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1. Introduction

Let $K/k$ be a cyclic extension of prime degree $p$ over an algebraic number field $k$ of
finite degree, let MK be the $p$-class group of $K$ The structure of MK has been studied by
many people especially by E. Inaba [5] and G. Gras [31. In their works MK is consi-
dered as a module over $hl(K/k)$ , where $hl(K/k)$ is the Galois group of $K/k$.

In the present paper we shall show first (in 2) that the results on MK is, when the
class number $hk$ of $k$ is relatively prime to odd prime $p$, obtained simply by considering
MK as a module over $\mathfrak{Q}$, where $\mathfrak{Q}$ is the algebraic integer ring of the cyclotomic field of
p-th roots of unity.

The second purpose of this paper is to study the relation between $M_{L}$ and MK using
the results of 2 (in 3), where $K/Q$ is a cyclic extension of degree $p$ such that only two
primes are ramified in it, and where $L/Q$ is the genus field of $K/Q$ . Finally we shall
show (in 4) by a similar method to that used in 3 that there exist infinitely many cyclic

extensions $K/Q$ of degree $p$ such that $p$-ranks of MK are 2 and $p$-class field towers of $K$

are finite.
Throughout this paper we use the following notation.

$Z$ : the ring of rational integers
$Q$ ; the rational number field
$p$ : a rational odd prime
$\xi_{p=}\xi$ ; a primitive $p$-th root of unity
$\mathfrak{Q}$ : the algebraic integer ring of $Q(\xi)$

$\mathfrak{p}$ : the prime divisor of $p$ in $\mathfrak{Q}$

For an algebraic number field $K$ of finite degree,
$CK$ : the ideal class group of $K$

$ hK\ddagger$ the class number of $K$

$MK!$ the $p\cdot Sylow$ group of CK
For an ideal $\mathfrak{a}$ of $K$

$cl(\mathfrak{a})$ : the ideal class of a
*Niigata University.
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$cl_{p}(\mathfrak{a})$ : the $p$-part of $cl(\mathfrak{a})$ (then for a natural number $a$ prime to $p$ we may write
$clp(\mathfrak{a})=cl(\mathfrak{a})^{a}.)$

For a module $M$ and a homomorphism $f$ of $M$,
$M^{f}$ : the image of $f$

$M_{(f)}$ : the kernel of $f$.

2. General results in case plhk

LEMMA I. $LetMbeafinitemoduleover\mathfrak{Q}whoseorderisapowerofp$ . $ThenMis\mathfrak{Q}-$

isomorphic to $\sum_{\iota=1}^{r}\mathfrak{Q}/\mathfrak{p}e$ ; where $p_{\gamma}=\#(M/M^{\xi-1})$ .
PROOF. Let Qp be the localization of $\mathfrak{Q}$ at $\mathfrak{p}$ . Since the order of $M$ is a power of $p$,

$M$ is a module over Qp. As $\mathfrak{Q}\mathfrak{p}$ is a principal ideal domain, by the general theory of a
module over a principal domain we have a -isomorphism; $M\approx\sum_{i-1}^{r}\mathfrak{Q}/\mathfrak{p}ei$ . And from

$M/M^{\xi-1}\approx\sum_{i-1}^{r}(\mathfrak{Q}/\mathfrak{p}e;)/(\mathfrak{p}/\mathfrak{p}e;)\approx(\mathfrak{Q}/\mathfrak{p})^{r}$,

we see $pr=\#(M/M^{\xi-1})$ . Q. E. D.

THEOREM 1. Let $k$ be an algebraic number field of finite degree. and let $K/k$ be a cyclic
extension of degree $p$. Assume that $p\chi hk$ Then $Mk$ is a module over $\mathfrak{Q}$ and -isomorphic

to $\sum_{i-1}^{r}\mathfrak{Q}/\mathfrak{p}e$; where

$p_{\gamma}=\frac{p^{t-1}}{(E_{k}:E_{k\cap}N_{K/k}K^{*})}$

$t=the$ number of prime ideals of $k$ ramified in $K$

$Ek=the$ unit group of $k$.
PROOF. Let $\sigma$ be a generator of $\alpha l(K/k)$ . Since $p\chi h_{k}$ , the restriction of the norm

map $NK/k:C_{K}\rightarrow Ck\rightarrow CK$ to MK is trivial. Hence we can view MK as a module over
$Z[\sigma]/N$, where $ N=Z[\sigma$) $(1+\sigma+\ldots\ldots+\sigma^{p-1})$ . Since $Z[\sigma]/N\approx \mathfrak{Q}$ by $\sigma N\rightarrow\xi_{p}$ , we can also
view MK as a module over $\mathfrak{Q}$ . On the other hand we note that:

$MK/MK^{\sigma_{-1}}\approx MK_{(\sigma-1)}=CK_{(\sigma-1)}\cap MK$,

$\#(C_{K_{(}\sigma-1)})=h_{k}\frac{p^{t-1}}{(E_{K}:E_{k\cap}N_{K/k}K^{*})}$ .

Therefore using that $p\chi hk$ and $(E_{k}: E_{k\cap}N_{K/k}K^{*})$ is a power of $p$, we have

$\#(M_{K}/M_{K^{\sigma}}-1)=\frac{p^{t-1}}{(E_{k}:E_{k\cap}N_{K/k}K^{*})}$,

Hence by Lemmal we have our theorem. Q. E. D.
Let $K/k$ be as in Theorem 1. Then as $p\chi hk,$ $K/k$ is ramified. If $t=1$ , then $r=0$ so
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$MK=\{1\}$ . And we assume $t\geqq 2$ . Let $\mathfrak{p}_{1},\ldots\ldots \mathfrak{p}_{t}$ be the prime ideals ramified in $K/k$, and
let for $\alpha\in k^{*}$ ,

$\chi_{i}(\alpha)=(\frac{\alpha:K/k}{where\mathfrak{p}_{i}});normresiduesymbo11oca11yat\mathfrak{p}_{i}\chi_{t}(\alpha)),G=\Omega l(K/k)And1et\hat{X}=G^{t}/\chi(E_{k})$

.
$Let\mathcal{X}:k^{*}\rightarrow G^{t}by^{\chi}(\alpha)=(\chi_{1}(\alpha)ForanelementaofM_{K},1et$

$a$ be an ideal of $K$ such that $a=cl(\mathfrak{a})$ . Then as $p\chi h_{k},$ $NK/k(\mathfrak{a})$ is principal in $k$. Say
$NK/k(a)=(\alpha),$ $a\in k^{*}$ . Then we define $\wedge\chi:MK\rightarrow\hat{X}$ by $\wedge \mathcal{X}(a)=\chi(\alpha)mod \chi(Ek)\in\hat{X}$. By
the property of norm residue symbol, it is easily verified that this is well-defined. Fur-
thermore since $\wedge\chi(MK^{\sigma-1})=1\in 2,$ $\wedge\chi$ induces the homomorphism $\wedge\chi_{K/k:}MK/MK^{\sigma}-1\rightarrow 2$.
Then, the next lemma is essentially a special case of [2, Theoreml and follows from
Hasse Norm Theorem and Hilbert’s Theorem 90.

LEMMA 2. $\wedge\chi_{K/k:M}K/MK^{\sigma}-1\rightarrow\hat{X}$ is a monomorphism.

REMARK. Let $\chi$ ’ : $k^{*}\rightarrow G^{t-1}$ by $\chi(a)=(\chi_{1}(\alpha), \ldots\ldots, \chi_{t-1}(\alpha))$ and $X’=G^{t-1}/X^{\prime}(EK)$ .
If we define a homomorphism

$\chi_{K/k\ddagger M_{K}/M_{K^{\sigma}}}\wedge-1\rightarrow\hat{X}^{\prime}$

by means of $\chi$ and $\hat{X}^{\prime}$ , then $\wedge\chi_{K/k}$ is an isomorphism. (cf. [4, Satz 1])

By $\wedge\chi_{K/k}$ we can form an estimate of rank $MK$

THEOREM 2. Let the notation and assumption be as in Theorem 1. Let rank $MK=d$
$(i. e. \#(M_{K}/M_{K}^{p})=pd),$ $\#(\chi_{K/k}(M_{K_{(}\sigma-1)}))=ps$

Then
(i) $2r-s\leqq d\leqq(p-2)(r-s)+r$,
(ii) especially, if $r=s$ , then $d=r$ and MK is elementary.

PROOF. Let $MK\approx\sum_{\iota=1}^{r}\mathfrak{Q}/\mathfrak{p}e$ ; where $e_{1}$ $\cdots e_{\gamma}$, and rank $(\mathfrak{Q}/\mathfrak{p}e;)=d;$ . Then $ d=d_{1}+\ldots\ldots$

$+d_{r}$ and $1\leqq di\leqq p-1$ . On the other hand $di=1$ if and only if $e;=1$ , and $(\mathfrak{Q}/\mathfrak{p}^{e_{j}})_{(\xi-1)}=$

$\mathfrak{p}^{e_{i}-1}/\mathfrak{p}^{e_{i}}$ . Therefore it follows from Lemma 2 that $e_{1}=\cdots\cdots=e_{S}=d_{1}=\ldots\ldots=d_{s}=1$ , and
$2\leqq di\leqq p-1fori=s+1,$ $r$. This proves (i). Ifr $=s,$ $thene_{1}=\cdots\ldots=e_{r}=1andMK\approx$

$(\mathfrak{Q}/\mathfrak{p})^{\gamma}$. This proves (ii). Q. E. D.

Moreover, if $E_{k}=\{\pm 1\}i$ . $e$ . $k=Q$ or $k$ is a imaginary quadratic field such that $ k\neq$

$Q(\sqrt{-3}),$ $Q(\sqrt{-1})$ , then $s$ in Theorem 2 is expressed more explicitly as follows. In

this case, $r=t-1$ and $\hat{X}=G^{t}$ since $E_{k}=NK/kE_{K}=\{\pm 1\}$ . Furthermore, as $(ENK^{*}:$

$NK/kEK)=1$ , every ambiguous ideal class in $K/k$ is represented by an ambiguous ideal in
$K/k$. Hence $M_{K_{(}\sigma-1)}$ is generated by $cl(\mathfrak{P}_{1}^{h_{k}}),$

$\ldots\ldots,$
$cl(\mathfrak{P}t^{h_{k}})$ , where $\mathfrak{P}$; is the prime

divisor of $\mathfrak{p}$; in $K$ Therefore $\wedge\chi_{K/k}(M_{K(\sigma-1)})$ is generated by

$((\frac{\alpha_{i}:K/k}{\mathfrak{p}_{1}}),$
$\ldots\ldots,$

$(\frac{a_{i}:K/k}{\mathfrak{p}_{t}}))$ , where $(\alpha;)=Pt^{h_{k}}$ ,

fori $=1,$ $r$. And fora generatora of $kl(K/k)$ , let
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$((\frac{a_{i}:K/k}{\mathfrak{p}_{j}}))=(\sigma a;j)$

where $a;j\in Z/pz$, then $s=rank(a;j)$ .
In case $k=Q(\sqrt{-3})(p\neq 3),$ $k=Q(\sqrt{-1})$ , similar results hold.

REMARK. Let $q$ be a prime ideal of $k$ with $Nq\equiv 1mod p$. If $p\chi hk$, then the -Sylow
group of $I(q)/P\mathfrak{q}$ is cyclic, where $I(q)$ is the ideal group of $k$ prime to $q$ and $Pq$ is the ray
mod $q$ . Let $\mathfrak{p}_{1},$ $\ldots\ldots,\mathfrak{p}_{m}$ be prime ideals of $k$ with Np$i\equiv 1mod p$, and let $c=p\cdot \mathfrak{p}_{1}\ldots\ldots \mathfrak{p}_{m}$.
Assume $p\chi hk$ and $Ek=\{\pm 1\}$ . Then the -Sylow group of $I(c)/Pc$ is isomorphic to the
-Sylow group of $(I(p)/Pp)\times(I(\mathfrak{p}_{1})/P\mathfrak{p}_{1})\times\ldots\ldots\times(I(\mathfrak{p}_{m})/b_{m})$ by the natural homomor-

phism;

$I(c)/p_{c}\rightarrow(I(p)/Pp)\times(I(\mathfrak{p}_{1})/ffi)\times\ldots\ldots\times(I(\mathfrak{p}_{m})/b_{n})$ .
Hence it follows from Dirichlet Density Theorem that for each integer $t\geqq 2$, there exist
infinitely many $t$-tuples of prime ideals $\mathfrak{p}_{1},$ $\ldots\ldots,\mathfrak{p}_{t}$, such that

$N\mathfrak{p}\iota\equiv 1mod p,$ $i=1,$ $\ldots\ldots,$
$t$,

$\mathfrak{p}_{2}$ : $p$-th power nonresidue $mod lb_{1}$

$\mathfrak{p};$ : $p$-th power residue $mod fb_{1}\cdots\ldots \mathfrak{p}_{i-2}$

but $p$-th power nonresidue $mod b_{i-1}$ for $i=3,$ $\ldots\ldots,t$.
Let $K/k$ be a cvclic extension of degree $p$ in which only $\mathfrak{p}_{1},$ $\mathfrak{p}_{t}$ are ramified. Then it
holds that for $i\neq i$

$(\frac{a_{i}:K/k}{\mathfrak{p}_{j}})=1$ if and only if $\mathfrak{p}i$ : p-th power residue $mod P\mathfrak{p}_{j}$ , where $(a;)=\mathfrak{p}\iota$ . Hence

MK satisfies the condition of Theorem 2, (ii) and so $MK\approx(\mathfrak{Q}/\mathfrak{p})^{t-1}$ .
[1, Theorem 11 is a special case $(k=Q)$ of this remark.

3.

Let $K/Q$ be a cyclic extension of degree $p$ in which only $p_{1},$ $p_{2}$ are ramified. Then
from Theorem 1 we know

$M_{K}\approx \mathfrak{Q}/\mathfrak{p}^{e}$ : $e\geqq 1$ .
And let $L$ be the genus field of $K/Q$, then $L/K$ is an unramified extension of degree $p$.
Moreover let $Ki/Q$ be the cyclic extension of degree $p$ in which only $pi$ is ramified. Then
noting $L/Ki$ is cyclic with degree $p$ and $p\chi hK_{i}$ , we have

$M_{L}\approx\sum_{-,t1}^{r}\mathfrak{Q}/\mathfrak{p}e;$ .

And from the results of 1, it follows that $e>1$ if and only if
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$\left\{\begin{array}{l}(\frac{p_{1}\cdot.K/Q}{p_{1}}) (\frac{p_{1}\cdot.K/Q}{p_{2}})\\(\frac{p_{2}\cdot.K/Q}{p_{1}}) (\frac{p_{2}\cdot.K/Q}{p_{2}})\end{array}\right\}=\left(\begin{array}{ll}1 & 1\\1 & 1\end{array}\right)$

If $e=1$ , then it is easily seen from Burnside Basis Theorem that $M_{L}=\{1\}$ . And so we
suppose $e\geqq 2$ . Let $\mathfrak{p}i$ be the prime divisor of $pi$ in $K$ Then at least one of $\mathfrak{p}_{1},$ $\mathfrak{p}_{2}$ is not
principal. Say $\mathfrak{p}_{2}$ be not principal. Let $\mathfrak{p}t_{1}$ be a prime divisor of $\mathfrak{p}\iota$ in $K_{1}$ , and let $\tau$ be a
generator of $hl(K_{1}/Q)$ . As $p_{1}$ is ramified in $K_{1}$ and $p_{2}$ is completely decomposed in $K_{1}$ ,
it holds that

$(p_{1})=\mathfrak{p}_{11}p$

$(p_{2})=\mathfrak{p}_{21}\mathfrak{p}_{21^{f}}\ldots\ldots \mathfrak{p}_{21^{\tau^{(p-1)}}}$ .
Then only $\mathfrak{p}_{21},$ $\mathfrak{p}_{21^{P}},\ldots\ldots,\mathfrak{p}_{21^{r^{(p-1)}}}$ are ramified in $L/K_{1}$ .

THEOREM 3. Let $K/Q$ be a cyclic extension of degree $p$ in which only $p_{1},$ $p_{2}$ are ramified,
and let $L$ be the genus field of $K/Q$. Let $\mathfrak{p}$; be the prime divisor of $p$; in $K$, and let $\mathfrak{P}$; be a
prime divisor of $\mathfrak{p}$; in L. Assume $\mathfrak{p}_{2}$ is not principal. Let $K_{1}/Q$ be the cyclic extension of
degree $p$ in which only $p_{1}$ is ramified. Let $MK\approx \mathfrak{Q}/\mathfrak{p}^{e}$ , and assume $e\geqq 2$. Then the following
conditions are equivalent;

(i) $e=2$,
(ii) $(EK_{1}\cap N_{L/K_{1}}L^{*} : N_{L/K_{1}}E_{L})=1$ and $M_{L}\approx(\mathfrak{Q}/\mathfrak{p})^{r}$,
(iii) $\chi_{L/K_{1}}(clp(\mathfrak{P}_{2}^{(\tau-1)^{\gamma-1}}))\neq 1$ ,

where

$p_{\gamma}=\frac{pp-1}{(E_{K_{1}}:E_{K_{1}\cap}N_{L/K_{1}}L^{*})}$

$\tau=a$ generator of $Gal(L/K)$ .
LEMMA 3. Let $L/K$ be an unramified cyclic extension of degree $p$, and let $\tau$ be a gene-

rator of $\alpha l(L/K)$ . Then $(EK:EK\cap N_{L/K}L^{*})=1$ and $M_{L}/M_{L^{\tau}}-1$ is isomorphic to $N_{L/K}M_{L}$

$(\subset MK)$ under the norm map $N_{L/K}$.
PROOF. Since $(MK:N_{L/K}M_{L})=p$, we have $\#(N_{L/K}M_{L})=\#(MK)/p$. Let $N_{L/K\ddagger}M_{L}/$

$M_{L^{\tau}}-1\rightarrow MK$ be the homomorphism induced from the norm map $N_{L/K}$. Then, as

$\#(M_{L}/M_{L^{\tau}}-1)=\#(M_{L(-1)}\tau)=\frac{\#(M_{K})}{p(E_{K}:E_{K\cap}N_{L/K}L^{*})}$,

we have

$\#(KerN_{L/K})=\frac{\#(M_{L}/M_{L^{\tau}}-1)}{\#(N_{L/K}M_{L})}=\frac{1}{(E_{K}:E_{K\cap}N_{L/K}L^{*})}$. Q. E. D.

PROOF of Theorem 3. Let $\sigma$ be a generator of $hl(L/K_{1})$ , then we can consider
$\sigma$ as a generator of $\alpha l(K/Q)$ . Since $(MK\ddagger N_{L/K}ML)=p$ and $N_{L/K}ML$ is $\sigma$-admissible,
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$N_{L/K}M_{L}=MK^{\sigma}-1$ Hence by Lemma 3 we have

$N_{L/K}:M_{L}/M_{L}^{f}-1\approx M_{K^{\sigma}}-1\approx \mathfrak{p}/\mathfrak{p}^{e}$ .
Assume (i). Then $\#(M_{L}/M_{L^{\tau}}-1)=p$. As $\mathfrak{p}_{2}$ is not principal, we have $N_{L/KC}lp(\mathfrak{P}_{2})=$

$cl(\mathfrak{p}_{2})a\neq 1\in MK$. Hence by Lemma 3 $clp(\mathfrak{P}_{2})\not\in M_{L^{\tau}}-1$ Thus $M_{L}$ is generated by $clp(\mathfrak{P}_{2})$ ,
$cl_{p}(\mathfrak{P}_{2})^{\tau-1},$ $cl_{p}(\mathfrak{P}_{2})^{(\tau-1)2},$

$\ldots\ldots$ . As $\mathfrak{P}_{2}$ is an ambiguous ideal in $L/K_{1},$ $M_{L(-1)}\sigma=M_{L}$ and
every class in $M_{L}$ is represented by ambiguous idal in $L/K_{1}$ . On the other hand, let
$ C_{L(-1)^{0}}\sigma$ be the group of ideal classes represented by ambiguous ideals in $L/K_{1}$ . Then
$(M_{L(-1)}\sigma : M_{L(-1)^{0}}\sigma)=1$ implies $(C_{L(-1)}\sigma : C_{L(-1)^{0}}\sigma)=1$ since $(C_{L(-1)}\sigma : C_{L(-1)}\sigma)=(EK_{1}\cap$

$N_{L/K_{1}}L^{*}:$ $N_{L/K_{1}}E_{L}$) $=$ a power of $p$, where $M_{L(\sigma-1)^{0}}=C_{L(\sigma-1)^{0}\cap}M_{L}$ . Hence $(EK_{1}\cap N_{L/K_{1}}$

$L^{*}:$ $N_{L/K_{1}}E_{L}$) $=1$ . This proves that (i) implies (ii). Conversely, assume (ii). Then
$ M_{L}=M_{L(-1)}\sigma$ and every ambiguous class in $L/K_{1}$ is represented by an ambiguous ideal in
$L/K_{1}$ . Therefore $M_{L}$ is generated by $clp(\mathfrak{P}_{2}),$ $cl(\mathfrak{P}_{2})^{\tau},$ $\ldots\ldots,clp(\mathfrak{P}_{2})^{\tau}p-1$ And since $clp(\mathfrak{P}_{2})^{\tau}$

$\equiv clp(\mathfrak{P}_{2})mod M_{L^{\tau-1}},$ $M_{L}/M_{L^{\tau-1}}$ is generated by $clp(\mathfrak{P}_{2})M_{L^{\tau}}-1$ Since $clp(\mathfrak{P}_{2})\oplus M_{L^{\tau-1}}$

and the order of $cl_{p}(\mathfrak{P}_{2})$ is $p$, we have $\#(M_{L}/M_{L^{\tau-1}})=p$. Hence $e=2$, which proves that
(ii) implies (i).

The fact that (ii) implies (iii) is obvious. Conversely assume (iii). Then since $pr=$

$\#(M_{L(-1)}\sigma),$ $ M_{L(-1)}\sigma$ is generated by $clp(\mathfrak{P}_{2}),$ $clp(\mathfrak{P}_{2})^{r-1},$
$\ldots\ldots,$

$clp(\mathfrak{P}_{2})^{(\tau-1)^{r-1}}$ . Hence every
ambiguous class in $L/K_{1}$ is represented by an ambiguous ideal in $L/K_{1}$ . Thus we have
$(ENL^{*} : N_{L/K_{1}}E_{L})=1$ . Next suppose there exist $ a\in M_{L(-1)}\sigma$ and $b\in M_{L}$ such that
$a=b^{\sigma-1}\neq 1$ . Put $a;=clp(\mathfrak{P}_{2})^{(-1)^{j}}f$ for $i=0,1,$ $\ldots\ldots,$

$r-1$ . Then we can write $ a=aj^{f}t\cdot aj+1^{f}j+\iota$

$a_{r-1^{f_{r^{-1}}}}$ , where $fj\not\equiv Omod p$. Then $a^{(\tau-1)^{\gamma}-1-j}=a_{r-1}fj=b^{(\tau-1)^{\gamma}-1-j(\sigma-1)}$ . Hence
$clp(\mathfrak{P}_{2})^{(\tau-1)[j}r-1=b^{(\tau-1)^{\gamma}-1-j(\sigma-1)}$ . Thus $\wedge\chi_{L/K_{1}}(clp(\mathfrak{P}_{2}^{(\tau-1)r-1}))=1$ which is a contradiction.
Therefore $M_{L}=M_{L(-1)}\sigma\approx(\mathfrak{Q}/\mathfrak{p})^{r}$. This proves that (iii) implies (ii). Q. E. D.

Let $p_{1},$ $p_{2}$ be odd primes such that $p;\equiv 1mod p$ or $p_{j}=p$. Then there exist $p-1$ cyclic
extensions $K/Q$ of degree $p$ in which only $p_{1},$ $p_{2}$ are ramified, and the genus fields $L$ of
such $K/Q$ coincide. In general, however, every MK is not necessarily isomorphic to
others. But if $MK\approx \mathfrak{Q}/\mathfrak{p}$ for some $K$, then $p\chi h_{L}$ . So $MK\approx \mathfrak{Q}/\mathfrak{p}$ for all $K$ Moreover,

COROLLARY 1. ([3 Proposition VI 6]) If $M_{K}\approx \mathfrak{Q}/\mathfrak{p}^{2}$ for some $K$, then $MK\approx \mathfrak{Q}/\mathfrak{p}^{2}$ for
all $K$

PROOF. Let $K/Q,\hat{K/}Q$ be cyclic extensions of degree $p$ in which only $p_{1},$ $p_{2}$ are rami-
fied, and let $MK\approx \mathfrak{Q}/\mathfrak{p}^{2},$ $M\hat{K}\approx \mathfrak{Q}/\mathfrak{p}^{e}$ . Let notation be as in Theorem 3. Then we can take
a generator $\wedge\tau$ of $\alpha l(L/\hat{K})$ such that $\tau=\tau\cdot\sigma^{j}$ for some $j$. Since it follows from Theorem
3 (ii) that $\sigma$ operates trivially on $M_{L}$, the operations of $\tau$ and $\bigwedge_{T}$on $M_{L}$ coincide. Hence
$M_{L}/M_{L^{\wedge}}^{\tau_{-1}}=ML/ML^{\tau-1}$ so $\#(M_{L}/M_{L^{\wedge}}^{\tau}-1)=p$. Thus we have $M\hat{K}\approx \mathfrak{Q}/\mathfrak{p}^{2}$. Q. E. D.

COROLLARY 2. If for each $p;,$ $i=1,2$ there exists a $K$ in which the prime divisor of $p$; is
not principal and $MK\approx \mathfrak{Q}/\mathfrak{p}^{2}$, then $M_{L}\approx \mathfrak{Q}/\mathfrak{p}$.

PROOF. Let the prime divisor $\mathfrak{p}_{2}$ of $p_{2}$ in $K$ be not principal, and let the prime divisor
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$\wedge \mathfrak{p}_{1}$ of $p_{1}$ in $\hat{K}$ be not principal. Then by Theorem 3 $M_{L}\approx(\mathfrak{Q}/\mathfrak{p})^{\gamma}$, and $Gal(L/K_{1}),$ $Gal(L/$

$K_{2})$ operate trivially on $M_{L}$ . Let $\tau$ be a generator of $GaI(L/K)$ . Then $\tau$ operates trivi-
ally on $M_{L}$ , so $M_{L^{\tau-1}}=\{1\}$ . Thus we have $M_{L}\approx M_{L}/M_{L^{r}}-1\approx \mathfrak{Q}/\mathfrak{p}$ . Q. E. D.

4

Let $K/Q$ be a cyclic extension of degree $p$, and let $r(MK)$ be the rank of $MK$. Then
from the results of [6] it follows that if $r(MK)\geqq 2+2\sqrt{p}$, the kclass field tower of $K$ is
infinite.

Using \v{C}ebotarev Density Theorem, we can show by a similar method to that used in
Corollary of Theorem 3 that there exist infinitely many cyclic extensions $K/Q$ of degree
$p$ such that $r(MK)=2$ and -class field towers of $K$ are finite.

THEOREM 4. There exist infinitely many triples of odd primes $p_{1},$ $p_{2},$ $p_{3}$ such that $p\chi h_{\overline{L}}$,

where $\overline{L}$ is the genus field of $K/Q$ and $K/Q$ is a cyclic extension of degree $p$ in which only $p_{1}$,
$p_{2},$ $p_{3}$ are ramified.

LEMMA 4. Let $p$ be an odd prime. For an odd prime $p_{1}$ such that $p_{1}\equiv 1$ mod $p$, there
exist infinitely many odd primes $p_{2}$ which satisfy the following conditions (i), (ii), (iii);

(i) $p_{2}\equiv 1$ mod $p$,
(ii) $p_{2}$ is p-th power nonresidue modulo $p_{1}$ ,

(iii) $p_{1}$ is p-th power nonresidue modulo $p_{2}$.

PROOF. Put $k=Q(\xi_{p}),$ $K_{1}=Q(\sqrt[p]{p_{1}}),$ $\overline{K}_{1}=k\cdot K_{1}$ and let $K/Q$ be the cyclic extension
of degree $p$ in which only $p_{1}$ is ramified. Then from $6_{ebotarevDensity}$ Theorem it fol-
lows that the Dirichlet density of the rational primes whose decomposition fields in $\overline{K_{1}}/Q$

are $k$ is $1/p$, and that of the rational primes whose decomposition fields in $K\cdot\overline{K_{1}}/Q$ are $k\cdot K$

is $1/p^{2}$. Hence there exist infinitely many odd primes $p_{2}$ such that $p_{2}$ are not decomposed
in $K/Q$ and their decomposition fields in $\overline{K}_{1}/Q$ are $k$. Then it is obvious that $p_{2}$ satisfy
(i), (ii). In order to prove (iii), we suppose that $p_{1}$ is $p$-th power residue modulo $p_{2}$ Then
the equation $X^{P}-p_{1}\equiv 0mod p_{2}$ has a rational integer solution. Now we may assume
$p_{2}\chi(\mathfrak{Q}_{K_{1}}$ : $Z[\sqrt[p]{p_{1}}])$, where $\mathfrak{Q}K_{1}$ denotes the integer ring of $K_{1}$ . So there exists a
prime divisor $\mathfrak{p}_{2}$ of $p_{2}$ in $K_{1}$ such that $NK_{1}/Q\mathfrak{p}_{2}=p_{2}$ . Let $\mathfrak{P}_{2}$ be a prime divisor of $\mathfrak{p}_{2}$ in $\overline{K}_{1}$ ,
then we have $N_{\overline{K}_{1/}}Q\mathfrak{p}_{2}=p_{2^{P}}$ since the decomposition field of $\mathfrak{P}_{2}$ is $k$. On the other hand,

we have $N_{\overline{K}_{1/}K_{1}\Re}=\mathfrak{p}_{2^{j}}$ for $1\leqq i\leqq p-1$ , which is a contradiction. This proves (iii).

Q. E. D.

COROLLARY There exist infinitely many triples of odd primes satisfying the following
conditions $(i)\sim(vi)$ ;

(i) $p;\equiv 1$ mod $p,$ $i=1,2,3$ ,
(ii) $p_{1}$ is p-th power nonresidue modulo $p_{2}$ ,

(iii) $p_{1}$ is p-th power nonresidue modulo $p_{3}$ ,
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(iv) $p_{2}$ is p-th power nonresidue modulo $p_{1}$ ,
(v) $p_{3}$ is p-th power residue modulo $p_{1}$ ,

(vi) $p_{3}$ is p-th power nonresidue modulo $p_{2}$ .
The proof is analogous to Lemma 4.

PROOF of Theorem 4. Let $p_{1},$ $p_{2},$ $p_{3}$ be primes satisfying the conditions of the above
corollary. Let $K_{\mathfrak{B}}/Q$ be the cyclic extension of degree $p$ in which only $p_{2},$ $p_{3}$ are ramified
and $p_{1}$ is completely decomposed. It follows from above conditions (i), (ii), (iii), that such
an extension always exists. Let $K_{1}/Q$ be the cyclic extension of degree $p$ in which only
$p_{1}$ is ramified. Then because of the above condition (v), $p_{3}$ is completely decomposed in
$K_{1}$ . Put $L=K_{1}\cdot K_{\mathfrak{B}}$ . Then $L/Q$ is an abelian extension of degree $p^{2}$ in which only $p_{1},$ $p_{2}$ ,
$p_{3}$ are ramified. Let $K/Q$ be a subfield of $L$ with degree $p$ over $Q$ such that $K\neq K_{1},$ $K_{\mathfrak{B}}$ .
Then $p_{1},$ $p_{2},$ $p_{3}$ are ramified in $K/Q$, and hence $L/K$ is unramified. Moreover

$((\frac{p_{i}:K/Q}{p_{j}}))_{t,J-1,2.3}=\left(\begin{array}{lll}? & * & *\\* & ? & ?\\1 & * & ?\end{array}\right)$ ,

$where*means$ nonidentity.

So by the results of 2 we have $MK\approx(\mathfrak{Q}/\mathfrak{p})^{2}$. Let $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\mathfrak{p}_{3}$ be the prime divisors of $p_{1},$ $p_{2}$ ,
$p_{3}$ in $K$ respectively, then these are not principal in $K$ and $\mathfrak{p}_{1},$ $\mathfrak{p}_{3}$ are completely decom-
posed in $L/K$ And let $\mathfrak{P}_{3}$ be a prime divisor of $\mathfrak{p}_{3}$ in $L$ , then $N_{L/K(clp(\mathfrak{P}_{3}))=cl(\mathfrak{p}_{3})\neq}a$

$1\in MK$ So by Lemma 3 we have $clp(\mathfrak{F})\not\in M_{L^{r-1}}$, where $\tau$ is a generator of $kl(L/K)$ .
On the other hand from $M_{K}\approx(\mathfrak{Q}/\mathfrak{p})^{2}$, we see $\#(M_{L}/M_{L^{\tau}}-1)=p$ . Hence $M_{L}$ is generated
by $clp(\Re),$ $clp(\mathfrak{P}_{3})^{\tau-1},$ $ clp(\mathfrak{P}_{3})^{(-1)^{2}}\tau$ ,....... As $cl(\mathfrak{P}_{3})$ is an ambiguous class in $L/K_{1}$, the
order of $cl_{p}(\mathfrak{P}_{3})$ is $p$ . Let $\sigma_{1}$ be a generator of $\alpha l(L/K_{1})$ , then $\sigma_{1}$ operates trivially on
$M_{L}$ since $\mathfrak{P}_{3}^{\sigma_{1}}=\mathfrak{P}_{3}$ . Similarly, let $\mathfrak{P}_{1}$ be a prime divisor of $\mathfrak{p}_{1}$ in $L$ , then $cl_{p}(\mathfrak{P}_{1})\not\in M_{L^{\tau-1}}$

and $M_{L}$ is also generated by $cl_{p}(\mathfrak{P}_{1}),$ $cl_{p}(*1)^{\tau-1},$ $ clp(\mathfrak{P})^{(-1)^{2}}\zeta$ Let $\sigma_{23}$ be a generator
of $\alpha\iota(L/K_{23})$ , then $\sigma_{23}$ operates trivially on $M_{L}$ since $cl(\mathfrak{P}_{1})$ is an ambiguous class in
$L/K_{23}$. Therefore noting $\alpha l(L/Q)$ is generated by $\alpha l(L/K_{1})$ and $\Omega l(L/K_{23})$ we see
that $\tau$ also operates trivially on $M_{L}$ . Thus we have $M_{L}=M_{L}/M_{L^{\tau-1}}\approx \mathfrak{Q}/\mathfrak{p}$. On the other
hand $\overline{L}/L$ is the unramified cyclic extension of degree $p$ . Hence by Burnside Basis
Theorem we have $p\chi h_{\overline{L}}$. Q. E. D.
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