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1. Introduction

This paper is a continuation of our paper [8] in which we gave a concept of a two-
person zero-sum semi-Markov game. Here, we consider a non-cooperative n-person semi-
Markov game which is an extension of a two-person semi-Markov game. In the game,
all players observe the present state of the system and then choose actions independently
according to the full knowledge of the history of the system up to the present state. As
a result of the actions and the duration time of the present state, each player gains a
reward respectively and the system moves to a new state which is governed by the
known conditional distribution. Then, we consider the optimization problem to maximize
the limit of expected reward of each player gained during the first m transitions divided
by the expected length of the first m transitions as the game proceeds to the infinite
future. And, we show that the game has an equilibrium point and all players have the
equilibrium stationary strategies under this criterion and some conditions.

This paper consists of four sections. In Section 2, we give the formulation of the
problem treated by us in this paper. In Section 3, we show that such a game has an
equilibrium poirit and all players have the equilibium stationary strategies. In Section
4, a sufficient condition to ensure a important assumption is given.

2. The formulation of the problem

In this paper, we define “non-cooperative n-person semi-Markov game” by a set of
(2n+3) objects:

(S, AV, A® ... A g F, y® y@ ...p0),

Here, S is a non-empty Borel subset of a Polish space, the set of statets of a system; each
A® is a non-empty Borel subset of a Polish space, the set of actions available to player
i,1=1,2, .-, »; q is a distribution which governs the law of jump of the system, it asso-
ciates Borel measurably with each
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n
(s, a®, a®@, ..., a(”))ESXkHI A

a probability measure g(-|s, a®, a®@, ..., a™) on the Borel measurable space (S, B(S)),
where B(S) is the o-field generated by the metric on S; F(-|s, a®, a®@, ---, a®, §’) is a dis-
tribution of time until the transition from s to s’ occurs, given that the next state is s’;
(), a reward function of player i, is a bounded Borel measurable on

S % ﬁ A(k)xR+’

k=1

where R* is a non-negative real line.

At successive random times, all players observe the state of the system and classify
it into one of the possible states s&S. Then, according to the full knowledge of the his-
tory of the system as it has evolved to the present state s, each player ¢ chooses independ-
ently an action aPEAWD, =1, 2,..-, n, without collaboration with any of the others. As
a consequence of the actions chosen by the players and the duration time of s, each player
i gains a reward r((s, a®, @@, ..., a™, ) unit of money and the system jumps to a new
state s’ according to the distribution ¢(-|s, a®, @@, --., a™) after some duration of state s.
Then the whole process is repeated from the state s’. In this paper, our optimization
problem is to maximize the limit of expected reward of each player gained during the
first m transitions divided by the expected length of the first m transitions, respectively,
as the game proceeds to the infinite future.

A strategy n( for each player i is a sequence of 7, 7,@, ..., where 7m,@ specifies
the mth action to be chosen by player i by associating Borel measurably with each history
hm=(51, &V, @@, -+, @&, ™, t,, s, @D, -, @™, b3, -+, Sm—y, @), -+, tm—1, Sm) of the system
a probability measure 7#m(s|hn) on (AW, B(AD)), where Sm,’am(i), i=1,2, -+, n, and &m
are the mth state, the mth action chosen by player i, i=1, 2, ---, #, and the mth duration
time, respectively. A strategy =9 is, particularly, said to be stationary if there is a Borel
measurable mapping ¢ from S into P(A®), where P(A®) is the set of all probability
measures on (A%, B(A®)), such that 7»@=p( for all m and in this case, = is denoted
by ¢, Each W, i=1, 2, ---, n, denotes the class of all strategies for player 7, respec-
tively.

In order to ensure that the transitions do not take place too quickly, we need to as-
sume the following:

AssuMPTION 1. There exists 3>0, >0 such that for.all s&S and aDcAD, §=1,2, ..., n,
Ssﬁ‘(als, a(l)' a(Z), ey a(”)’ s')dq(s’ Is’ a(l)’ a(Z), e, a(”))<1-—-e_

When the system starts in a state s;&S and a set of strategies (zV, 7@, ..., z(®),
Dl @, =1, 2, ---, n, is used, the total expected gain for each player i up to the mth
transitions is defined to be
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¢(i)(m’ Sty 7;(2)’ ey ﬂ;(")):

m
:E”(l)’ @, ..., n.(n)[:jz_‘,l rd(sj, aj®, -, a;™, tj):l
and the expected average gain for each player i is defined to be
¢(i) (sl’ 71_-(1)’ 71-(2)’ ey n(”)):

$D(m, sy, 7D, 7@ ... 7))

m
E . @ ... zm [E tj[31:l
’ ’ ? J=1

=1im

m—~»oo

Then, a set of strategies (#@, z®@, ..., #(™) is called an equilibrium point if, for all i and
s&ES,

$C)(s, 7D, 7@, ... xw)=

= sup ¢(i)(s’ 71'(-1), e, G'(i), ey 7;(”))
o (e

and each =, i =1, 2, ---, n, is called an equilibrium strategy for player i, respectively.
3. Existence of equilibrium stationary strategies in the n-person
semi-Markov game

In this section, we show the existence of equilibrium stationary strategies in the
game. Firstly, we assume the following notations:

T =(a®, g®, ..., g™ A®
k=1
— n S
p=(p®, p®, ., #‘”’)E( II P(A“*))) ,
E=1

A~ . . . n o\
D= (p®, p®, ..., =D yG+D ) MY S (kl;Il P(A®* ))
5=l

#*2
and
(;; g(i)):(#(l), ey p(i—l)’ g(i), #(i'l'l), ey ﬁ(”))

for g(i)e (P(A(t)))s ,
where

( I P( A(k)))s

E=1

denotes a set of all mappings from S into
I P(A®),
k=1

Secondly, throughout the paper, we assume the following:
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AssuMPTIOH 2. (i) S and each AW, k=1, 2, ---, n, are compact metric space, (it) when-
ever sm—>Sy and am®d —s>ay®d, i =1, 2,---, n, as m—>»oo, q(+ | sm, am) converges to weakly to

q(' ISOr Eﬁ) .

AssumpTION 3. (i)
So tdF(t|s, @, s')=1(s, @, §')
is @ continwous function on
n
SXII A®xS,
=1
(ii) For each i,
So 7@ (s, a, )dF(t|s, a, s') =1 (s, a, s’)
is a continuous function on
n
S XkHIA(k) xS.

From these assumptions we can prove the following lemma.

LemMA 3.1 7(s, @) and each v (s, a), i =1, 2,---, n, are continuous functions on

S X ﬁ A(k),
k=1
where
(s, ) =(s, 3, 9)da(s' |5, D
and

74 (s, @) =Ss r@ (s, a, s")dq(s'|s, a).

This proof is shown in our paper [8].
Then, from Assumption 2 (i), (ii), Assumption 3 (i) and Lemma 3. 1, we can prove
that (s, @) is a bounded continuous function on

S % ﬁ AW,
k=1

Similarly, each 7 (s, a), i =1, 2, ---, n, is a bounded continuous function on

n
S xII AW,

k=1

Since by Assumption 2 (i) each P(A) endowed with weak topology is a compact metric
space,
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1 P(A®)

k=1
is a compact metric space. Throughout the paper, we assume that each P(A®), k=1,
2, ---, n, is endowed with weak topology.

LeMMA 3.2 Let u(s, a) be a continuous, real-valued function on

S X f‘[ AW,

k=1

Then, under Assumption 2 (i),

uis, By={ @ =] o 05, @d(B)

is continuous on
S x ﬁ P(A®),
k=1
where
d(z) =kﬁ1d,,(k) (a®).

LeEMMA 3.3 Let u be a bounded, continuous function on X X Y, where X is a Borel sub-
set of a Polish space and Y is a compact metric space. Then, u(x) =ma})’{ u(x, y) is conti-
ye

nUOUS.

LeEMMA 3.4 Let u be a bounded, continuous function on XxY, where X is a Borel
subset of a Polish space and Y is a compact metric space. Then, there exists a Borel measu-
rable mapping f from X into Y such that u(x, f (x))=ma}),c u(x, ¥), for scX.

ye

The proofs of these lemmas are given in [2].

L d

AssumpTION 4. For each i, there exist a Borel measurable mapping p*E(HP(A(k)))S
a continuous function ud (s, p*ﬁ)) and constant d¥ (y*(l)) on S such that, for each s,

~ — _ )
PAS); (s’ ‘u*(i)) = max { < (s, 7% g(z)) +
D epcai)

+H{ U, D) dg(s' |5, i 09 —dD () T (5, 15 0D}
3.1

and
uD (s, palP)=rD(s, ﬂ*)+SS uD(s', pxP)dq(s’|s, ps)—

—dD (g7 (s, ), 3.2)
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where, for each ﬁekl_'ilP(AUe)) and EEB(S),
705w ={ | 7P D)@,

76 m ={ | w7 Dd@
and
aEls, )=y on 2(Bls, D).

Then, we can prove the following theorem.

THEOREM 3.1 The game has an equilibrium point and all players have the equilibrium
stationary strategies.

PN
Proor. For a set of the stationary strategies #( and any strategy ¢ for player i,
we have

MELG N e
E;*; ol []?é {“(') (s #*('))—Eﬁ*; s [#P (i, psP) | hjq] }]=0- (3.3)
But, from (3. 1), it holds that, for each 7,
o /\ »
E 2y 0@ [ (sjy D) |Bj—1]=
=\ (" Y da(s |5iey, Ta; 2D
= w0, ) da(’ |sj1, 5 23§20)
— —_ . AN — _ .
= {70 (sj-1, T AP —dD (pa®) Tso, s AR+
o N\ o f— .
+Ssu<'>(8', £ 2)dq(s"|sj—1, o 2“’1)} {f(‘)(sj-—ly
P A20) —dD (@) Tso, T 2020))

<uD(s5_y, 1y®) _{7«) (j—1, s A2 —

—d® (us®) Tsjr, s A2D} 3.4

where 2(;11 denotes a probability measure on (A%, B(A%))) determined by 0(,'-)-1 (| Bj=1).
Hence, from (3. 3) and (3. 4), we have

m-+-1 N ~ . . A~ .
0=E ;o0 [Ez {u<')(8j, #5) —u (51, D) +
14 ]—

— — . AN — — .
+ 7D (51, s A§2) —dD (p5D) T(5j-1, o35 25—’11}]- (3.5)
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From (3. 5), we get

m
E p*; g [JE y(D (s aj(l), aj(2)’ ey aj(”)' t])]

N\
dD Cpg) =
E# a(,)[2t1|51]
. /\ o - /\ -
+ Eﬁ*; g [u(')(sm+1: D) —ud (sy, F*('))]
_ m (3.6)
E s a‘”[,Z} tils ]
By Assumption 1, it is easy to see that
m
Eﬁ*;a(,-)[f_j tjlsl]_Z_meé——»oo as m —> © 3.7

Since #(s, p*@)) is bounded on S, from (3. 6) and 3. 7), we get, for any strategy o
for player i,

o~ i EF e [Zr(:)(si a](l) a,(Z) e, aj("), tJ)]
dD (p3D) = Tm o . 3.9
E [}3 tjlsl]
7=1

s TP
Thus, from (3. 8), it holds that for any s;&S

d“’(zu*“’)2 sup 9@ (sy, pg; 0D). (3.9)
o'(t)eﬂ( .

Similary, from Assumption 4, it holds that for any s;,&S
3 /\ - - —
AW (pge)= ¢ (51, ). (3.10)
From (3. 9) and (3. 10), a set of stationary strategies z*= (p4®, p4®, .-+, ™) is an equi-

librium point and each ith element of x4 is an equilibrium stationary strategy for player
i. Thus, the theorem is proved.

4. Sufficient condition of Assumption 4

In this section, we give the sufficient condition to ensure Assumption 4.

Let C(S) denote the family of all bounded, continuous functions on S. For #E cS
we define [« =1151:§lu(8)|- Then, (C(S), d) is a complete metric space, where d(v, #)=
|lv—u| for each v, u=C(S).

First we define an operator Te(?: C(S)—>C(S) as follows: for >0

Ta2)(s) = [S ...... S S &>{7<f) s, D)+
( a X ) a(')eP(A(‘)) A(l) A(n) ( ’ )
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+( u(snda(s |5, ) }d(E; 00 ], 4D
where d(;;’ g-(i)) = ’ﬁld#(j) (a(j)) do@ (a(i)) ﬁ+1d;l(j) (a(j)) .
j=1 i=i
LEMMA 4.1  The operator Ta'? is a contraction mapping on C(S) for any «=>0 and .
Proor. It is easily proved that, for any %, v& C(S),
" Ta(i)u— Ta(i)v "

...... —aT(8,a) || 39 — o)
’ éo(i?éaP)%A(i))[SA(l) SA(") ¢ lu—vld(p; o )] 4.2

and, by Assumption 1,

T(s, @a)=0de. (4.3)
From (4. 2) and (4. 3), we have

| Ta®Wu— TaWo| <e=**|u—v|.

The lemma is proved.
Since C(S) is a complete metric space, T« has a unique fixed point in C(S), by
N
virtue of the Banach fixed point theorem. Let % (p() be the unique fixed point of

T«®. Then it holds that, for each s&S and p& Seli'IIP(AW))S,

N - -—
X N= max |\ ,yeeeeer —azs,3) | 4
Ual(s, ) P él}»?i‘(.-»[SA‘” SA(n)e { ri(s 0
N —_— —
+{ g ua(s', 1W®) da(s' |5, @) } (@5 o), o

where #a$(s, ?4\(*’)) is a value of ua“)(/,;(i)) at s&S.
Moreover, we can prove that the fixed point ua<i)(/,¢:(f)) is continuous in 2.
LEMMA 4.2 If g (s) Ekﬁ1 P(AW®) for all I and p;(s) > Zo(s)ek IiP(A(k)) as |—> o, it
holds that, for each i,
10D (1) — 2D )| —>0 a8 [ —> oo,

P N
where the notation = denotes weak convergence and us>(u) is a fixed point of TaP for p.
PN —
Proor. Since #a(pu@) is the fixed point of T« for g, we have, for every ¢ and s,

. /\ 3 . /\ 3
Iua(t)(s, #1(1))—1‘“(1)(3’ #o(t))l

S max |S ...... S e—a ?(s,"a")";(,) s Ed . a(’) -
Sewepa) | 1a® ™ (s, @)d(pu; )

= § e § e TED O (5, Byt 0|+
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- - ~ .
4+ max & e SA(n)e—o r(s,a)SS | thacin (57, 201) —

a

a(z‘)ranP(}fw'))SA(D
i3 /\ . - 2l .

—uaD(s’, o) |dq(s’ |5, a)d(pu; 0 D)+

— . -~ . . . )
+ o max | § o oo D] (s ) da(s |5, DG o)

| R R o
—{ e D] w15, ) da(s |, @A 0@)| (45)

From Assumption 2, Lemma 3. 1 and Lemma 3. 2, the first term and the third term
in right-hand side of (4. 5) become zero uniformly in ¢( as /——>o. Hence, by using the
definition of norm and taking the superior limit as /—>co0, we obtain

— PN PN
llim ”ua(i)(ﬂl(")) —ua(i)(‘uo(i)) ”
e Tm 4a® (1)~ (oD (4.6)
From (4. 6) it holds that, for each i,

o /\ 13 o A I3
llua(’)(ﬂl(‘)>“‘ua(’)(ﬂo(’)) ” —(0 as l“—_>°°,

because 0<{e~**<1. Thus, the lemma is proved.
N\
Next, for the fixed point %« (s, ) of T’ by Lemma 3. 1, Lemma 3. 2, Lemma 3. 3
and Lemma 3. 4, we can introduce the following notations: for each 7 and s,

K (s, 12; 0) :SA(D ...... SA(n)e_a %5, @) {7(;) (s, @)+
+{ uD (5", WD) dg(s' |5, D} dCa; o)
for o@W(s)EP(AW)
and

I\ p—
@ (ulidy=42G>; Kali)(s, w3 A@D) = Ka® (s, u; a@)} .
Gu (P (p() {',K'(s,# ')Mg%fm)a (s, 50 )}

Then,

Il P(A®)
k=1

VS
is a compact convex set of locally convex space and Ga‘(¢() is a non-empty, closed and
convex subset. So we define a mapping Ga:

(kﬁl P( A(k)))s N (kf'll P A(k)))s
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as follows: for each g
Ga(_[-l)={(2(1), 2D, ... MY ADE GD (D) for all i} )
Hence, in order to apply the fixed point theorem in [1], the following lemma is im-
portant.
LEMMA 4.3 The mapping Ga is upper semi-continuous.

Proor. It will be sufficient to show that, if ;=>2, > as | —> and 4, E Ga(p)
for all /, then 1,&Ga(g). In fact, from Lemma 4. 1, we have for each s and 2; =(4;®,
34D, oo NE Ga ()

/\ . -— .
a (s, #l(i)) = max Ka(')(s, I a))

o) € PCAWM)
— K@ (s, 3 4,9) ‘ 47
and, for any ¢@(s)& P(AWD),
#al(s, ?,\I(i)) =Ko (s, py; 0@). (4.8)

So passing to the limit and using Lemma 4. 2, (4. 7) and (4. 8) can be written as
P —_—
Ui (s’ ‘uo(i)) = Ka(d (s’ Ko} 20(1'))
and for any ¢@(s) EP(AW)
P J—
ua(i) (s’ Fo(i)) gKa(i) (s’ Hos a(f))’

respectively. Thus, the lemma is proved.
Then, we can conclude, from Fan’s theorem in [1] and Lemma 3. 4, that there exists

a Borel measurable mapping = (5@, p5?, -+, ™) from S into

ﬁ P(A(k))
k=1

such that & G«(z2x), that is, for all i and s,
D (5, 1) = KaliX(s, Toxe),
and, for any ¢@ (s) EP(AW),
UaD(s, 1) = KaD (5, e 0D).
Now, fix some state s, and let
Fal (s, 15) = 2al (5, 103 ) — 1 (50, ). (4.9)
From (4. 9), we get |

Iy /\ Iy o /\ 5
a8, ‘u*(t)) + fa (s, P*('))—':
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= max [S ...... S e—'a?(s»a){;(i) S —a- +
s eplainlda® A (s, @)

+SS £ (s, ) da (s’ s, 3)} A p; 09+

PaN - _ —
SIPROIEN ”*(i))SA“) ...... SA(n)e—u 5D (T g'(i)):l _

But

+SA(1) ...... SA(”)R(a)d( 7% g(D),
Hence, from (4. 10) and (4. 11), we get

~ e (—
(€} s )y — max [S ...... S e—* (s, d){ r@ S —d_
fal2 (s, g @) o eplanlda® A (s, )+

+{; £a(s', D) da((s' |5, D} A 0D
—aua® (s, D) T(s, s 0D) 0 (50, ) Z}]
where

2={ @] o R@d(; o).

Similarly, we get
; NG a 7(s,a)] (i P
Fald (s, ”*('))ng“) ...... SA(”>e_ & ){ 7D (s, a)+
P — —
g £O (' D)V da(s' |5, B} d( ) —

. AN —_ . -_— .
_aua(t)(s, ‘U*(’))T(S, p*)—f-ua(z)(s, #*('))2*-

where

2*=SA(1) ...... SA(n)R(a)d(ZZ*).

Then, we can prove the following theorem.

33

(4. 10)

(4.11)

(4.12)

(4.13)

THEDREM 4. 1 If {fa@ (s, ;z\*(”), 0<a<lc} is a uniformly bounded, equi-continuous

Jamily of functions on S for some 0< c< oo, then, Assumption 4 holds.

Proor. By Ascoli-Arzela’s theorem there exist a sequence @,——>0 and a continuous
PR 2y . PP
function #@(s, ux?) such that fa,(s, px?) converges uniformly to #<(s, () on S.
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Now we show that {a#a( (s, ?a*(i)), 0<a<c} is bounded. For the Borel measurable
mapping g, it holds that

~ . 2o 2y [—rry, —
UalD (S, P*(‘))=SA(1) ...... SA(”)e-—a z(s, a){ @ (s’ a) -+

+{ e (', ) da(s'|5,7@) | ). (4.1

From (4. 14), it is easy to see that for each s&S,

#ali(s, ?,*(i)) =E - [i e }'é‘ s,/ 7D (sm,b'm)] , (4.15)
Ex 7=t

m=1
where

_ n
aj= (a](l)’ 01(2), ...’ a](”)) Ekl:-IlA(k)'

Then, since 7 is bounded on

”
SxXTII AW

k=1

and [t|=ed, from (4. 15) |@uad (s, /p;("))l is bounded. Hence we require that ay#a, (s,
/;z;(i)) converges to d @(i)) as ay,—>0 and we can show that #%e,® (so,/;z*(i))z converges
uniformly to zero in (p; %) as ¢y,——>0. Thus, from (4. 12), we get (3. 1). Similarly,
from (4. 13), we can obtain (3. 2). Thus, the thorem is proved.
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