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1. Introduction and Summary

Let F(x) be a probability distribution function on the real line. It is v;rell known
that assuming that the singular part is identically zero, F(x) can be uniquely decomposed
into

(1.1 F(x)=F(x)+F2(x),

where F;(x) is an absolutely continuous function and F,(x) is a pure step function with
steps of magnitude, say, S:; at the points x=x;, i=0, =1, £2, -.--- and finally both F;(x)
and F3(x) are non-decreasing. If the singular part is identically zero as has been assumed
here, Fi(x) has a density function f(x) almost everywhere, namely,

1.2) dF(x)/dx=f(x) a.e.Xx.

At a point of continuity x,’ of F(x) its density is clearly f(xy").

Let X;, X, Xz, -co--- be a sequence of independent identically distributed random
variables with the common distribution function F(x). We shall consider the problem of
estimating the density f(x) at all points of continuity of F(x) and also of f(x) as has been
seen in (1. 2) from X;, X5, X3, -+ . The kernel estimate of f from X;, X5, X5 «---- , Xn is
given by

L3)  FlD)=(Bam) 3 KBAKj=2),

where K, the kernel, is an arbitrary bounded probability density on the real line and {By}
is a sequence of positive numbers. For some conditions on K and {B.}, MurTHY [1]
proved that f.(xy’) is a consistent estimate of f(x,’) at a point of continuity x,’ of the dis-
tribution F(x) and also of the density f(x) under the condition

1.4 ;Si/lxo’—xil<°°-

(That is fu(xy)—>f(xy’) in prob. as n—> o).
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In this paper we shall give a class of sequential estimators {fx} such that f»(x,’) is a
strong consistent estimate of f(x,") at a point of continuity x,’ of the distribution F(x) and
also of the density f(x) under the condition (1. 4) in the sence that

(1.5 Tn(x)—>f(x0") with probability one as #—> .

In section 2, we shall give some lemmas to be used throughout the paper. In section
3, we shall construct sequential estimators {f»}%~,; and prove the strong consistency of fx
and also give the rate of variance of f,..

2. Auxiliary Results

The following two lemmas are necessary for proving Theorem 1 and 2. Lemma 2. 1
and Lemma 2. 2 can be found in WATANABE [3] and [4], respectively.

Lemma 2. 1. Let {A,}%-; be a sequence of non-negative numbers. Suppose that
there exist three sequences of non-negative numbers {@,} =1, {bn} =1, {Ln}%¥=; and a
positive constant L such that

2.1 An+1SA—an+1)Ap+L « @aps1 * bps1+Lnt for all n>1,

@2  126,>00=123, ), 3} aa=co and lim a,=0,

2.3) lim b, =0,

7n—00

(2. 4) gan<w.

Then, it holds that }Hg An=0.
Furthermore, if L,,=0 for all =1 in (2. 1) and there exists a constant @y >0 such that
(2.5) (1—an41)bn/bn+1<1—aga,+ for all n> some #n,,

where {bx} $~; need not satisfy the condition (2. 3),
then there exists a constant C>0 such that
(2.6) A,<C-b, for all n>1.

LemMMA 2.2. Let {U,}%-; and {V,} -1 be two sequences of random variables on a
probability space (2, F, P). Let {F,}%-, be a sequence of o-fields, Fn C Fuy+; C F, where
U. and V, are measurable with respect to F, for each n. Furthermore, let {a¢,}%~; be a
sequence of real numbers satisfying (2. 2). Suppose that the following conditions are
satisfied:

2.7 U,20 a.s. for all n>=1,

2.8 ELU 1<,

(2.9) E[Up+1/Fd<(A—au+)Un+V, as. forall n=1,
(2. 10) éEu Val1< 0.



On strong consistency of a sequential estimator of probability density 27

Then, it holds that iirg U,=0 a.s. and lirg E[U,]=0.

3. Strong Consistency

In this section, we shall prove two theorems.
Let K(») be a real-valued Borel measurable function on the real line satisfying

(K1) K@®»=0 forall yE(—o0, o),
®2 " EKO»a=1,
(K3) sup _ K(3)=Ko<oo,
—Rly<®
K4 Jim_ || K(5)=0.

Also, let {A,)}-; be a sequence of real numbers satisfying
(HD) h, >0 for all =1,
(H2) Lim /=0

Then, we can define the sequence {K, (%, ¥)} =; for x, y&(—o0, ),
Y Ku(x, »)=h;* Kh;' (x—2)) for n=1, 2, ------ .

The following lemma can be found in Parzen [2].

Lemma 3.1. Suppose that K(y) is a real-valued Borel function on the real line satis-
fying (K1), (K3), (K4) and

CONNY (OF72CH
Let g(») satisfy
Gy {_laldy<o.
Let {K,(x, y)}=; be defined by (3. 1) where {A,} 5~ is a sequence of real numbers satis-
fying (H1) and (H2). Define
33 a@={__ Kz »etdy.
Then, at every point x of continuity of g(-),

(3. 4) lim

[==]

a@—e@ |~ KGdy|=0.

We need the following lemma in proving Theorem 1, which is essentially the same
as Lemma in MurTHY [1].

LemMmA 3.2. Let {K,(%, )} -, be defined by (3. 1). Let xi (=0, £1, +£2, -+ ) be the
points of discontinuity of the distribution F(x) and S; the saltus of F(x) at x: and x a point
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of continuity of F(x) and also of f(x) the derivative of the absolutely continuous part of
F(x). Then, under the condition

(3.5) ?’ Si/ | xi—x|<oo,
we have 322 | ELKu(%, Xp)]—f(x)]|=0.

Now, we shall construct sequential estimators {f,} %-; of f. The following algorithm
is found in WATANABE [4].

Algorithm. Let {a,} n=; be a sequence of real numbers satisfying

(A1) 122,>0 (n=1,2, e )and:gla,,mo,
(A2) lim a,=0.

72—00
Then, f,(x) is given by the recurrence relation as follows:

fo(x)=K(x) for all x&E(— o0, )
(A)
Tt 1X)=Fn @)+ @ns1 {(Knt1(%, Xnt1)—Sn(%))

for all n>1 and all x &(~— o0, ).
THEOREM 1. Let x be an arbitrary point of continuity of F(x) and also of f(x) and sat-
isfy the condition (3. 5).

) If },1_1’1; anh;' =0, then
(3.6) lim ET(fu(x)—f(x))1=0.

G) I Sa¥hy'<oo, then

Ne=]
3.7 ,1.2'90 Fa(0)=f(x) with probability one
and (3. 6) holds.
Proor. From the algorithm (A), we have
ELfa+:1(%)]1—Ax)
=(1—an+) (E[fu(0)]—f (%)}
+ans 1 {E [Kn+1(% Xus1)]1—f(2)}.
Thus, we obtain
3.8 |ELfa+1(2)1—S ()]
<A—an+) | ELf/n(®)]—f ()]
+an+1| E [Knt1(% Xp+1)1—S ()]
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Let us write that

3.9) Aps1=|E[fp+1(x)] =S (%)
and

ba+1=|E[Kp1(%, XpsD]—S(2)].

From (3. 8), we have

(3.10) Ap1<(A—an+1)An+nt1bn+1 -
By Lemma 3. 2, we get

3.11) lim b, =0.

In view of (3. 9), (3. 10), (3. 11), (A1) and (A2), the conditions of Lemma 2. 1 can be easily
checked. Therefore, we obtain }irg A, =0, that is,

(3.12)  lim |E[fu()]—f(%)]=0.
Now, from the algorithm (A), we have
far1B)—E [ fus:1(2)]
=(1—an+) {fn(2)—ELfn(2)]}
Fant1{Kn+1(% Xnt)—E[Kp+1(% Xns1)1}.
Hence, we get
(B.13) SR —E[fprr(2)] |2
=(1—an+1?| Fa(x)—E[fu(x)]|?
+@% 41| Kns1(%, Xyt ) — E[Kpt1(%, Xns1)1 |2
+2(A—an+1)@n+1* {fu(2)— E [fu(x)]}
X { Kn+1(% Xn+1)—E [Kn+1(% Xn+1)]}-
By using the independence of {X,,} s~;, We have

(3.14)  EL{f)—ELfMIHEKnr1(% Xu+)—E [ Kn+1(% Xns1)1}

={fn(%)—ELfa(1}E [Kpt1(%, Xp1)—E [Kn+1(%, Xn+1]]
=0.
From (Al), we have
(3.15 (l—ap+1?<l—ap4q-
Combining (3. 13), (3. 14) and (3. 15), we get
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(3.16) - El(fari®)—E[fur1(0])?/ Xy X5, -+ » Xl
S(A—u+) (D)= ELf ()]
+ah sy ElKy+1(% Xns1)—ELKns1(x, X411
=(1—=u+1) * (S X)—ELf ()1
+a% 41 Var [Ku+1(x, Xp41)].
We shall evaluate Var [K,,+1(%, Xu+1)]1-
3.17 Var [Ku+1(%, Xp+1)]
SE[K%41 (% Xas1)]
= Khun DAEG)+FL))
| = S: K 9 ()dy+ 2 Koy (8 %)Si -
In view of (K1), (K2), (K3), (K4) and Lemma 3. 1, we have |
@18 lim {”azh K20k e—9)F(9dy
=r@ (. K*(9ds.
Therefore, there exists a constant C;(x) >0 such that
S:, Byl K2ty (x— ) f(9)dy< Cy(x)  for all n>1.
Thus, we obtain
(3.19) S°_°m K%y (2, NF(Ndy<Cy(x)ehyl,  forall n>1.
The second term of the last equation in (3. 17) is evaluated as follows.
;‘, K%, (x, x:)Si

=2 hn, o« K2(hn}(x—2:))Si
L

< sup K(9)hzhy
-0 <y<oo

X D bty x—xi| Khzl, (x—:))Si/ | x—xil,

where since x and x:(=0, +1, +2, .----- ) are points of continuity and discontinuity of the
distribution F(x), respectively, |x—xi|=3=0 for all . Since |y|K(»)—> 0 as |y|—>, it
follows that |y| K(») is bounded. Hence, |y| K(y) < M (<) for all . Therefore,

hzly |x—xi | K(hz}, (x—xi)))< M for all #>1 and all &. Thus, we obtain
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(3.20) 2K (%, %:)Si
H
<Ky M- Sif|x—2xi|) s haly .
?

Let us write Co(x)=C(x)+ Ky » M 33 Si/ | x—xi].

From (3. 5), it is easy to see that 0<CCy(x)<  o0. Combining (3. 17), (3. 19) and (3. 20), we
get

(3.21) Var [ Kp41(%, Xp41) 1< Co(x) « Ak, .
In view of (3. 16) and (3. 21), we obtain
E[(fpti)—ELfasr(£)1?/ X3) -+ » Xn]
SA—an+1) (S ) —E LS (%) 12+ Cox) « @iy « bty
for all n=1. Putting U,(2)=(fu(x)—E[fu(x)])? and V,(x)=Cyx(x) « a%, « hz},, we have
(3.22)  E[Up(%)/ X, -+, Xin]
<A—a,+ DU (0)+ V,(2) a.s. for all n>1.

If 3 a2« h71< oo, then it holds that

Ne=]

323 SVE[| Valo)|1<eo.

In Lemma 2. 2, let F,, be a o-field generated by Xj, -+-+-- , X, for each n. Combining (3. 22)
and (3. 23) and using Lemma 2. 2, we have nlirg U,(x)=0 with probability one and lim

E[U,(x)]1=0, that is,
3.24) ”lirg | fa(x)—E[ fu(x)]] =0 with probability one and

@.25)  lim E[(fx(x)—ELf(2)1}1=0,

provided ni}l @ « bt <oo.
Taking expectations on both sides of (3. 22), we obtain
E[U,+1(x)]

SA—ap+1) * ELUL2)]1+Cox)ap+1 * an+1h;l—-}-1

for all n=1. By uéing Lemma 2. 1, we get

(3.26)  lim EL(fo(0)—E[fx()]1*1=0,

provided iirg anh;t=0.
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It is easy to see that

(3.27) | fa() =S| < | [ —EL ()1 + | ELfa(®)]1 =S (x)].
From (3. 12), we get

(3.28) lim (ELfu(#)]—f(%)*=0.

By (3. 27) and the inequality (a+b)?< 2(a%2+ b?%), we obtain
(3.29) EL(fa(x)—f(x) )]
S2UEL(fa®)—ELL ()11 H(ELS w(2)1 =S (%) ).
Combining (3. 26), (3. 28) and (3. 29), we have
lim E[(fx(x)—f(x)71=0,

provided },inolo ah;1=0.
Thus, the first statement of the theorem is proved.

Now, we suppose that ”i}laf, s ;1< 0. From (3. 12), (3. 24) and (3. 27), we have
1llir§, [ fn(X)—f(x)| =0 with probability one.

Combining (3. 25), (3. 28) and (3. 29), we get
lim E[(fx)—f(%) 71 =0.

Thus, the second statement of the theorem is proved. Therefore, the proof of the theo-
rem is completed. '

The following theorem presents the rate of variance of f,(x).

THEOREM 2. Let x be an arbitrary point of continuity of F(x) and also of f(x). Sup-
pose that the condition (3. 5) holds. If there exists a constant a, >0 such that

(3.30) (1—an41) * @nh; [ @pir1hnt < 1—gay,4 for all n> some ny,
then there exists a constant C(x)>0 such that
Var [ f,(%)1< C(x) * a.h;! for all n=>1.
Proor. Proceeding in the same way as in the proof of Theorem 1, we have
(3.31) E[(fnt1(2)— E[fn+1(x)1)*]
S(A—ap+) EL(fn(2)— ELfa(%)]1)?]
+Ci(x) * @pt1 ¢ @n1l for all n>1, .

where C;(x) is some positive constant depending on x. In view of (3.30), (3.31) and
Lemma 2. 1, we obtain that there exists a constant C(x) >0 such that
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E[(fu(x)—ELfn(x)1?1<C(x) * ayh;*  for all n=1.

Thus, the proof of the theorem is completed.
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