim E[Dy(xi:, X)]=S:.

Proor. The proof is proceeded in the same way as in [3]. It is easily seen that

(3.2 Rx)=Fi(e)—Fi(x)+ 2 55,
3. 3) E[U(X—x)]=R(x),
(G VR E[G(h7 (%i—X))]

={_. GO i—9)dFi() + 33 Gz (xi—1))S;

=Li+1% .
Integrating by parts, we have
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Ii=Fy() =" K Fi(xi—hn3)ds.

Since Fi(y) is a continuous function, it follows, by the dominated convergence theorem
and (K2), that

(3. 5) }‘im I}g:Fl(OO)—F]_(xz).
Now
=%+ ]2+ G(0)S;
where
Ji= 23 Gh7r(%i—x4))S;
xj<x;
and

i= 2 G (xi—x5))S;5 .

Xj>%;
In the same way as in [3] we have
lim /=0 and lim /2= >} S;.
n-—»>o00 n—oo xj>x,-

Thus,

(3. 6) }11_1}1 IZ= 3} Si4+G(0)S:.

Xj>%;

By the relations (3. 2) to (3. 6) we obtain
Lim E{Dx(x:, X)1=S:,
which completes the proof.

THEOREM 3. 1. Suppose the conditions of Lemma 3. 1. Let {an} satisfy (Al), (A2) and
(A3). Let {Hu(x)) be given by (A). Then for any jump Si corresponding to the saltus x=2x;
of the distribution F(x),

lim H,(x:)=S; a.s.

Nn—»o00

and
Li_l}}oE[ (Hn(x:) —Si)2]=0.
Proor. Since
| Hp (%) —Si| < | Hu(2:) — ELHn (%) 1| + | ELHa (%) 1—Si| ,
in order to prove the first assertion, it suffices to show that '
3.7 ,%Hﬁ | Hp (%) — E[Hn(x:)1|=0 a.s.

and
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3. 8 Lim | E[Hn(x:)1—S:]=0.

Firstly, let us show (3. 8). From (A), we obtain
3.9 | ELH y41 (%) 1—Si|
< (1—8p41) | ETHn(2:)]1—Si|
+@ut1| ELDp+1(%i, Xp41)]—Si ).
Taking into account (3. 9), Lemma 3. 1, it follows that ’111_210 | ELHx (x:)1—Si| =0, which is

(3. 8).
Secondly, we shall show (3. 7). From (A), we get

(3.10) (Hpt1(%i) — E[Hp41(2:)1)?
=(1—8u+1)2(Hn (%) — E[Hn(%:)1)?
+ @241 (Dpt1(%i, Xp41) — ELDp41(%i, X41)1)2
+2(1—au+1) @p+1(Hu(x:) — E[Hn(2:)])
X (Dp+1(%i, Xp1) — E[Dpa1(%i, Xp41) ).
It follows, from the independence of {Xax}, that

(3.1D E[(Hn(%:) — E[Hn(%:)1) (Dp41(%i, Xp41)

—E[Dp41(#i, Xpt DD 1 Xy, -, Xu]l=0  a.s.

Taking conditional expectations on both sides of (3. 10) and using (Al) and (3. 11), we
obtain

(3.12) E[(Hp41(%) —E[Hp+1(%)1)2| Xy, -+, Xl
< (1—ap+1) (Hu(xi) — E[Hn(x:)]1)?
+a%,Var[Dp1(%i, Xp41)].
Since E[D#.,(%i, Xp+1)1<(G(0)) 2, it follows from (3. 12) that
(3.13) E[(Hp4+1(%:) — E[Hp+1(2)1)2] Xy, *++, Xu]
< (1—@p+1) (Hn (%) — E[Hn(%:)1)?+ (G(0)) 72 @4y .
According to Lemma 2. 2, we have
Llil}o (Hn(x;)—E[Hn(2:)1)2=0 a. s.
which is equivalent to (3. 7), and
(3.149) }'1_120 E[(Hu(x)—E[Ha(x:)1)2]=0.

Since
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EL(Hn(%:)—Si)?]

=E[(Hn(%i) — ELHA (%) 1) 21+ (ELHA (%) 1= 5:)?%,
the relations (3. 8) and (3. 14) yield

}‘i_IHOE[(Hn(xi) —3Si)% =0
which is the second assertion.

Thus the proof is completed.
We shall consider the rate of the variance of Hn(x:).

THEOREM 3. 2. Let {an) and {ha)} satisfy (A1), (A2), (A3) and (H) and satisfy the fol-
lowing :

(3.15) (1=aps1) (@n]@u+1)2 <1 for some 0<2<1 and all n=some ny,
(3.16) Ela?g(l_‘)<oo :

Then, under the conditions of Theorem 3. 1, there exists a positive constant L(x;) depending
on xi such that

Var [Hx(xi)]<L(xi)a% for all n=1.
Proor. Taking expectations on both sides of (3. 13), we get
(8.17) Var [Hyi1(%i)]
< (1—@u+1)Var [Ha(x)1+(G(0)) "2 @y .

In view of (3. 15), (3. 16), (3. 17) and Lemma 2. 4, the assertion is established. Thus
the theorem is proved.

4. Asymptotic equivalence of two classes of estimators for the reliability
at a point of continuity of F(x)

We define two classes of sequential estimators for the reliability function. The first
algorithm is defined as follows:
(R) Ry(x)=1  for all x&R
Ru+1(%) =Ra(%) + @y +1{U (X, 41— %) —Rn_(x) }

for all n>0 and all x&R, where {a.} satisfies (A1), (A2) and (A3).
The second algorithm is defined as follows:

(R®» Ri¥(x)=1 for all x&R
R n’-kl-1 (%) =Rn*(x) + @p+1{ GhrF 1 (#— X 1)) — Rn*(x) }
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for all >0 and all x&R, where G(») is given by (3.1) and {a@»} and {%»} satisfy (Al),
(A2), (A3) and (H), respectively.

It is easily seen that 0< R.(x) <1 and 0< R»,*(x) <1 for all #&R and all »>1 because
of (K1) and (K2). |

LemMMA 4. 1. We consider the class of sequential estimators {R.(x)} given by (R).
Then for any point x, it holds that

4. 1 Li_l}i Ra(x) =R(x) a.s.
and

4. 2) LiEOE[(Rn(x)—R(x))z] =0.

Proor. From (R) we have
E[Ruy+1(#)1—R(%) =(1—ap+1) (E[Ra(2)]— R(x)).

Repeating this relation, we obtain

ElRus()1—R@ =11, (1—a8) (1— R(®)).
Thus,
4. 3 | ELR1 (9] —R(@) | = 1. (1—an) (1~ R(®))

< (1—R(x))exp{—:§5:ak}.
From (4. 3) and (A2) we get
(4. 4) lim |E[Rx(%)]—R(x) | =0.

From (R) we get
(4. 5) (Rp+1(%) —E[Rp+1(x)1)?
=(1—=84+1)%(Rn(x) —E[Rn(x)])2
+4{U(Xp41—2) — E[U (X p+1—%)1}2
+2(1—ap+1)8n(Ru(x) —E[Ra(%)])
XA{U(Xp4+1—2) —E[UXp+1—2)1}.

Taking conditional expectations on both sides of (4. 5) and using (A1), the indpendence of
{Xa} and Var [U(X,+1—%)]1<1, we have

(4. 6) E[(Rp+1(%) —E[R,+,(%)1)2| X3, -+, Xl
< (1—@ap+1) (Ru(%)— E[Rn(x)1)24as?, a.s. for all n.
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By (4. 6) and Lemma 2. 2, we obtain
}’im (Rn(x)—E[Rx(x)])2=0 a.s.
which is equivalent to

4. D Llil}o | Rn(x) —E[Rn(x)]]| =0 a.s.,

and

- The triangle inequality, (4. 4) and (4. 7) yield (4. 1). Since
EL(Rn(x)—R(%))?]
=E[(Ra(x) —E[Rx(x)1) 2]+ (E[Rx(x)]1— R(%))?,

making use of (4. 4) and (4. 8), we get (4. 2).
Thus the proof is completed.

LemMma 4. 2. We consider the class of sequential estimators {Rn(x)} given by (R). Let
{an} satisfy also the following conditions in addition to (Al), (A2) and (A3):

4. 9 (1—@us1) (@n/@n+1)<1  for some 0<<i<1

and all n=some ny,

(4.10) §1a5<1—2><oo.
Then for any positive number 3 and any x&E R, there exist a positive constant M (8, x) depend-

ing on 0 and x such that

P{|Ra(x)—R(®%) | <M, %)dn  for all n>ne)>1—3

where dn=max {an?, exp(—k:'“__,lak)}.
Further, there exists a positive constant L(x) such that
Var [R.(#)]<L(x)a% for all n=1.

Proor. From (4. 6), (4.9), (4.10) and Lemma 2. 3, for any 6>>0 and any x, there exists
a positive constant M, (d, x) such that

(4.11) P{(Rn(x) —E[R.()12< M;(3,x)a%*  for all n>=ny}
>1-3.
If |Ra(x)—E[Rn(%)1]< (Mi(3, %)) ¥ axt, (4. 3) implies
(4.12) | Ru(x) —R(x) | <MQ@, %)d»  for all n=n,

where M(3, x)=(M,(3, x)) ¥ +1—R(x).
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From (4. 11) and (4. 12), we have
P{|Ru(x)—R(x) | <M, x)dn  for all n>ny)
= P{(Ru(x)—E[Ra(2)1)2< M (9, x) a%? for all n=ny)
>1-—29.

Thus the first assertion is proved.
Taking expectations on both sides of (4. 6) and using (4. 9), (4. 10) and Lemma 2. 4, we
have the second assertion.
Therefore the proof is completed.

Now, we shall consider the class of sequential estimators { R.*(x)} given by (R¥) in
Lemma 4. 3 and Lemma 4. 4.

LeEMMA 4. 3. Let x be an arbitrary point of continuity of F(x). Then it holds that

(4.13) }jm Ra*(x) =R (%) a.s.
and
(4.14) }‘1_1,130 E[(R-*(x)— R(x))%2]1=0.

Proor. From (R*¥) we have
(4.15) |E[RA%1(%)1—R()]|
< (1—@u41) | E[R*(£)]— R(%) |
+@ni1| ELG(Ant (3—Xp41)) —R(2) |.
Integrating by parts, we get
(4.16) |ELG(hiy(3—Xp41))]1—R(2) |
=" KO Fa—hum)ay—F@).

By (K1), (K2) and the dominated convergence theorem, we have
4.17) lim | E[G (i (#— Xn41))1— R(#) | =0.
Combining (4. 15), (4. 17) and Lemma 2. 1, we obtain
(4.18) E_rgo | E[Ra*(x)]—R(x)|=0.

Since G?(h.4(x—)) <1 for all » and all y, it follows

(4.19) Var [G(h:iy(x—X,4+1))1<1  forall n>0.
Thus (R*), (4. 19) and the independence of {X.} imply
(4.20) E[(Rs%,(x)— E[Ra%,(%)1)2| Xy, -+, Xl
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< (A—au+,) (R*(x) —E[R*(x)1)24a2., a.s. forall n=0.
From (4. 20) and Lemma 2. 2, we obtain

: Li_l"l’; (Rn*(x) — E[Ra*(x)])2=0 a.s.

which is equivalent to

(4.21) 1}_1& | Rn¥(x) — E[R-*(x)]1| =0 a.s,

and
(4.22) lim E[(Rn*(%) —E[Rn*(2)1)?1=0.
The relations (4. 18) and (4. 21) yield (4. 13). Also, the relations (4. 18) and (4. 22) yield

(4. 14).
Therefore the lemma is completed.

LemmMma 4. 4. Let K(y) satisfy the following condition in addition to (K1) and (K2):

(K 4 i~ 151K dy<oo.

Let {an} and {hn} satisfy the following conditions in addition to (Al), (A2), (A3) and (H):
(4.23) (A—apt1)bn/bpr1<1—0 a4y

for some a>0 and all n=some n,,

(4.24) (I1—ap+1) (@n/@n+1) <1
for all n=n, and some 0<4<1,

(4. 25) 21a3<1—1><oo )

Let x be an arbitrary point of continuity of the distribution F(x). Suppose that there exist
positive constants n(x), C(x) depending on x such that

(4. 26) |F(x+3)—F(x) | <C@) |yl  for all |y|<n(x).
Then for any 3>0 there exists a positive constant M (3, x) depending on 3 and x such that
P{|R*(x)—R(x) |<M(@3, x)dn  for all n=n,} >1—3,

where dn=max {an?, hn}.
Furthermore, there exists a positive constant L(x) such that
Var [Ro*(®)1<L(x)a%3*  for all n=1.

Proor. Taking into account (4. 20), (4. 24), (4. 25) and Lemma 2. 3, for any 4>>0 there
exists a positive constant M; (3, x) such that
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P{(Ra*(x) —E[R*(x)])2< M, (3, x)a*  for all n>n,} >1—0

which is equivalent to

(4.27)  P{|R#*®)—E[R*#)1I< M@, x) Y aur  for all n=n)>1—0.

From (4. 16) and (K2) we have

(4.28) |ELG(An}1(—Xp41))1— R(%) |

<| K(3) | F(x—hu+15)—F(x) |dy
|y <7(*)h;;2

n+1

{ K(3) | F(a—hni19) —F(2) |dy
ly] >?(3‘)h;1+1

<C®)An+1 S_w || K(y)dy+2 S|y|>ﬂ<x>h;1, K(y)dy.

The condition (K4) implies

(4. 29) S ly| K(y)dy<C, for all x>0
lyl>=

where Ci={" |5KG)dy.

Since

x S K(»)dy< S ly| K(»)dy for all x>0,
ly|>=x ly|>x .

from (4. 29) we get

S K(y)dy<Cux-'  for all £>0.
ly|>x

Thus we have

(4. 30) K»dy<Cihyi1n(x)? for all n.

Sly|>v<::>h;11
Combining (4. 28) and (4. 30), we obtain

(4.31) | ELG(An}1(3—Xn41))1— R() | < Co(%) hrp1s
where Gy(x) = (C(®)+2(@) 1|~ [1K(G)dy.
The relations (4. 15) and (4. 31) imply

(4.32) | B[R, (0] —R(®) |

< A—ap+1) | EIR* (%) ] — R(#) |+ Co(%) @1 pt 1.
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By (4. 23), (4. 32) and Lemma 2. 1, there exists a positive constant C;(x) such that
(4. 33) |ELR*(x)1—R(x) | < C3(x) hn for all #.
In the same way as proof of Lemma 4. 2, it follows, from (4. 27) and (4. 33), that
P{|R*(%)—R(%) | <M, £)dn  for all n>n}>>1—3

where M3, x)=(M;(3, %)) ¥ +Cy(x).
Thus the first statement is established.

Taking expectations on both sides of (4. 20) and using (4. 24), (4. 25) and Lemma 2. 4,
we obtain

Var [R.*(x)1< L(x)a3? for all =1

which shows the second statement.
Therefore, the lemma is proved.

DEeriNITION 4. 1. Let {@x} be a sequence of positive numbers with lim a,=0. Also,

n—>o0

let {X»} be a sequence of random variables and K be a constant. If fqr any >0 there
exists a positive constant C(d) depending on J such that

P{|Xa—K|<C@®)an  for all n=1}>1-39,

then we call {X,.} an asymptotic optimal sequence of type I with order {a.} at K(AO—
I{ax}).

DEFINITION 4. 2. Let {a.}, {X»} and K be the same as in Definition 4. 1. If lim|X,—

n—00

K| =0 a.s. and there exists a positive constant C such that Var [X.]< Ca, for all n>1,
then we call {X,} an asymptotic optimal sequence of type II with order {a.} at K(AO-
II{an}).

From the previous lemmas, we obtain the following theorem.

THEOREM 4. 1. Let {Ru(x))} and {R,*(x)} be defined by (R) and (R*) respectively. Let
{@n} and {ha} satisfy (A1), (A2), (A3) and (H), and in addition satisfy the following condi-
tions :

(4.34) (I1—au41) (@n/@n+1)2<1  for some 0<2<1 and all n=some n,,
(4.35) 3 a0V oo,

ne=]
(4.36) (A—aps) bn/bpi1<1—a,4q for some a>0 and all n=n,.

Suppose that K(y) is a real-valued Borel measurable function and satisfies (K1), (K2) and
(K4). Let x be an arbitrary point of continuity of the distribution F(x) with (4. 26). We put

ay=max{an?, hs} and dn=max{a.?, exp(—knglak)} for all n=1. Then, {Ra(x)} and { Rx*(x)}
are AO-1{d»} and AO-1{as} at R(x), respectively. Furthermore, {Rn(x)} and {R*(x)}
are equivalent in the sense of AO-II {a%*} at R(x).
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EXAMPLES OF {@n} AND {/a).
The following examples satisfy the conditions (Al), (A2), (A3), (H), (4. 34), (4. 35) and
(4. 36):

(4.37) an=n"t 2-1t<1,n=1,2, ...
(4.38) ha=n—°% 0<s<t,n=1,2, ---.
We shall give the asymptotic normality of { Ra*(x)}.

THEOREM 4. 2. Let {Rxw*(x))} be defined by (R¥). Assume the conditions of Lemma 4. 4.
Let {an} and {hn} with t=1 and 271<s<1 be given by (4. 37) and (4. 38), respectively.
Then n'}(Rn*(x)—R(x)) converges in law to the normal distribution with mean zero and
variance o2(x) where d2(x) =1—2F(x) So_:oG(y) K(»)dy— R*(x).

Proor. From (R*) we get
(4.39) (n+1)¥ (R%,,—R)
= (n+1)- % :ﬁl omt (n+1)— %;zji W
where Rf,,=R¥,,(x), R=R(x),

vm=G (hm' (x—Xm)) — ELG(hn' (5—Xm))]
and

Wam=ELG(h!(x—Xm))]—R.
The relation (4. 31) impliesv

n—t 5‘31 | Wn | < Co(x)n—% mi]lm‘s
~Cy(x) (1—s5)"1 n¥—*—0 as n—>oo,
so that
(4. 40) n—% mrv___‘_.l Wm=0(1) as n—>oo,

‘We note that vm, m=>1, are mutually independent and E[v»]=0 for all m.
” ”n
Putting Sy= Z}lvm and s{=FE[S%], we get s3= 21 Elv2]. Making use of (4.17) and the
m= m=
dominated convergence theorem after integration by parts, we obtain

(4. 41) Li_rgo E[vZ] =02(x).

Since n‘lnélE[v%,, 1]—>02(x) as n—>oo from (4. 41), we have
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(4. 42) si~o2(x)n asn—>oo where o2(x)==0.

In the case of ¢2(x) =0, it holds that

(4.43) n—% S,——0 in prob. as n—>oo,

so the relations (4. 39), (4. 40) and (4. 43) yield the conclusion of the theorem.

02(x)=0. Let us verify the Lindeberg condition, i. e.
55231 B[t I(|om| Ze5n)]—0  as n—>oo

for all £>0 where I(A) denotes the indicator function of a set A.
If

(4.49) 2 SERI([on] > esm) 1< oo,
then by Kronecker’s lemma

(4. 45) s;z:Z_IE[v%n I(|om| =esm)]—>0 as n— oo,

s;zﬂ?'i‘.lE[v%,, I(|om| =esn)]—>0 as #—>oo

because of I(|vm|=esn) <I(|vm|=esm) for all m<n.
Thus (4. 44) yields the Lindeberg condition.

Now, we shall show that (4. 44) is verified.

Since from (4. 42)

sn? E[vf I(|vn] =esn)]

~o‘2(x)n—1E[v%I(|vnl>s'n’})] as #—>oo

where ¢’ =¢0 (%), it suffices to show that
rﬁln"lE[v,%I(lvnl >ent )]<< o for all £>0.

According to E[|vx]3]1<1 for all #, it follows that

i}ln—lE[v%I( 10| Zen )1

<e 1 n—t oo,

Ne=]
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We assume
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Thus, it holds that
(4. 46) Sn/sn—>N(0, 1) in law as n—>oco.

The relations (4. 39), (4. 40), (4. 42) and (4. 46) yield the conclusion of the theorem. There-
fore the proof is completed.

5. Estimation of hazard rate

In this section, we shall present strong consistent classes of the hazard rate Z(x)=
f(x)/[1—F(x)]. The following estimator was given by the author [2]:

(.1 fo(x)=K(x) for all x&R
Fa+1(2) =0 (%) + @ni1{Kp+1(%, Xot1) — fn(x)}

for all >0 and all x& R, where
Kn(x, y) =hz'K(hy'(x—y))  for n=1,2, -,

K(y) satisfies (K1), (K2),

(K 5) sup K(y) <o
—ooLlxL o0
and
(K 6) IJHTDO || K(y) =0.

{a@n} and {Aa} satisfy (Al), (A2), (A3) and (H).
Let us now propose Z»(x) as an estimate of the hazard rate Z(x) where

(5. 2) Zn(x)=fn(%)[Rn(x)  if Rn(2)F0
=Z,,_1(x) if Rn (x) =0
for n=1, 2, ---, fa(x) and R.(x) being respectively given by (5. 1) and (R).

THEOREM 5. 1. Let x be an arbitrary point of continuity of F(x) and also f(x) and
satisfy the following condition :

23 Sif | xi — x| <oo.
H
If 33 abhi'<oo, then
lim Z,(x)=2Z(x) with probability one.

Proor. It was earlier shown by the author (Isocar [2]) that fa(x) is a strong consi-
stent estimator of f(x) at every point of continuity of F(x) and f(x),i.e.
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5. 3) Lim Tn(x)=f(x) w.p. L
It follows from (4. 1) that
(5. 4) Lim Rx(x) =R(x) w. p. L

Combining (5. 3) and (5. 4), we at once have

Lim Zn(x)=2Z(x) w. p. |,

which concludes the theorem.
The second class of estimators is given by the following:

(6. 5) Zn* (%) =fn(x) | Rw*(x) if Rp*(x)==0
=Z.*,(%) if Ra*(x)=0

where R.*(x) is defined by (R*) and f» is the same as (5. 1) with K (y) satisfying (K3) in
addition.

The following theorem is observed immediately in the same way as Theorem 5. 1.
THEOREM 5. 2. Under the conditions of Theorem 5. 1,

lim Zx*(x) =Z(x) with probability one.
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