On the linear maps which are multiplicative on complex *-algebras

By
Shun-ichi Tomita*

(Received November 10, 1976)

1. Introduction

A Jordan *-homomorphism which satisfies the Cauchy-Schwarz inequality is *-homomorphic (E. Størmer [4], M. D. Choi [1] and T. W. Palmer [3]). In this paper, we shall give an elementary proof of this theorem under some weaker assumptions than theirs (Corollary 4). T. W. Palmer [3; Corollary 1] presents a characterization theorem of *-homomorphisms from U^{*}-algebras. We shall give an elementary proof of this theorem (Corollary 6). Finally, we shall show that the linear functional on a Banach algebra which does not take the value 1 on the quasi-invertible elements is multiplicative.

2. Preliminaries

Let A be a ${ }^{*}$-algebra. We use the following notations:

$$
\begin{aligned}
& \left.A_{H}=\left\{h \in A: h^{*}=h \text { (i. e. Hermitian element of } A\right)\right\} . \\
& A_{+}=\left\{\sum_{j=1}^{n} a_{j}^{*} a_{j}: a_{j} \in A, n=1,2, \ldots\right\} .
\end{aligned}
$$

For $h, k \in A_{\boldsymbol{H}}$ we write $h \leqq k$ if $k-h \in A_{+}$.
$A_{q I}=\{x \in A:$ quasi-invertible element $\}$.
$A_{q U}=\left\{u \in A: u^{*} u=u u^{*}=u+u^{*}\right.$ (i. e. quasi-unitary element) $\}$.
U*-algebra, introduced by T. W. Palmer, is a *-algebra which is the linear span of its quasi-unitary elements. Let A and B be *-algebras. A Jordan *-homomorphism ϕ of A into B is a linear map such that

$$
\begin{aligned}
& \phi(x y+y x)=\phi(x) \phi(y)+\phi(y) \phi(x) \quad \text { and } \phi\left(x^{*}\right)=\phi(x)^{*} \\
& \text { for all } x, y \in A .
\end{aligned}
$$

All algebras considered in this paper are those over the complex field \boldsymbol{C}.

[^0]
3. Results

Every Jordan homomorphism ϕ of an algebra A into another one satisfies the following equality:

$$
(\phi(x y-y x))^{2}=(\phi(x) \phi(y)-\phi(y) \phi(x))^{2} \quad \text { for all } \quad x, y \in A .
$$

(cf. N. Jacobson and C. E. Rickart [2]). This equality gives the following.
Proposition 1. Let A be a^{*}-algebra and B be $a{ }^{*}$-algebra with $\left\{h \in B_{H}: h^{2}=0\right\}=\{0\}$. Suppose that either A or B is commutative. Then every Jordan *-homomorphism of A into B is automatically ${ }^{*}$-homomorphic.

Proof. Let ϕ be a Jordan *-homomorphism of A into B.
(i) The case where A is commutative. We have

$$
(\phi(h) \phi(k)-\phi(k) \phi(h))^{2}=(\phi(h k-k h))^{2}=0
$$

for $h, k \in A_{H}$. Hence

$$
[i(\phi(h) \phi(k)-\phi(k) \phi(h))]^{2}=0,
$$

and, it follows from the assumption for B that

$$
i(\phi(h) \phi(k)-\phi(k) \phi(h))=0
$$

i. e.

$$
\phi(h) \phi(k)=\phi(k) \phi(h) .
$$

It follows from this equality that

$$
2 \phi(h) \phi(k)=\phi(h) \phi(k)+\phi(k) \phi(h)=\phi(h k+k h)=2 \phi(h k) .
$$

Therefore $\quad \phi(h k)=\phi(h) \phi(k)$.
Since $A=A_{H}+i A_{H}, \phi(x y)=\phi(x) \phi(y)$ holds for every pair x, y of elements of A.
(ii) The case where B is commutative. We have

$$
(\phi(h k-k h))^{2}=(\phi(h) \phi(k)-\phi(k) \phi(h))^{2}=0
$$

for $h, k \in A_{H}$. So $(\phi(i(h k-k h)))^{2}=0$, and, from the assumption for B, it follows that

$$
\phi(i(h k-k h))=0
$$

i. e.

$$
\phi(h k)=\phi(k h),
$$

and

$$
2 \phi(h k)=\phi(h k+k h)=\phi(h) \phi(k)+\phi(k) \phi(h)=2 \phi(h) \phi(k) .
$$

Therefore $\phi(h k)=\phi(h) \phi(k)$. This shows that ϕ is a *-homomorphism.
Remark 2. Corollary 1 in [5] follows easily from the equality $(\phi(x y-y x))^{2}=(\phi(x)$ $\phi(y)-\phi(y) \phi(x))^{2}$ for a Jordan homomorphism ϕ.

Proposition 3. Let A and B be*-algebras, and ϕ be a linear map of A into B. Then ϕ is a homomorphism iff $\phi\left(x^{*} x\right)=\phi\left(x^{*}\right) \phi(x)$ for all $x \in A$.

Proof. If $\phi\left(x^{*} x\right)=\phi\left(x^{*}\right) \phi(x)$ for all $x \in A$, we have

$$
\phi\left((x+y)^{*}(x+y)\right)=\phi\left((x+y)^{*}\right) \phi(x+y) \text { for all } x, y \in A .
$$

Hence

$$
\phi\left(x^{*} y\right)+\phi\left(y^{*} x\right)=\phi\left(x^{*}\right) \phi(y)+\phi\left(y^{*}\right) \phi(x) .
$$

Replacing y by $i y$ and then multiplying by $-i$, we have

$$
\phi\left(x^{*} y\right)-\phi\left(y^{*} x\right)=\phi\left(x^{*}\right) \phi(y)-\phi\left(y^{*}\right) \phi(x) .
$$

Thus $\phi\left(x^{*} y\right)=\phi\left(x^{*}\right) \phi(y)$. This shows that ϕ is a homomorphism. The convers is evident.
Corollary 4. Let A be a^{*}-algebra, B be a^{*}-algebra with $B_{+} \cap\left(-B_{+}\right)=\{0\}$, and ϕ be a linear map of A into B. Then ϕ is a^{*}-homomorphism iff ϕ is a Jordan *-homomorphism and satisfies the Cauchy-Schwarz inequality $\phi\left(x^{*} x\right) \geqq \phi\left(x^{*}\right) \phi(x)$ for all $x \in A$.

Proof. Let ϕ be a Jordan *-homomorphism and let ϕ satisfy the Cauchy-Schwarz inequality. Then we have
that is,

$$
\begin{aligned}
& \phi\left(x^{*} x+x x^{*}\right)=\phi\left(x^{*}\right) \phi(x)+\phi(x) \phi\left(x^{*}\right), \\
& \phi\left(x^{*} x\right)-\phi\left(x^{*}\right) \phi(x)=-\left(\phi\left(x x^{*}\right)-\phi(x) \phi\left(x^{*}\right)\right) \quad \text { for } x \in A .
\end{aligned}
$$

The left hand side of this equality belongs to B_{+}and the right hand side belongs to $-B_{+}$. Hence $\phi\left(x^{*} x\right)=\phi\left(x^{*}\right) \phi(x)$ holds by the assumption for B. Therefore it follows from Proposition 3 that ϕ is a *-homomorphism.

Proposition 5. Let A be a^{*}-algebra, B be $a{ }^{*}$-algebra with $B_{+} \cap\left(-B_{+}\right)=\{0\}$ and ϕ be a linear *-map of A into B. Suppose that there is a subset S of A such that
(i) A is the linear span of S,
(ii) S is self-adjoint, i.e. $S=S^{*}$.

Then ϕ is a^{*}-homomorphism iff $\phi\left(x^{*} x\right)=\phi\left(x^{*}\right) \phi(x)$ holds for $x \in S$ and the Cauchy-Schwarz inequality $\phi\left(x^{*} x\right) \geqq \phi\left(x^{*}\right) \phi(x)$ holds for $x \in A \backslash$ S.

Proof. Let $\phi\left(x^{*} x\right)=\phi\left(x^{*}\right) \phi(x)$ hold for $x \in S$ and let $\phi\left(x^{*} x\right) \geqq \phi\left(x^{*}\right) \phi(x)$ hold for $x \in A \backslash S$. Then $\phi\left(x^{*} x\right)=\phi\left(x^{*}\right) \phi(x)$ holds for $x \in C \cdot S=\{\alpha x: \alpha \in C, x \in S\}$.
We have for $x, y \in C \cdot S$,

$$
\begin{aligned}
& \phi((x+y) *) \phi(x+y) \leqq \phi\left((x+y)^{*}(x+y)\right), \\
& \phi\left((x-y)^{*}\right) \phi(x-y) \leqq \phi\left((x-y)^{*}(x-y)\right) .
\end{aligned}
$$

It follows from these inequalities that

$$
\begin{aligned}
& \phi\left(x^{*}\right) \phi(y)+\phi\left(y^{*}\right) \phi(x) \leqq \phi\left(x^{*} y\right)+\phi\left(y^{*} x\right) \\
& -\left(\phi\left(x^{*}\right) \phi(y)+\phi\left(y^{*}\right) \phi(x)\right) \leqq-\left(\phi\left(x^{*} y\right)+\phi\left(y^{*} x\right)\right)
\end{aligned}
$$

That is

$$
\begin{aligned}
& \left(\phi\left(x^{*} y\right)+\phi\left(y^{*} x\right)\right)-\left(\phi\left(x^{*}\right) \phi(y)+\phi\left(y^{*}\right) \phi(x)\right) \in B_{+}, \\
& \left(\phi\left(x^{*}\right) \phi(y)+\phi\left(y^{*}\right) \phi(x)\right)-\left(\phi\left(x^{*} y\right)+\phi\left(y^{*} x\right)\right) \in B_{+} .
\end{aligned}
$$

Therefore the assumption for B induces

$$
\begin{equation*}
\phi\left(x^{*} y\right)+\phi\left(y^{*} x\right)=\phi\left(x^{*}\right) \phi(y)+\phi\left(y^{*}\right) \phi(x) . \tag{1}
\end{equation*}
$$

For $x, i y \in C \cdot S$ this equality implies

$$
i \phi\left(x^{*} y\right)-i \phi\left(y^{*} x\right)=i \phi\left(x^{*}\right) \phi(y)-i \phi\left(y^{*}\right) \phi(x)
$$

i. e.

$$
\begin{equation*}
\phi\left(x^{*} y\right)-\phi\left(y^{*} x\right)=\phi\left(x^{*}\right) \phi(y)-\phi\left(y^{*}\right) \phi(x) . \tag{2}
\end{equation*}
$$

From (1) and (2), $\phi\left(x^{*} y\right)=\phi\left(x^{*}\right) \phi(y)$. Hence it follows from (ii) that $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in S$. Therefore it follows from (i) that $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in A$. The converse is evident.

Corollary 6. Let A be a U^{*}-algebra and B be a^{*}-algebra with $B_{+} \cap\left(-B_{+}\right)=\{0\}$. Let ϕ be a linear map of A into B. Then ϕ is a^{*}-homomorphism iff $\phi\left(A_{q U}\right) \subset B_{q U}$ and the CauchySchwarz inequality $\phi\left(x^{*} x\right) \geqq \phi\left(x^{*}\right) \phi(x)$ holds for all $x \in A$.

Proof. Let $\phi\left(A_{q} U\right) \subset B_{q U}$ and $\phi\left(x^{*} x\right) \geqq \phi\left(x^{*}\right) \phi(x)$ hold for all $x \in A$. Then, we know, making use of the argument in the proof of [3; Corollary 1], that ϕ is a linear *-map. For any $u \in A_{q U}$

$$
\phi\left(u^{*} u\right)=\phi\left(u^{*}+u\right)=\phi\left(u^{*}\right)+\phi(u)=\phi(u)^{*}+\phi(u)=\phi\left(u^{*}\right) \phi(u) .
$$

Therefore it follows from Proposition 5 that ϕ is a *-homomorphism. The converse is evident.
W. Z̊elazko [5] gives a characterization of the multiplicative linear functionals on complex Banach algebras. Making use of this characteization we have the following.

Proposition 7. Let A be a Banach algebra and f be a linear functional on A. Then f is multiplicative iff $f\left(A_{q U}\right) \subset C \backslash\{1\}$.

Proof. If f is multiplicative, then

$$
f(x)+f(y)=f(x) f(y)
$$

for $x \in A_{q I}$ and its quasi-inverse y. So $f(x) \neq 1$,
i. e.

$$
f\left(A_{q I}\right) \subset C \backslash\{1\}
$$

Conversely assume $f\left(A_{q I}\right) \subset C \backslash\{1\}$. Whether A has a unit element or not, we make the unitization $A_{1}=A+C$ and extend f onto A_{1} by putting $f(1)=1$. If (x, α) is an invertible element of A_{1}, then there exists an element y of A such that

$$
(x, \alpha)\left(y, \frac{1}{\alpha}\right)=(0,1),
$$

i. e.

$$
\left(-\frac{1}{\alpha} x\right)+(-\alpha y)-\left(-\frac{1}{\alpha} x\right)(-\alpha y)=0 .
$$

So

$$
-\frac{1}{\alpha} x \in A_{q I} \quad \text { and } \quad f\left(-\frac{1}{\alpha} x\right) \neq 1
$$

from which $f((x, \alpha)) \neq 0$. Therefore $f((x, \alpha))(0,1)-(x, \alpha)$ is a singular element for any $(x, \alpha) \in A_{1}$. Hence $f((x, \alpha))$ belongs to the spectrum of (x, α). It is now clear from [5; Theorem 2] that f is multiplicative on A.

Proposition 8. Let A be a Banach algebra, B be a commutative semi-simple Banach algebra and ϕ be a linear map of A into B. Then ϕ is multiplicative iff $\phi\left(A_{q I}\right) \subset B_{q I}$.

Proof. Denote the set of all multiplicative linear functionals on A (or on B) by $M(A)$ (or by $M(B)$).
Let $\phi\left(A_{q I}\right) \subset B_{q I}$. Then

$$
(f \cdot \phi)\left(A_{q I}\right)=f\left(\phi\left(A_{q I}\right)\right) \subset f\left(B_{q I}\right) \in C \backslash\{1\} \text { for any } f \in M(B)
$$

So it follows from Proposition 7 that $f \circ \phi \in M(A)$. Therefore

$$
f(\phi(x y))=f(\phi(x)) f(\phi(y))=f(\phi(x) \phi(y))
$$

for $x, y \in S$ and $f \in M(B)$.
Now, the assumption for B implies that $\phi(x) \phi(y)=\phi(x y)$.
Remark 9. Proposition 8 is not true if B fails to be semi-simple.

References

[1] M. D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math., 18 (1974), 565-574.
[2] N. Jacobron, and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69 (1950), 479-502.
[3] T. W. Palmer, Characterizations of *-homomorphisms and expectations, Proc. Amer. Math. Soc., 46 (1974), 265-272.
[4] E. Størmer, On the Jordan Structure of C*-algebras, Trans. Amer. Math. Soc., 120 (1965), 438447.
[5] W. Z̊elazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85.

[^0]: * Niigata University.

