
A note on compact connected transformation groups
on spheres with codimension two principal orbit

By

Fuichi UCHIDA and Tsuyoshi WATABE

(Received October 31, 1978)

Introduction

In his paper [2] Bredon has classified compact connected transformation groups on
spheres with codimension two principal orbit and only one type of singular orbit. In this
paper we shall consider compact connected differentiable transformation groups on sph-
eres with codimension two principal orbit and only one isolated singular orbit.

We shall prove the following two results;

THEOREM A. Let $\varphi;G\times S^{n}\rightarrow S^{n}(n\geqq 3)$ be a differentiable action of a compact con-
nected Lie group $G$ on sphere $S^{n}$ with codimension two principal orbit and only one isolated
singular orbit. Then $\varphi$ has the same orbit structure as one of the following actions, unless
$n=11,23$.
I) Consider the group $U(2)$ . Let $\overline{\psi}_{1}$ be the homomorphism $U(2)\rightarrow SO(3)$ with the center
of $U(2)$ as kernel and $\psi_{1}$ the action of $U(2)$ on $R^{3}$ obtained from the standard action of $S\propto 3$)

on $R^{3}$ by $\overline{\psi}_{1}$ . Let $\psi_{2}$ be the canonical action of $U(2)$ on $R^{4}=C^{2}$ . Thus we obtain an action
$\varphi_{1}$ of $U(2)$ on $\wp\subset R^{3}\times R^{4}$ defined by $\psi_{\rceil}\times\psi_{2}$ .
II) Consider the group $Sp(2)\times Sp(1)$ . Let $\psi_{1}$ be the action of $Sp(2)\times Sp(1)$ on $H^{2}$ defined by

$\psi_{1}\{(\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\},$ $e),$ $\left(\begin{array}{l}x\\y\end{array}\right)\}=\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}\left(\begin{array}{l}x\\y\end{array}\right)\left\{\begin{array}{ll}e & 0\\0 & e\end{array}\right\}$

and $\psi_{2}$ the action of $Sp(2)\times Sp(1)$ on $R^{5}$ defined by the natural homomorphism $Sp(2)\times Sp(1)\rightarrow proj$

$Sp(2)\rightarrow S\alpha 5)cov$ . Thus we obtain an action $\varphi_{2}$ : $Sp(2)\times Sp(1)\times S^{12}\rightarrow S^{12}$. Note that the action
obtained by restriction of $sp(2)\times Sp(1)$ to $Sp(2)\times T^{1}$ or $Sp(2)$ has the same orbit structure as
$\varphi_{2}$ . We denote these actions by the same notation $\varphi_{2}$ .
III) Consider the group Spin (9). Let $\Delta$ : Spin (9) $\rightarrow SO(16)$ be the spin representation and
$\pi$ ; Spin (9) $\rightarrow s\alpha 9)$ the canonical double covering. Then we obtain an action $\varphi_{3}$ ; Spin (9)
$\times S^{24}\rightarrow S^{u}$ .

THEOREM B. The action of a compact connected Lie group $G$ on $S^{n}$ with the same orbit
structure as $\varphi_{1}$ or $\varphi_{2}$ is continuously equivalent to $\varphi_{1}$ or $\varphi_{2}$ , respectively.

In this paper, we shall consider only differentiable actions and use the following
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notations;
$Z$ ; the ring of integers
$Q$ ; the field of rational numbers
$R$ ; the field of real numbers
$C$ ; the field of complex numbers
$H$ ; the field of quaternions
$A_{n},$ $B_{n},$ $C_{n},$ $D_{n}$ ; the classical groups of rank $n$

$G_{2},$ $F_{4},$ $E_{6},$ $E_{7},$ $E_{8}$ ; the exceptional groups
$G\sim G^{\prime}$ ; two groups $G$ and $G^{\prime}$ are locally isomorphic
$G^{o}$ ; the identity component of the group $G$

$K\circ L$ ; the essentially direct product of $K$ and $L$.

1. Preliminary results

Let $\varphi;G\times S^{n}\rightarrow S^{n}$ be an action of a compact connected Lie group $G$ on $S^{n}$ with codi-
mension two principal orbit $G/H$ and with two types $(L)$ and $(K)$ of singular isotropy
subgroups. Let $G/L$ be non-isolated singular orbit and $G/K$ the only one isolated singular
orbit. It is well known that the orbit space is 2-dimensional disk and $\dim G/K$ is strictly
smaller than $\dim G/L$ ([11, chap. IV section 8). It isbasy to see that $S^{n}$ is equivariantly
diffeomorphic to a G-manifold $M_{1}\bigcup_{f}M_{2}$

, where $M_{1}$ is a G-equivariant l-disk bundle over
$G/L,$ $M_{2}$ is a G-equivariant h-disk bundle over $G/K$ and $f:bM_{1}\rightarrow bM_{2}$ is an equivariant
diffeomorphism ($bMi$ is the boundary of $Mi$). Note that $bM_{1}$ (respectively $bM_{2}$) is a
sphere bundle over $G/L$ (resp. over $G/K$). Since $2<l<k$, we see that the simply connec $\cdot$

tedness of $S^{n}$ implies that $G/K$ and $G/L$ are both simply connected. In particular $K$ and
$L$ are both connected.

We identify $bM_{1}$ and $bM_{2}$ by $f$ and put $M_{0}=bM_{1}=bM_{2}$. From Mayer-Vietoris exact
sequence, it follows that $H^{i}(M_{0};Z)$ is isomorphic to $H^{j}(G/L;Z)\oplus H^{j}(G/K;Z)$ for $0<i<$

$n-1$ . In particular, the projections $pK;M_{0}\rightarrow G/K$ and $p_{L}$ ; $M_{0}\rightarrow G/L$ induce isomor-
phisms $p^{*}K$ and $p_{L}^{*}$ . Hence we have $M_{0}\sim G/K\times S^{k-1}z$ and $M_{0}\sim G/Lz\times S^{l-1}$ , where $X\sim Yz$

means that spaces $X$ and $Y$ have the same graded cohomology modules.
We have the following

PROPOSITON 1. The Poincare polynomials of $G/K$ and $G/L$ are given by

$P(G/K)=(1+t^{l-1})\sum_{i=0}^{N}t^{i(k+l-2)}$

$P(G/L)=(1+t^{k-1})\sum_{i=0}^{N}t^{j(k+l-2})$, where $n-1=(N+1)(k+l-2)$.
PROOF. We have already noted that

(1) $H^{i}(G/K;Q)\oplus H^{j}(G/L;Q)\cong H^{i}(M_{0};Q)$ for $0<i<n-1$
and
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(2) $G/_{QQ}K\times S^{k-1}\sim M_{0}\sim G/L\times S^{l-1}$ .
Thus we have

(3) $P(M_{0})=P(G/L)+P(G/K)+t^{n-1}-1$

$=P(G/K)(1+t^{k-1})=P(G/L)(1+t^{l-1})$ .
It follows from (1) and (3) that $P(G/K)t^{k-1}=P(G/L)+t^{n-1}-1$ and $P(G/L)t^{l-1}=P(G/K)+$

$t^{n-1}-1$ and hence we have
(4) $P(G/K)(1-t^{k+l-2})=(1+t^{l-1})(1-t^{n-1})$

and
(5) $P(G/L)(1-t^{k+l-2})=(1+t^{k-1})(1-t^{n-1})$ .

Multiply both hand sides of (4) by $\sum_{i=0}^{N^{\prime}}t^{t(k+l-2)}$ . Then we have $n-1\equiv 0$ or $l-1(mod k+l$

$-2)$ and $n+l-2\equiv 0$ or $l-1(mod k+l-2)$ , because every terms of the left hand side is of
positive degree $mod t^{(N^{\prime}+1)(k+l-2)}$ . Assume $n-1\equiv l-1$ and $n+l-2\equiv 0(mod k+l-2)$ .
Then $2(l-1)\equiv 0(mod k+l-2)$ , which is impossible, because $2<l<k\leqq n$ . Hence we have
$n-1\equiv 0(mod k+l-2)$ . Thus we have shown that there is an integer $N$ such that $n-1=$

$(N+1)(k+l-2)$ and $P(G/K)=(1+t^{l-1)}\sum_{\dot{\iota}\Leftarrow 0}^{N}t^{i(k+l-2)}$ and $P(G/L)=(1+t^{k-1})\sum_{=t0}^{N}t^{i(k+l-2)}$ . This
completes the proof of the proposition.

The following propositions are useful for determination of the pair $(G, K)$ of compact
Lie groups with given Poincare polynomial $P(G/K)$ .

PROPOSITION 2. Let $U=U_{1}\times\cdots\times U_{t}$ be the product of compact simple Lie groups and $V$

a semi-simple closed connected subgroup of $U$ such lhat rank $V=rankU-1$ . Then we have
(1) $V=V_{1}\times\cdots\times V_{t}$, where Vi isasubgroup of Ui

$or$

(2) $V=(V_{\rceil}\times\cdots\times V_{t})\circ V_{0}$ , where $Vi\subset U;$ , rank $V_{0}=1$ , rank $Vi+rankp;(V_{0})=rankUi$ for
every $i$ and the number of $i$ such that $p;(V_{0})\neq 1$ is just two and $p$ ; is the proiection $ U\rightarrow$

$U;$ .
PROOF. We may assume that there is a simple normal factor $V_{0}$ of $V$ such that the

number $n$ of $i$ such that $p;(V_{0})\neq 1$ is greater than 1. In fact, if there is no such $V_{0}$ , then
the case (1) must occur. Put $V=V^{\prime}\circ V_{0}$. Since $V$ is semi-simple, we see that $p;(F)=$

$p;(V^{\prime})\circ p;(V_{0})$ for any $i$. Putting $V;=p\iota(V^{\prime})$ , we have
(i) rank $ V\iota+rankp\iota(V_{0})\leqq rankU\iota$ for every $i$

and hence
(ii) rank $(V_{1}\times\cdots\times V_{t})+n$ rank $V_{0}\leqq rankU$.

Since
(iii) rank $V^{\prime}\leqq rank(V_{1}\times\cdots\times V_{t})$

and
(iv) rank $U=rankV+1=$ rank $V^{\prime}+rankV_{0}+1$ ,

we have $(n-1)$ rank $V_{0}\leqq 1$ and hence $n=2$ and rank $V_{0}\leqq 1$ . Thus we have rank $V^{\prime}=$

rank $(V_{1}\times\cdots\times V_{t})$ and $V^{\prime}=V_{1^{\prime}}\times V_{t^{\prime}}$ , where $V\iota’=V;$ , because $Vi=p\iota(V^{\prime})$ . This completes
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the proof of the proposition.
By the same method, we can prove the following

PROPOSITION 3. Let $U=U_{1}\times\cdots\times U_{t}$ be as in Proposition 2 and $V=V^{\prime}\circ T^{1}$ be a closed
connected subgroup of $U$, where $V^{\prime}$ is semi-simple and $T^{1}$ is $a$ one-dimensional torus. As $\cdot$

sume rank $U=rankV+1$ . Then we have
(1) $V=V_{1}\times\cdots\times V_{t}$ , where $V;\subset Ui$ for every $i$

(2) $V=(V_{1}\times\cdots\times V_{t})\circ T^{1}$ , where $Vi$ is semi-simple, the number of $i$ such that $p;(T^{1})\neq 1$ is
just 2 and rank $V;+rankp;(T^{1})=rankU$; for every $i$,

$or$

(3) $V=(V_{1}\times\cdots\times V_{t})\circ S$, where $V;\subset Ui,$ $S$ is locally isomophic to $Sp(1)$, the number of $i$

such that $pj(S)\neq 1$ is just 2 and rank $V;+rankpi(\mathfrak{D}=rankU$; for every $i$.
Consider the action of $K$ on $S^{k-1}$ induced by the slice representation. Since $G/K$ is

the isolated singular orbit, this action has codimension one principal orbit $K/H$ and two
singular orbits $K/L$ and $K/L^{\prime}$ , where $L$ and $L^{\prime}$ are conjugate each other in $G$. Let $W$ be
the identity component of the ineffective kernel of the action of $K$ on $S^{k-1}$ .

From results in [51 $((5.2), (7.4)(11.9))$, it follows that there are following cases;

Case 1. 1 is even.
Subcase 1. $K/L=K/L^{\prime}=S^{k-l},$ $K/H\approx K/L\times K/L^{\prime}$ and $H=L\cap L^{\prime}$ .
Subcase 2. $K/W$ is a simple proup of rank 2, $L/W\sim A_{1}\times T^{1}$ and $H/W\sim T^{1}\times T^{1}$, where

$\sim means$ “locally isomorphic”
Subcase 3. $K/W\sim C_{3},$ $L/W-C_{1}\times C_{2}$ and $H/W\sim C_{1}\times G\times C_{1}$ .
$Subca8e4$. $K/W\sim F_{4},$ $L/W\sim B_{4}$ and $H/W-D_{4}$ .

Case II. $l$ is odd.
$Subca8e1$ . $K/L=K/L^{\prime}=S^{k-l},$ $K/H\approx K/L\times K/L^{\prime}$ and $H=L\cap L^{\prime}$ .
Subcase 2. $l=3$. $P(K/H)=(1+t^{3})(1+t),$ $P(K/L)=1+t^{3},$ $P(K/L^{\prime})=1+t$ and $K/L^{\prime}$ is

non-orientable.
Subcase 3. $l=3,$ $P(K/H)=1+t^{3},$ $P(K/L^{\prime})=P(K/L^{\prime})=1$ and $K/L,$ $K/L^{\prime}$ are non-orien-

table.
$Subca8e4$. $l=3,$ $P(K/H)=(1+t^{3})^{2}$ and $P(K/L^{\prime})=P(K/L^{\prime})=1+t^{3}$ and $K/L,$ $K/L^{\prime}$ are

non-orientable.
Since $K$ and $L$ are connected, $K/L$ and $K/L^{\prime}$ are orintable. Hence subcaces 2, 3 and

4 of case II cannot occur.

2. The case $n$ even

In this section and in next section we assume that $G$ acts almost effectively on $S^{n}$.
Note that the ineffective kernel of the action is precisely (center $G$)$\cap H$, where $H$ is a prin-
cipal isotropy subgroup.

For the case $n$ even we shall prove the following
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PROPOSITION 4. $G/L=S^{k-1},$ $G/K=S^{l-1}$ and $n+1=k+l$.

PROOF. It is clear that $X(S^{n})=X(G/L)+X(G/K)$ , where $X($ $)$ is the Euler character $\cdot$

istic. Since $L\subsetneqq K$, we see that $X(G/K)=2$ and $X(G/L)=0$ . Hence we have $G/K\sim S^{n-k}$
$z$

and $G/L\sim S^{n-l}z$ from Proposition 1. Since $G/L$ and $G/K$ are simply connect$ed,$ $G/L$ and
$G/K$ are standard spheres (see [3]). This completes the proof of Proposition.

It is clear that 1 is odd and $k$ is even. Hence the action of $K$ on $S^{k-1}$ induced by the
slice representation has the following orbit structure;

(i) $K/L$ and $K/L^{\prime}$ are $(k-l)$-spheres
(ii) $K/H=K/L\times K/L^{\prime}$

and
(iii) $H=L\cap L^{\prime}$ .

Put l$=2r+1$ . Then we have k$=4randn=6r$ .
Let $V$ be the identity component of the ineffective kernel of the action of $G$ on $G/L$

by the left translation. Note that $V$ is a normal subgroup of $G$ and is contained in $L$.
Since $L^{\prime}$ is conjugate to $L,$ $V$ is contained in $L^{\prime}$ and hence contained in $H=L\cap L^{\prime}$ . Thus
$V$ acts on $G/H$ trivially by the left translation, which means that $V=1$ , since the action
of $G$ on $G/H$ by the left translation is almost effective. Thus we have obtained the
following

PROPOSITION 5. The natural action of $G$ on $G/L$ by the left translation is almost effec-
tive.

REMARK. If the action of $G$ on $S^{n}$ is assumed to be effective, then the action of $G$ on
$G/L$ by the left translation is also effective.

Since $G/L=S^{4r-1},$ $G$ is one of the following; $D_{2^{r}},$ $A_{2r-1}\times T^{1},$ $C_{r},$ $C_{r}\times T^{1},$ $C_{r}\times C_{1},$ $B_{4}(r=$

4) and &(r=2). Moreover, since $G$ acts transitively on $\wp_{r}G$ must be one of lhe follow-
ings;

Case 1. $G=A_{1}$ $r=1$

Case 2. $G=A_{1}\times A_{1}$ $r=1$

Case 3. $G=A_{1}\times T^{1}$ $r=1$

Case 4. $G=C_{2}\times C_{1},$ $C_{2}\times T^{1},$ $C_{2}$ $r=2$

Case 5. $G=B_{4}$ $r=4$.
We shall consider the above five cases separately.

Case 1. In this case, we have $\dim L=0$ and $\dim H=0$, which contradicts (ii).

Case 2. In this case, we have $K=T^{1}\times A_{1}$ . Since $K/L=S^{1}$ and $T^{1}$ is the only Lie group
which acts on $S^{1}$ transitively and effectively, $L$ must be a normal subgroup of $G$, which
contradicts to the almost effectivity of the action of $G$ on $G/L$. Thus this case does not
occur.

Case 3. In this case we have $G/L=S^{3},$ $G/K=S^{2}$ and $K/L=L/H=S^{1}$ . It is clear that
$K=T^{1}\times T^{1},$ $L=P$ and $H^{0}=1$ . Suppose the action of $G$ on $S^{6}$ be effective and $G=U(2)$ .
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Then $K=U(1)\times U(1)$ and $L=U(1)\times 1$ . It is easy to see that $L\cap L^{\prime}=1$ for any subgroups
$L^{\prime}$ of $K$ such that $L^{\prime}$ is conjugate to $L$ and $\dim L\cap L^{\prime}=\dim H=0$, which implies that $H=1$ .

Now we shall examine more precisely the action $\varphi_{1}$ in Theorem in Introduction. The
action $\psi_{1}$ on $R^{3}$ is transitive on $\wp$ with isotropy subgroup a maximal torus $U(1)\times U(1)$ of
$U(2)$ . The action $\varphi_{2}$ is transitive on $S^{3}$ with isotropy subgroup $U(1)=U(1)\times 1$ . Since
$G_{(x,y)}=G_{x\cap}G_{y}$ , we see that this is either finite or equal $S^{1}$ when $x\neq 0$. However $G$ is
transitive on $\{0\}\times S^{3}\subset S^{6}$ with isotropy subgroup $U(1)\times U(1)$ . Since some conjugate of
$U(1)$ can be seen to have trivial intersection with $U(1)\times U(1)$ we see that the principal
isotropy subgroup is trivial (This is due to the arguments in [1]). Thus we have shown
that in case 2 the action has the same orbit structure as $\varphi_{1}$ .

Case 4. In this case we have $G/L=S^{7},$ $G/K=S^{4}$ and $K/L=L/H=S^{3}$ . Suppose $G=$

$Sp(2)\times Sp(1)$ . Then we have $K=Sp(1)\times Sp(1)\times Sp(1),$ $L=Sp(1)\circ Sp(1)$ and $H=Sp(1)$. As-
sume $G$ act on $S^{12}$ effectively. It follows from the remark below Proposition 5 that $G$

must be $Sp(2)\times Sp(1)/Z_{2}$ , where $Z_{2}$ is the subgroup generated by $(-Id., -1)$ .
Now we shall examine the action $\varphi_{2}$ in Theorem in Introduction more precisely.

It is easily seen that there are points $x\in H^{2}$ and $y\in R^{5}$ such that $G_{x}=\{[\left(\begin{array}{ll}a & 0\\0 & b\end{array}\right),$ $b]$ ; $a$,

$b\in Sp(1)\}\approx Sp(1)\times Sp(1)$ and $G_{y}=\{[\left(\begin{array}{ll}a & 0\\0 & b\end{array}\right),$ $c];a,$ $b,$ $c\in Sp(1)\}=Sp(1)\times Sp(1)\times Sp(1)$ .
For the element $g=_{\sqrt{}}^{1}2\triangleleft 11-11)\times 1\in G$, we have $G_{(g_{X},y)}=G_{gx\cap}G_{y}=Sp(1)$ . We show
that $\varphi_{2}$ has codimension two principal orbit $G/Sp(1)$ , non-isolated singular orbit $G/G_{x}$ and
only one isolated singular orbit $G/G_{y}$ . In fact, it is clear that $G/Sp(1)$ is a principal orbit.
Since this action has no fixed point, we see that $G/G_{y}$ is the only isolated singular orbit.

Consider the case $G=Sp(2)\times T^{1}$ or $sp(2)$ . It is not difficult to se$e$ that for this case
the action has the same orbit structure as the action obtained from the restriction of
$sp(2)\times Sp(1)$ to the $Sp(2)\times T^{1}$ or $Sp(2)$ .

Thus we have shown that the case 3 the action has the same orbit structure as $\varphi_{2}$ of
Theorem in Introduction.

Case 5. In this case we have $G=Spin(9),$ $L=Spin(7),$ $K=Spin(8)$ and $ H=Q(\alpha$ denotes
the exceptional simple Lie group of rank 2). It is clear that Spin(9) must act on $\wp 4e$ffec-
tively.

Now we shall examine the action $\varphi_{3}.of$ Theorem in Introduction more precisely. Note
that there are points $x\in R^{16}$ and $y\in R^{9}$ such that $G_{x}=Spin(7)\subset Spin(8)=G_{y}$ . Assume the
representation Spin(7) $\rightarrow Spin(8)\rightarrow s\alpha 8)$ has a one dimensional trivial summand. Then
Spin(9) $/G_{x}=V_{9,2}$, which contradicts to the fact $G/L=S^{15}$. Hence we have seen that the
representation Spin(7) $=L\rightarrow Spin(9)\rightarrow s\alpha 9)$ is $\Delta_{7}\oplus\theta^{1}$ , where $\Delta_{7}$ is the spin representa-
tion of Spin(7) and $\theta^{1}$ is one dimensional trivial representation. By a result in [61 (see

section 1), we have the following equation

$(\Delta_{9}+\pi)/Spin(7)=(Ad_{Spin(9)}/Spin(7)-Adsp;_{n(7)})\oplus\nu$ ,

where $\nu$ is the slice representation at $(x, y)$. From this equation, it follows that $\nu=\Delta_{7}\oplus\theta^{1}$.
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Thus there is a point $z\in R^{16}\oplus R^{9}$ such that Spin(9) $=G_{2}$ . It is easy to see that $\varphi_{3}$ has codi-
mension two principal orbit Spin(9) $/G_{2}$ and two types Spin(9) $/Spin(7)$ and Spin(9) $/Spin(8)$

of singular orbits. Clearly $\varphi_{3}$ is effective. Thus we have shown that the case 4 the
action has the same orbit structure as $\varphi_{3}$ .

3. The case $n$ odd

In this section, we shall show that there is no compact connected differentiable trans-
formation group of odd dimensional sphere with codimension two principal orbit and
only one isolated singular orbit, unless $n=11,23$ .

We shall use the notations as in section 1. First we shall consider the case in which
$l$ is greater than 3. Let $\overline{G,}\overline{K}$ and $\overline{L}$ be semi-simple parts of $G,$ $K$ and $L$ respectively, $G=$

$\overline{G}\times TaK=\overline{K}\circ T^{b}$ and $L=\overline{L}\circ \mathcal{I}^{t}$ . We may assume that $\overline{G}$ is simply connected.
We have the following

LEMMA 6. The restricted $\overline{G}\cdot action$ has codimension 2 principal orbit and only one iso-
lated singular orbit.

PROOF. We consider the following commutative diagram;

$ 0\downarrow$

$\pi_{1}(\overline{q}_{\urcorner}L)\otimes Q\rightarrow\pi_{1}(\overline{G})\otimes Q=0$

$\downarrow$

$\approx$

$\downarrow$

$\pi_{1}(L)\otimes Q$ $\rightarrow\pi_{1}(G)\otimes Q$

$\downarrow$ $\downarrow p_{\#}$

$\pi_{1}(p(L))\otimes Q\rightarrow\pi_{1}(Ta)\bigotimes_{\downarrow}Q$

$0$

where the vertical sequences are $e$xact and $p$ denotes the projection $G\rightarrow T^{a}$ . It follows
from this diagram that $a=c$ and $(\overline{G}\cap L)^{0}=\overline{L}$. Since $\overline{G}/\overline{L}\rightarrow G/L$ is a finit$e$ covering, we
have $\overline{G}/\overline{L}=G/L$ and $\overline{G}\cap L=\overline{L}$, because $G/L$ is simply connected. Since $L/H=S^{l-2}$ and
$l\geqq 4$ , we have also $\overline{L}/H\cap\overline{L}=L/H$ and hence $G=\overline{G}L=\overline{G}H$. By the same arguments as
above, we have $\overline{G}\cap K=\overline{K}$ and $\overline{G}/\overline{K}=G/K$ This completes the proof of Lemma.

It follows immeadiately from the Borel’s formula that rank $G=rankK+1$ . Let $\overline{G}=$

$c_{1}\times(\mathfrak{X}\times\cdots\times G_{t}$ be the decomposition into the product of simply connected simple Lie
groups. It follows from Proposition 2 that

(i) $\overline{K}=K_{1}\times\cdots\times K_{t}$ , where $Ki\subset G_{i}$

or
(ii) $\overline{K}=(K_{1}\times\cdots\times K_{t})\circ K_{0}$, where $Ki\subset G;,$ $K_{0}\sim A_{1}$ , the number of $i$ such that $p;(K_{0})\neq 1$

is 2 and rank $K_{i}+rankp;(K_{0})=rankG_{i}$ .
We shall consider the cases I and II in section 1 separately.
Case I ( $l$ ; even). In this case, we have rank $\overline{K}=rank\overline{L.}$ Hence we have

$\overline{L}=L_{1}\times\cdots\times L_{t}$ where $L;\subset Ki$ and rank $Li=rankKi$
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or

$\overline{L}=(L_{1}\times\cdots\times L_{t})\circ L_{0}$ where $L_{j}\subset Ki$ and rank $L;=rankKi$ and $L_{0}=K_{0}$

correspondingly to the decomposition of $\overline{K}$.
Note that all $Ki$, except one $Kj$ acts trivially on $S^{n}$ . In fact this is clear for subcases

(ii), (iii) and (iv) and proved as follows for the subcase (i). Since $L$ and $L^{\prime}$ are conjugate
in $G$, there is an element $g=g_{1}\times\cdots\times g_{t}\in\overline{G}$ such that $\overline{L}^{\prime}=g\overline{L}g^{-1}$. If $Ki\subset\overline{L}$, then $giKigi^{-1}$

$\subset g\overline{L}g-1=\overline{L}^{\prime}\subset\overline{K}$. Since $pj(giKigi^{-1})=1$ for $j\neq i$, we have $giKigi^{-1}\subset Ki$ and hence $ Ki\subset$

$\overline{L}\cap\overline{L}^{\prime}=H$. Thus we may assume that $Ki=L;\subset H$ for every $i(2\leqq i\leqq t)$. This implies that
the restricted action of $Gi$ on $S^{n}$ has a unique orbit type $Gi/Ki$ for $2\leqq i\leqq t$. We shall show
that this is impossible. It is well known that $S^{n}=Gi/Ki\times F(Ki, S^{n})$ , where $\Gamma_{K_{i}}=N$

$\Gamma_{K;}$

$(Ki, Gi)/Ki$. Assume rank $Ki=rankGi$. Since $\Gamma_{K_{i}}$ is a finite group and $\pi_{1}(S^{n})=1$ , we
have $S^{n}=Gi/K_{i}\times F$, where $F$ is a connected component of $F(Ki, S^{n})$. This is a contradic-
tion, because $\dim G_{i}/K_{i}<n$ and $\dim F<n$ . Next assume rank $Ki=rankGi-l$ . Then
$\Gamma_{K;}$ is finite or of rank 1. If this is finite, then the same argument as above concludes a
contradiction. If $\Gamma_{K_{i}}$ is of rank 1, then we see that $S^{n}=Gi/Ki\times FW$ where $W$ is the iden $\cdot$

tity component of $\Gamma K$; and $F$ is a connect$ed$ component of $F(Ki, Sn)$ . Since $W$ is a rational
homology sphere of dimension 1 or 3, we have an isomorphism $ H^{\gamma}(G\iota/K_{i}\times F;Q)\cong H^{r}(W\times$

$Sn;Q)$ and hence $H^{\gamma}(Gi/Ki\times F;Q)=0$ for $2\leqq r<n$ or $H^{r}(Gi/Ki\times F;Q)=0$ for $4\leqq r<n$

according to $\dim W=1$ or 3 respectively. This implies that $\dim Gi/Ki\leqq 3$ and $\dim F\leqq 3$

and hence $n\leqq 6-\dim W\leqq 5$ , which is impossible, because it follows from the facts that
$n-1=(N+1)(k+l-2)$ and $2<l<h\leqq n$ that $n\geqq 6$.

Thus we have proved that $\overline{G}$ is simple. It follows from the Poincare polynomial of
$\overline{G}/\overline{L}=G/L$ that $\overline{L}$ is also simple.

$Subca8e1$ . Since $\overline{L}$ is simple, $\overline{K}$ is also simple and possible pairs of $(\overline{K},\overline{L})$ are $(B_{r}, D_{r})$

or $((\mathfrak{X}, A_{2})(l=8)$ , where $G_{2}$ is the exceptional group of rank 2. On the other hand we
have $\overline{L}/H\cap\overline{L}=L/H=S^{l-2}$, which is impossible for $\overline{L}=D_{r}$ or $A_{2}$ .

Subcage 2. Since $\overline{K}$ and $\overline{L}$ are $semi\cdot simple$ we have $H^{2}(\overline{K}/\overline{L};Q)=0$, which contra $\cdot$

dicts to the fact that $L/W\sim A_{1}\times T^{1}$ .
Subcase 3. This case cannot occur, because $\overline{L}$ is simple.

Subcase 4. This case cannot occur, becaus$e$ there is no simple group of rank 5 which
contains $F_{4}$ as proper subgroup.

Thus we have shown that the case I does not occur.
Next we shall consider the case II. We divide this case into two subcases; subcase

1 in which $l$ is greatar that 3 and subcase 2 in which $l$ Is 3.
Subcase 1. $l\geqq 5$ .
We note the following facts.
(1) $k=2I-2$. This follows from that $K/H=K/L\times K/L^{\prime}$ .



A note on compact connected groups on spheres with codimension two principal orbit 9

(2) Let $t,$ $s$ and $u$ be the number of simple factors of $\overline{G},\overline{K}$ and $\overline{L}$ respectively. Then
we have $t=u$ and $s=t$ or $t+1$ . In fact, since $\pi_{1}(G/L)\otimes Q=\pi_{2}(G/L)\otimes Q=\pi_{3}(G/L)\otimes Q=$

$\pi_{4}(G/L)\otimes Q=0$ , we have t $=u$ . It is not difficult to see that s $=t(l\geqq 7)$ and s $=t+1(1=5)$.
(3) All simple factors but one simple factor or $Sp(r)\circ Sp(1)$ act on $\overline{K}/\overline{L}$ trivially.

This follows immeadiately from that $\overline{K}$ is semi-simple and $\overline{K}/\overline{L}=S^{l-2}$.
From (3) and the same arguments as in case I, it may be assumed that $t$ is at most 2.

Thus the subcase 1 is divided into the following five cases.
a) $\overline{G}$ is simple.

$a$. $1$) Case $i$ . $\overline{K}$ and $\overline{L}$ are simple.
$a$ . $2$) $\overline{L}$ is simple $and\overline{K}=K_{1^{o}}K_{1}^{\prime}$ ($K_{1},$ $K_{1}^{\prime}$ ; simple)

Case ii. $\overline{L}=K_{1}^{\prime},$ $K_{1}=Sp(1)$

Case iii. $K_{1}=K_{1}^{\prime},$ $\overline{L}=Sp(1)$

b) $\overline{G}=G_{1}\times G_{2}$ ( $Gi$ ; simple)
$b$ . $1$) Case iv. $\overline{K}=K_{1}\times K_{2}(Ki\subset G;),$ $Ki$ acts on K/Lnon-trivially.
$b$ . $2$) Case v. $\overline{K}=(K_{1}\times K_{2})\circ K_{0}(Ki\subset Gi),$ $Kiactson\overline{K}/\overline{L}non$-trivially.

Case $i$ . It follows from $\overline{K}/\overline{L}=S^{l-2}$ that possible pair of $(\overline{K}, \overline{L})$ is $(A_{r}, A_{r-1})$ ,
$(D_{r+1}, B_{r}),$ $(C_{r}, C_{r-1}),$ $(B_{4}, B_{3})$ or $(B_{3}, G_{2})$ . Since $\overline{L}/\overline{L}\cap H=S^{l-2}$, all pairs except $(D_{4}, B_{3})$ are
inadequat$e$ . Consider the case $(\overline{K},\overline{L})=(D_{4}, B_{3})$ . Since $D_{4}$ cannot be subgroup of $A_{5}$ and
$C_{5},$

$\overline{G}$ must be $B_{5}$ or $D_{5}$ and $\overline{K}\rightarrow\overline{G}$ is the standard inclusion up to automorphism of $\overline{K}$.
Compairing the Poincare polynomials of $G/K$ and $B./D_{4}$ or $lk/D_{4}$, we conclude a contradic $\cdot$

tion. This implies the case $i$ does not occur.
Case $i\ddagger$ . In this case we see that $\overline{K}=Sp(1)\circ\overline{L}$ and $1=5,$ $k=8$. Since $\overline{K}/\overline{L}=$

$S^{3}=\overline{L}/\overline{L}\cap H$, we $have\overline{L}=Sp(1)$ and rank $\overline{G}=3$ . It follows from $p(\overline{G}l\overline{K})=(1+t^{4})(1+t^{11}+\cdots)$

that $\overline{G}=B_{3}orC_{3}$ . In this case we see n $=23and(\overline{G}, \overline{K},\overline{L})=(B_{3}, C_{1}\times C_{1}, B_{1})$ or $(C_{3},$ $C_{1}\times C_{1}$ ,
$C_{1})$.

Case ili. By the same arguments as in case ii, we have $\overline{K}=C_{1}\circ C_{1},\overline{L}\sim C_{1}$ and
rank $G^{-}=3$. Consulting the Poincare polynomial of $G/K$, we have $\overline{G}=R$ or $C_{3}$ and hence
$n=23$ .

Case iv. In this case we have $\overline{G}=G_{1}\times G_{2}$ ( $G;$ ; simple), $\overline{K}=C_{r}\times C_{1},$ $\overline{L}\sim C_{r-1}\times$

$C_{1}$ , where $C_{r}\subset G_{1},$ $C_{1}$ ( $=factor$ of $\overline{K}$) $\subset G_{2}$ and the factor $C_{1}$ of $\overline{L}$ is monomorphically mapp-
ed in both $C_{r}$ and $C_{1}$ . Since $S^{l-2}=K/L=\overline{C}_{r}/\overline{C}_{r-1}=S^{4r-1}$ , we have $l=4r+1,$ $k=8r$ and
$p(\overline{G}/\overline{K})=(1+t^{4r})(1+t^{12r-1}+\cdots)$ . Assume $\alpha=C_{1}$ . Then rank $G_{1}=r+1$ and $H^{i}(G_{1}; Q)=$

$H^{i}(C_{r}; Q)$ for $i\leqq 4r-2$. It follows that $G_{1}$ is one of $B_{r+1},$ $C_{r+1},$ $D_{r+1},$ $G(r=1)$ and $A_{2}(r=1)$.
By dimensional arguments we can show a contracdiction. Next assume $G_{1}=C_{r}$ and rank
$G_{2}=2$. It is not difficult to see that this case does not occur. Thus we have proved that
the case (iv) does not occur.

Case $v$ . In this cas$e\overline{G}=G_{1}\times G_{2},$ $\overline{K}\sim(C_{1}\times C_{1})\circ C_{1},\overline{L}\sim(1\times C_{1})\circ C_{1}$ , rank $G\iota=2$

$(i=1,2)$ and the second factor $C_{1}$ of $\overline{L}$ is monomorphically mapped in both the first and
second factor of $\overline{K.}$ It is clear that $G_{i}=C_{2}$ or $G_{2}$ and $l=5$ and $k=8$. Consider the princi-
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pal fibre bundle:

$C_{1}\rightarrow\overline{G}/\overline{K}\rightarrow X=G_{1}/(C_{1}\circ C_{1})\times G_{2}/(C_{1}\circ C_{1})$,

where $G_{i}/(C_{1}\circ C_{1})$ is $C_{2}/(C_{1}\circ C_{1})\sim S^{4}Q$ or $G_{2}/(C_{1}\circ C_{1})$. It follows from the $spectral\cdot sequence$

of the fibre bundle and the Poincare polynomial of $\overline{G}/\overline{K}$ that $H^{4}(X;Q)=H^{8}(X;Q)=2Q$ and
hence $X\sim S^{4}\times G/s\alpha 4$), in other words $\overline{G}=C_{2}\times G_{2}$ and hence $\dim\overline{G}/\overline{K}=15$ , which implies

also $G/K\sim S^{4}\times S^{11}o_{O}$.
Thus we have shown that possibilities of $(\overline{G},\overline{K}, \overline{L})$ in case II are $(C_{2}\times G_{2}, (C_{1}\times C_{1})\circ C_{1}$ ,

$(1\times C_{1})\circ C_{1}),$ $(R, C_{1}\times C_{1}, C_{1})$ or $(C_{3}, C_{1}\times C_{1}, C_{1})$ . Note that in these cases $n=23$.
Subcase 2. $l=3$ and $k=4$.
In this case $P(G/K)=(1+t^{2})(1+t^{5}+\cdots)$ and $P(G/L)=(1+t^{3})(1+t^{5}+\cdots)$.
Let $G=\overline{G}\times Ta$ where $\overline{G}$ is semi-simple. We may assume $\pi_{1}(\overline{G})=1$ . Put $\overline{K}=K\cap\overline{G}$,

$\overline{L}=L\cap\overline{G},\overline{L}^{\prime}=L^{\prime}\cap\overline{G}$ and $\overline{H}=H\cap\overline{G}$. By the same argument as in page 9, we see that $\overline{L}$ and
$\overline{L}^{\prime}$ are semi-simple, connected and $\overline{G}/\overline{L}=G/L,\overline{G}/\overline{L}=G/L^{\prime}$ .

From the commutative diagram;

$\overline{K}/\overline{L}\rightarrow\overline{G}/\overline{L}\rightarrow\overline{G}/\overline{K}$

$ K/L\downarrow\rightarrow G/L\downarrow\rightarrow G/K\downarrow$

,

it follows that $\overline{G}/\overline{K}=G/K$ and $\overline{K}/\overline{L}=K/L$. In particular $\overline{K}$ is connected. Since $\overline{K}/\overline{L}=$

$\overline{K}/\overline{L}^{\prime}=S^{1}$ , we have $\overline{K}=\overline{L}\circ T^{1}=\overline{L}^{\prime}\circ T^{1}$ and hence $\overline{L}=\overline{L}^{\prime}=\overline{H}$. Let $\overline{G}=G\times G\times\cdots G$ be the
decomposition into the product of simple groups. It follows from Prop. 3 that $\overline{K}$ is given
by

(1) $\overline{K}=K_{1}\times\cdots\times K_{t},$ $K_{i}\subset G$

(2) $\overline{K}=(K_{1}\times\cdots\times K_{t})\circ T,$ $Ki\subset Gi,$ $Ki$ ; semi-simple
or

(3) $\overline{K}=(K_{1}\times\cdots\times K_{t})\circ S,$ $Ki\subset Gi,$ $S\sim C_{1}$ .
Since $\overline{K}=\overline{H}\circ T^{1},\overline{H}=\overline{L}$ is semi-simple and $\overline{K}/\overline{H}=S^{1}$, we may assume $ 1\times K_{2}\times\cdots\times K_{t}\subset$

$\overline{H}$. By the same argument as in page 10, we can clonclude that $\overline{G}$ is simple. It follows
easily from the spectral sequence of the fibration $\overline{K}\rightarrow\overline{G}\rightarrow\overline{G}/\overline{K}$ that $\overline{K}=T^{1}$ and hence
$\overline{L}=1$ , which implies $G/L=\overline{G}$. Since rank $\overline{G}=2,\overline{G}$ must be $A_{2}$ because $P(G/L)=P(\overline{G})=$

$(1+t^{3})(1+t^{5}+\cdots)$ . It is clear $n=11$ . Thus we have shown that the possibility of $(\overline{G,}\overline{K}$,
$\overline{L)}$ in subcase 2 is $(SU(3), T^{1},1)$ .

Thus we have proved the statement in Introduction of this section. Summing up
the arguments in sections 2 and 3 we have proved the Theorem A.
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4. Classification of actions

In this section we shall complete the proof of the Theorem $B$ in Introduction; in other
words, we shall prove that an effective action of a compact connect$ed$ Lie group $G$ on
sphere with codimension two principal orbit and two types of singular orbit is continu-
ously eqivalent to one of the actions $\varphi_{1}$ and $\varphi_{2}$ , unless dimension of the sphere is 11, 23 or
the orbit structure is the same as $\varphi_{3}$.

Let $\varphi;G\times S^{n}\rightarrow S^{n}$ be an effective action of a compact connected Lie group on $Sn$

with codimension two principal orbit $G/H$ and two types $G/L$ and $G/K$ of singular orbit,
$G/L$ is non-isolated and $G/K$ is isolated. We have shown that possibilities of pair $(G,$ $H$,
$L,$ $K$) are one of the followings

Case 1. $(U(2), L, U(1)\times 1, U(1)\times U(1))$

Case 2. $(Sp(2), 1, Sp(1)\times 1, Sp(1)\times Sp(1))$

Case 3. $(Sp(2)\times S/Z_{2}, S, Sp(1)\times S\times Sp(1))$ , where $S$ or $Sp(1)\times S$ denotes subgroup

$\{(\left\{\begin{array}{ll}a & 0\\0 & a\end{array}\right\},$ $a)\}$ or $\{(\left\{\begin{array}{ll}a & 0\\0 & b\end{array}\right\},$ $b)\}$ of $G$ resp.

and
Case 4. (Spin (9), $G_{2}$ , Spin (7), Spin (8))

unless $n=11,23$ , where $S_{=}T^{1}$ or $Sp(1)$ .
We shall show that if $\varphi;G\times S^{n}\rightarrow S^{n}$ has the same orbit structure as case 1, case 2

and case 3, then $\varphi$ is continuously equivalent to the action $\varphi_{1}$ or $\varphi_{2}$ in Introduction.
First we consider the cases 1 and 2. We shall omit the case 2, since the proof for this

case is completely analogus to the case 1. Put $G_{=}U(2)$ and $M=S^{6}$ . We identify the
orbit space $M*with$ the unit disk in the complex plane. Let $M^{*_{+}}$ and $M^{*}-be$ the subset
of $M^{*}$ consisting respectively of points with non-negative and $non\cdot positive$ imaginary
part and let $M^{*_{+\cap}}M^{*}-=A^{*}$. We can construct cross section $\varphi+:M^{*_{+}}\rightarrow M$ and $\varphi-$ :
$M^{*}-\rightarrow M$ such that

$G_{\varphi+(x)}=\left\{\begin{array}{ll}H & |x|<1\\L & |x|=1\end{array}\right.$

and

$G_{\varphi-(x)}=\left\{\begin{array}{ll}H & |x|<1\\L & |x|=1, {\rm Re} x\neq 0\\K & |x|=1{\rm Re} x=0\end{array}\right.$

In fact let $V$ be the slice of $G/K$ such that the action of $K$ on $V$ has codimension 1
principal orbit. By a result in [1] (Lemma 6. 1, Chap II), we see that the orbit map
$V\rightarrow V/K$ has a cross section and hence there is a cross section on $M*$-which is assumed
to have the above property. The same arguments show the existence of a cross section
on $M^{*_{+}}$ . Note that $\varphi+(-1)$ and $\varphi-(-1)$ belong to the same orbit. For $x\in A^{*},$ $|x|<1$ ,

there is a unique element $f(x)\in N(H)/H=G$ such that $f(x)\varphi_{-}(x)=\varphi+(x)$ . Thus we have
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a function $f:(-1,1)\rightarrow G$, which is easily seen to be continuous. Now there is a homo-
topy $h_{t}$ : $U(2)\rightarrow U(2)$ such that $h=id$. and $h_{1}$ (a neighborhood of $N_{L}$) $=N$, where $N_{L}$ is the
normalizer of $L$ in $G$ ). In fact let $U$ be closed tubular neighborhood of $N_{L}$ in $G$. Then
there is a homotopy $\overline{h_{t}}$ : $U\rightarrow(2)$ such that $\overline{h}_{0}=the$ inclusion and $\overline{h}_{1}(U)=N_{L}$. Since the
pair $(U(2), U)$ has the absolute homotopy extension property, there is a homotopy $h_{t}$ of
required property. Since $f(x)\rightarrow N_{L}$ as $x\rightarrow\pm 1$ and $f$ is continuous, $f$ maps $(-1,$ $-1$

$+\epsilon)$ and $(1-\epsilon, 1)$ into a nbhd. of $N_{L}$ , where $\epsilon$ is a small positive real number. Thus $f$ is
homotopic through homotopy $g_{l}$ with $g_{t}(\pm 1)\in N_{L}$ to the restriction of a function $f^{\prime}$ on
[-1, 1] to $G$ such that $f^{\prime}(\pm 1)\in N_{L}$ . We call $f^{\prime}$ the comparison function of cross section
$(\varphi-, \varphi_{+})$. We have the following

LEMMA 7. Any two maps $f_{0},$ $f_{1}$ : $[$-1, $1]\rightarrow G$ with $f;(\pm 1)\in N_{L}(i=0,1)$ are homo-
topic through homotopy $f_{t}$ with $f_{t}(\pm 1)\subset N_{L}$ .

PROOF. $f$; induces a map $\overline{f}iI[-1,1]\rightarrow G\rightarrow G/N_{L^{=}}\wp$ and it is easy to see that $f_{0}$

is homotopic to $f_{1}$ if and only if $\overline{f}_{0}$ is homotopic to $\overline{f}_{1}$ rel. $\{*\}$ . This completes the proof
of the Lemma.

LEMMA 8. Let $f_{0},$ $f_{1}$ : $[$-1, $1]\rightarrow G$ be maps with $f;(\pm)\in N_{L}$ . If $f_{0}$ and $f_{1}$ are homo-
topic through homotopy $f_{t}$ with $f_{t}(\pm 1)\in N_{L}$ , then $f_{0}\circ f_{1^{-1}}$ : $[$-1, $1]\rightarrow G;x\rightarrow f_{0}(x)f_{1}(x)^{-1}$

is homotophic to the constant map through homotopy $g_{t}$ with $g_{t}(\pm 1)\in N_{L}$ .
PROOF. By assumption we have a map $F:[-1,1]\times I\rightarrow G$ such that $F(t, i)=fi(t)$

for $i=0,1$ and $F(\pm 1, t)\in N_{L}$ . Define map $H:[-1,1]\times I\rightarrow G$ by $H(x, t)=F(x, t)F(x$,
$1)^{-1}$ . This map $H$ gives a homotopy between $f_{0}f_{1}^{-1}$ and the constant map 1. This $com$.
pletes the proof of the Lemma.

Let $(\varphi_{+}^{0}, \varphi_{-}^{0})$ and $(\varphi+^{1}, \varphi_{-}^{1})$ be two cross sections with the comparison functions $f_{0}$

and $f_{1}$ respectively. Assume $f_{0}$ is homotopic to $f_{1}$ through homotopy $f_{t}$ with $ f_{t}(\pm 1)\in$

$N_{L}$ . We can show that there is a map $\psi;M^{*_{+}}\rightarrow G$ such that $\psi(M^{*}+\cap B^{*})\subset N_{L}$ , where
$B^{*}$ is the orbit space of union of all singular orbits. In fact, since $f_{0}f_{1}^{-1}\simeq 1$ rel. $\{\pm 1\}$ ,
there is a map $H:[-1,1]\times I\rightarrow G$ with $H(x, O)=f_{0}(x)f_{1}(x)^{-1},$ $H(x, 1)=1$ and $ H(\pm 1, t)\in$

$N_{L}$ . Let $\theta;M^{*_{+}}\rightarrow[-1,1]\times I$ be a homeomorphism such that
$\theta([x\in M^{*_{+}} ; |x|=1, -1\leqq Rex\leqq-1/2])=\{-1\}\times I$

$\theta([x\in M^{*_{+}} ; |x|=1,1/2\leqq{\rm Re} x\leqq 1])=\{1\}\times I$

$\theta([x\subset M^{*_{+}} ; {\rm Im} x=0])=[-1,1]\times\{0\}$

and
$\theta([x\in M*_{+} ; |x|=1, -1/2\leqq{\rm Re} x\leqq 1/2])=[-1,1]\times\{1\}$ .

Then $\psi=H\circ\theta$ is the required map. Clearly the map $\overline{\varphi}_{1}^{+}$ ; $M^{*_{+}}\rightarrow M$ defined by
$\overline{\varphi^{1}}+(x)=\psi(x)\varphi^{1}+(x)$ is a cross section and the comparison function of $(\varphi^{1}-, \overline{\varphi}^{1_{+}})$ is $f_{0}$. In
fact we have $\overline{\varphi^{1}}+(x)=\psi(x)\varphi^{1}+(x)=\psi(x)f_{1}(x)\varphi^{1}-(x)=f_{0}(x)\varphi^{1}-(x)$ on $A^{*}$.

Let $C_{0=}{\rm Im}\varphi^{0_{+}}U{\rm Im}\overline{\varphi}^{0}-$ and $C_{1}={\rm Im}\varphi^{1}-\cup{\rm Im}\overline{\varphi}^{1_{+}}$ . Then we hav$eGC_{0}=GC_{1}=M$.
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Define a map $\psi;C_{0}\rightarrow C_{1}$ by $\psi(\varphi^{0_{-}}x))=\varphi^{1}-(x)$ and $\psi(\varphi^{0_{+}}(x))=\varphi^{\overline{1}_{+}}(x)$ . We have $\psi(f_{0}(x)\varphi^{0}-$

$(x))=\psi(\varphi^{0_{+}}(x))=\overline{\varphi}^{1}+(x)=f_{0}(x)\varphi_{1-}(x)=f_{0}(x)\psi(\varphi^{0_{-}}(x))$ .
It follows from the following Lemma and Lemma 7 that any action of $U(2)$ on $S^{6}$

with the property of Theorem in Introduction is continuously equivalent to the action $\varphi_{1}$ .
LEMMA 9. Let $G$ be a compact connected Lie group and let $X_{1}$ and $X_{2}$ be Hausdorff

spaces on which $G$ acts as a topological transformation group. Let $C;\subset Xi(i=1,2)$ be closed
subsets such that $GC_{i}=X_{i}$ and let $\psi;C_{1}\rightarrow C_{2}$ be a map such that for every $g\in G$ and $x\subset C_{1}$

such that $gx\in C_{1}$ we have $\psi(gx)=g(\psi(x))$ . Then $\psi$ can be extended uniquely to an equivari-
ant map from $X_{1}$ to $X_{2}$.

See [2]. Thus we have proved the Theorem $B$ for the case $G_{=}U(2)$ .
Next we shall consider the case 3. We may assume that $G_{=}Sp(2)\times S$. Then we see

that $K_{=}Sp(1)\times Sp(1)\times S,$ $L=\{[\left(\begin{array}{ll}a & 0\\0 & b\end{array}\right),$ $b]\subset Sp(2)\times S\}$ and $H=\{[\left(\begin{array}{ll}a & 0\\0 & a\end{array}\right),$ $a]\in Sp(2)\times S\}$

$\approx S$. $ItiseaSyH^{0}=$ . By the same arguments as casel and
2, we can show that there are cross sections $\varphi+and\varphi$-from $M^{*_{+}}$ and $M^{*}-$ to $M$ res-
pectively.

We have a continuous function $f:(-1,1)\rightarrow G$ such that $f(x)\varphi+(x)=\varphi-(x)$ and hence
$f(x)\in NH/H$, which is assumed to be in $NH^{\circ}/H=\{1\}$ . Then we can take the constant
map 1: $[$–1, $1]\rightarrow G$ as the comparison function of cross sections $(\varphi+, \varphi-)$ , which shows
that two actions of $G$ are continuously equivalent each other. When $S=T^{1}$ , we see that
$NH^{o}/H_{=}T^{2}$. Since $NH\subset N_{L}$ , it is not difficult to see that Theorem $B$ holds in this case.
Thus we have completed the proof of the Theorem B.
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