On the structure of p-class groups of certain number fields

By
Teruo Takeuchi*
(Received November 8, 1976)

1. Introduction

Let K / k be a cyclic extension of prime degree p over an algebraic number field k of finite degree, let M_{K} be the p-class group of K. The structure of M_{K} has been studied by many people especially by E. Inaba [5] and G. Gras [3]. In their works M_{K} is considered as a module over $\operatorname{Gal}(K / k)$, where $\operatorname{Gal}(K / k)$ is the Galois group of K / k.

In the present paper we shall show first (in 2) that the results on M_{K} is, when the class number h_{k} of k is relatively prime to odd prime p, obtained simply by considering M_{K} as a module over \mathfrak{D}, where \subseteq is the algebraic integer ring of the cyclotomic field of p-th roots of unity.

The second purpose of this paper is to study the relation between M_{L} and M_{K} using the results of 2 (in 3), where K / \mathbf{Q} is a cyclic extension of degree p such that only two primes are ramified in it, and where L / \mathbf{Q} is the genus field of K / \mathbf{Q}. Finally we shall show (in 4) by a similar method to that used in 3 that there exist infinitely many cyclic extensions K / \mathbf{Q} of degree p such that p-ranks of M_{K} are 2 and p-class field towers of K are finite.

Throughout this paper we use the following notation.
Z: the ring of rational integers
Q: the rational number field
p : a rational odd prime
$\xi_{p}=\xi$: a primitive p-th root of unity
\mathfrak{D} : the algebraic integer ring of $\mathbf{Q}(\xi)$
\mathfrak{p} : the prime divisor of p in \mathfrak{D}
For an algebraic number field K of finite degree,
C_{K} : the ideal class group of K
h_{K} : the class number of K
M_{K} : the p-Sylow group of C_{K}
For an ideal a of K
$c l(\mathfrak{a})$: the ideal class of \mathfrak{a} -

[^0]$c l_{p}(\mathfrak{a})$: the p-part of $c l(\mathfrak{a})$ (then for a natural number a prime to p we may write $\left.c l_{p}(\mathfrak{a})=c l(\mathfrak{a}) a_{.}\right)$
For a module M and a homomorphism f of M,
M^{f} : the image of f
$M_{(f)}$: the kernel of f.

2. General results in case $p \not \subset h_{k}$

Lemma 1. Let M be a finite module over \mathfrak{D} whose order is a power of p. Then M is \mathbb{D} isomorphic to $\sum_{i=1}^{r} D / p^{e_{i}}$, where $p^{r}=\#\left(M / M^{\xi-1}\right)$.

Proof. Let \mathscr{D}_{p} be the localization of \mathscr{D} at \mathfrak{p}. Since the order of M is a power of p, M is a module over ρ_{p}. As ρ_{p} is a principal ideal domain, by the general theory of a module over a principal domain we have a \mathcal{D}-isomorphism; $M \approx \sum_{i=1}^{r} \mathscr{D} / \mathfrak{p e}_{i}$. And from

$$
M / M^{\xi-1} \approx \sum_{i=1}^{r}\left(\mathcal{D} / p^{e_{i}}\right) /\left(\mathfrak{p} / p^{e_{i}}\right) \approx(\mathfrak{D} / \mathfrak{p})^{r},
$$

we see

$$
p^{r}=\#\left(M / M^{\xi-1}\right) .
$$

Q. E. D.

Theorem 1. Let k be an algebraic number field of finite degree. and let K / k be a cyclic extension of degree p. Assume that $p \nmid h_{k}$. Then M_{k} is a module over \mathfrak{D} and \mathfrak{D}-isomorphic to $\sum_{i=1}^{r} \mathfrak{O} / \boldsymbol{p}^{e_{i}}$, where

$$
\begin{aligned}
p^{r}= & \frac{p^{t-1}}{\left(E_{k}: E_{k} \cap N_{K / k} K^{*}\right)} \\
t & =\text { the number of prime ideals of } k \text { ramified in } K \\
E_{k}= & \text { the unit group of } k .
\end{aligned}
$$

Proof. Let σ be a generator of $\operatorname{Gal}(K / k)$. Since $p X h_{k}$, the restriction of the norm $\operatorname{map} N_{K / k}: C_{K} \rightarrow C_{k} \rightarrow C_{K}$ to M_{K} is trivial. Hence we can view M_{K} as a module over $\boldsymbol{Z}[\sigma] / N$, where $N=Z[\sigma]\left(1+\sigma+\ldots \ldots+\sigma^{p-1}\right)$. Since $Z[\sigma] / N \approx \mathcal{D}$ by $\sigma N \rightarrow \xi_{p}$, we can also view M_{K} as a module over \mathfrak{D}. On the other hand we note that:

$$
\begin{aligned}
& M_{K} / M_{K}^{\sigma-1} \approx M_{K(\sigma-1)}=C_{K(\sigma-1)} \cap M_{K}, \\
& \#\left(C_{K(\sigma-1)}\right)=h_{k} \frac{p^{t-1}}{\left(E_{K}: E_{k} \cap N_{K / k} K^{*}\right)} .
\end{aligned}
$$

Therefore using that $p \nmid h_{k}$ and ($\left.E_{k}: E_{k} \cap N_{K / k} K^{*}\right)$ is a power of p, we have

$$
\#\left(M_{K} / M_{K}^{\sigma-1}\right)=\frac{p^{t-1}}{\left(E_{k}: E_{k} \cap N_{K / k} K^{*}\right)} .
$$

Hence by Lemma 1 we have our theorem.
Q. E. D.

Let K / k be as in Theorem 1. Then as $p X h_{k}, K / k$ is ramified. If $t=1$, then $r=0$ so
$M_{K}=\{1\}$. And we assume $t \geqq 2$. Let $\mathfrak{p}_{1}, \ldots \ldots . \mathfrak{p}_{t}$ be the prime ideals ramified in K / k, and let for $\alpha \in k^{*}$,
$\chi_{i}(\alpha)=\left(\frac{\alpha: K / k}{p_{i}}\right) ;$ norm residue symbol locally at p_{i}. Let $\chi: k^{*} \rightarrow G^{t}$ by $\chi(\alpha)=\left(\chi_{1}(\alpha)\right.$, $\left.\ldots \ldots ., \chi_{t}(\alpha)\right)$, where $G=G a l(K / k)$. And let $\hat{X}=G^{t} / \chi\left(E_{k}\right)$. For an element a of M_{K}, let a be an ideal of K such that $a=c l(\mathfrak{a})$. Then as $p X h_{k}, N_{K / k}(\mathfrak{a})$ is principal in k. Say $N_{K / k}(\mathfrak{a})=(\alpha), \alpha \in k^{*}$. Then we define $\widehat{\chi}: M_{K} \rightarrow \widehat{X}$ by $\widehat{\chi}(a)=\chi(\alpha) \bmod \chi\left(E_{k}\right) \in \widehat{X} . \quad$ By the property of norm residue symbol, it is easily verified that this is well-defined. Furthermore since $\hat{\chi}\left(M_{K^{\sigma-1}}\right)=1 \in \widehat{X}, \widehat{\chi}$ induces the homomorphism $\widehat{\chi}_{K / k}: M_{K} / M_{K}{ }^{\sigma-1} \longrightarrow \widehat{X}$. Then, the next lemma is essentially a special case of [2, Theorem] and follows from Hasse Norm Theorem and Hilbert's Theorem 90.

Lemma 2. $\hat{\chi}_{K / k}: M_{K} / M_{K^{\sigma}}-1 \longrightarrow \widehat{X}$ is a monomorphism.
Remark. Let $\chi^{\prime}: k^{*} \longrightarrow G^{t-1}$ by $\chi(\alpha)=\left(\chi_{1}(\alpha), \ldots \ldots, \chi_{t-1}(\alpha)\right)$ and $\widehat{X}^{\prime}=G^{t-1} / \chi^{\prime}\left(E_{K}\right)$. If we define a homomorphism

$$
\widehat{\chi}_{K_{/ k}: M_{K} / M_{K}^{\sigma-1} \longrightarrow \hat{X}^{\prime}}
$$

by means of $\hat{\chi}^{\prime}$ and \widehat{X}^{\prime}, then $\widehat{\chi}_{K / k}$ is an isomorphism. (cf. [4, Satz 1])
By $\widehat{\chi}_{K / k}$ we can form an estimate of $\operatorname{rank} M_{K}$.
Theorem 2. Let the notation and assumption be as in Theorem 1. Let rank $M_{K}=d$ (i. e. $\left.\#\left(M_{K} / M_{K}{ }^{p}\right)=p^{d}\right)$, \#($\left.\chi_{K / k}\left(M_{K(\sigma-1)}\right)\right)=p^{s}$.

Then
(i) $2 r-s \leqq d \leqq(p-2)(r-s)+r$,
(ii) especially, if $r=s$, then $d=r$ and M_{K} is elementary.

Proof. Let $M_{K} \approx \sum_{i=1}^{r} \mathfrak{D} / \mathfrak{p}_{i}$, where $e_{1} \ldots \ldots e_{r}$, and $\operatorname{rank}\left(\mathfrak{D} / \mathfrak{p}_{i}\right)=d_{i}$. Then $d=d_{1}+\ldots \ldots$ $+d_{r}$ and $1 \leqq d_{i} \leqq p-1$. On the other hand $d_{i}=1$ if and only if $e_{i}=1$, and $\left(\mathfrak{D} / p_{i}\right)_{(\xi-1)}=$ $p^{e_{i}-1} / p_{i}$. Therefore it follows from Lemma 2 that $e_{1}=\ldots \ldots=e_{s}=d_{1}=\ldots \ldots=d_{s}=1$, and $2 \leqq d_{i} \leqq p-1$ for $i=s+1, \ldots \ldots, r$. This proves (i). If $r=s$, then $e_{1}=\ldots \ldots=e_{r}=1$ and $M_{K} \approx$ $(\mathfrak{O} / \mathfrak{p})^{r}$. This proves (ii).
Q. E. D.

Moreover, if $E_{k}=\{ \pm 1\}$ i. e. $k=\mathbf{Q}$ or k is a imaginary quadratic field such that $k \neq$ $\mathbf{Q}(\sqrt{-3}), \mathbf{Q}(\sqrt{-1})$, then s in Theorem 2 is expressed more explicitly as follows. In this case, $r=t-1$ and $\widehat{X}=G^{t}$ since $E_{k}=N_{K / k} E_{K}=\{ \pm 1\}$. Furthermore, as $\left(E_{k} \cap N_{K / k} K^{*}\right.$: $\left.N_{K / k} E_{K}\right)=1$, every ambiguous ideal class in K / k is represented by an ambiguous ideal in K / k. Hence $M_{K(\sigma-1)}$ is generated by $c l\left(\Re_{1} h_{k}\right), \ldots \ldots, c l\left(\Re_{t} h_{k}\right)$, where $\mathfrak{\Re}_{i}$ is the prime divisor of p_{i} in K. Therefore $\widehat{\chi}_{K / k}\left(M_{K(\sigma-1)}\right)$ is generated by

$$
\left(\left(\frac{\alpha_{i}: K / k}{\mathfrak{p}_{1}}\right), \ldots \ldots,\left(\frac{\alpha_{i}: K / k}{\mathfrak{p}_{t}}\right)\right), \text { where }\left(\alpha_{i}\right)=\mathfrak{p}_{i} h_{k},
$$

for $i=1, \ldots \ldots, r$. And for a generator σ of $\operatorname{Gal}(K / k)$, let

$$
\left(\left(\frac{\alpha_{i}: K / k}{p_{j}}\right)\right)_{i, j-1, \cdots \cdots \cdot, t}=\left(\sigma a_{i j}\right)_{i, j=1, \cdots \cdots, t}
$$

where $a_{i j} \in \mathbf{Z} / p \mathbf{Z}$, then $s=\operatorname{rank}\left(a_{i j}\right)$.
In case $k=\mathbf{Q}(\sqrt{-3})(p \neq 3), k=\mathbf{Q}(\sqrt{-1})$, similar results hold.
Remark. Let q be a prime ideal of k with $\mathbf{N q} \equiv 1 \bmod p$. If $p X h_{k}$, then the p-Sylow group of $I(q) / P q$ is cyclic, where $I(q)$ is the ideal group of k prime to q and $P q$ is the ray $\bmod \mathfrak{q}$. Let $\mathfrak{p}_{1}, \ldots \ldots, \mathfrak{p}_{m}$ be prime ideals of k with $\mathbf{N} \mathfrak{p}_{i} \equiv 1 \bmod p$, and let $c=p \cdot \mathfrak{p}_{1} \ldots \ldots \mathfrak{p}_{m}$. Assume $p \nmid h_{k}$ and $E_{k}=\{ \pm 1\}$. Then the p-Sylow group of $I(c) / P c$ is isomorphic to the p-Sylow group of $\left(I(p) / P_{p}\right) \times\left(I\left(\mathfrak{p}_{1}\right) / P_{\mathfrak{p}_{1}}\right) \times \ldots \ldots \times\left(I\left(\mathfrak{p}_{m}\right) / P_{\mathfrak{p}_{m}}\right)$ by the natural homomorphism;

$$
I(\mathfrak{c}) / P_{\mathrm{c}} \longrightarrow\left(I(p) / P_{p}\right) \times\left(I\left(\mathfrak{p}_{1}\right) / P_{\mathfrak{p}_{1}}\right) \times \ldots \ldots \times\left(I\left(\mathfrak{p}_{m}\right) / P_{\mathfrak{p}_{m}}\right) .
$$

Hence it follows from Dirichlet Density Theorem that for each integer $t \geqq 2$, there exist infinitely many t-tuples of prime ideals $\mathfrak{p}_{1}, \ldots \ldots, \mathfrak{p}_{t}$, such that

$$
\mathrm{N}_{\mathrm{i}} \equiv 1 \bmod p, i=1, \ldots \ldots, t,
$$

$\mathfrak{p}_{2}: p$-th power nonresidue $\bmod P_{p_{1}}$
$p_{i}: p$-th power residue $\bmod P_{p_{1}} \ldots \ldots . p_{i-2}$
but p-th power nonresidue $\bmod P_{p_{i-1}}$ for $i=3, \ldots \ldots, t$.
Let K / k be a cvclic extension of degree p in which only $\mathfrak{p}_{1}, \ldots \ldots, p_{t}$ are ramified. Then it holds that for $\boldsymbol{i} \neq \boldsymbol{j}$
$\left(\frac{\alpha_{i}: K / k}{\mathfrak{p}_{j}}\right)=1$ if and only if $p_{i}: p$-th power residue $\bmod P_{p_{j}}$, where $\left(\alpha_{i}\right)=p_{i}$. Hence M_{K} satisfies the condition of Theorem 2, (ii) and so $M_{K} \approx(\mathbb{D} / \mathfrak{p})^{t-1}$.
[1, Theorem 1] is a special case ($k=\mathbf{Q}$) of this remark.

3.

Let K / \mathbf{Q} be a cyclic extension of degree p in which only p_{1}, p_{2} are ramified. Then from Theorem 1 we know

$$
M_{K} \approx \mathfrak{D} / \mathfrak{p e}: e \geqq 1
$$

And let L be the genus field of K / \mathbf{Q}, then L / K is an unramified extension of degree p. Moreover let K_{i} / \mathbf{Q} be the cyclic extension of degree p in which only p_{i} is ramified. Then noting L / K_{i} is cyclic with degree p and $p X h_{K_{i}}$, we have

$$
M_{L} \approx \sum_{i=1}^{y} \mathcal{O} / \mathfrak{p}_{i} .
$$

And from the results of 1 , it follows that $e>1$ if and only if

$$
\left(\begin{array}{ll}
\left(\frac{p_{1}: K / \mathbf{Q}}{p_{1}}\right) & \left(\frac{p_{1}: K / \mathbf{Q}}{p_{2}}\right) \\
\left(\frac{p_{2}: K / \mathbf{Q}}{p_{1}}\right) & \left(\frac{p_{2}: K / \mathbf{Q}}{p_{2}}\right)
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

If $e=1$, then it is easily seen from Burnside Basis Theorem that $M_{L}=\{1\}$. And so we suppose $e \geqq 2$. Let p_{i} be the prime divisor of p_{i} in K. Then at least one of $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ is not principal. Say \mathfrak{p}_{2} be not principal. Let $\mathfrak{p}_{i_{1}}$ be a prime divisor of p_{i} in K_{1}, and let τ be a generator of $\operatorname{Gal}\left(K_{1} / \mathbf{Q}\right)$. As p_{1} is ramified in K_{1} and p_{2} is completely decomposed in K_{1}, it holds that

$$
\begin{aligned}
& \left(p_{1}\right)=p_{11 p} \\
& \left(p_{2}\right)=p_{21} p_{21^{\tau}} \ldots \ldots p_{21^{\tau}}{ }^{(p-1)}
\end{aligned}
$$

Then only $\mathfrak{p}_{21}, \mathfrak{p}_{21}{ }^{\tau}, \ldots \ldots, \mathfrak{p}_{21^{\tau}}{ }^{(\boldsymbol{p}-1)}$ are ramified in L / K_{1}.
Theorem 3. Let K / \mathbf{Q} be a cyclic extension of degree p in which only p_{1}, p_{2} are ramified, and let L be the genus field of K / \mathbf{Q}. Let p_{i} be the prime divisor of p_{i} in K, and let \mathfrak{F}_{i} be a prime divisor of \mathfrak{p}_{i} in L. Assume \mathfrak{p}_{2} is not principal. Let K_{1} / \mathbf{Q} be the cyclic extension of degree p in which only p_{1} is ramified. Let $M_{K} \approx \mathbb{D} / \mathfrak{p e}$, and assume $e \geqq 2$. Then the following conditions are equivalent;
(i) $e=2$,
(ii) $\left(E_{K_{1}} \cap N_{L / K_{1}} L^{*}: N_{L / K_{1}} E_{L}\right)=1$ and $M_{L} \approx(\mathfrak{O} / \mathfrak{p}) r$,
(iii) $\chi_{L / K_{1}}\left(c l_{p}\left(\mathfrak{ß}_{2}{ }^{(\tau-1) r-1}\right)\right) \neq 1$,
where

$$
\begin{aligned}
p^{r}= & \frac{p^{p-1}}{\left(E_{K_{1}}: E_{K_{1}} \cap N_{L / K_{1}} L^{*}\right)} \\
& \tau=\text { a generator of } \operatorname{Gal}(L / K) .
\end{aligned}
$$

Lemma 3. Let L / K be an unramified cyclic extension of degree p, and let τ be a generator of $\operatorname{Gal}(L / K)$. Then $\left(E_{K}: E_{K} \cap N_{L / K} L^{*}\right)=1$ and $M_{L} / M_{L}{ }^{\tau-1}$ is isomorphic to $N_{L / K} M_{L}$ $\left(\subset M_{K}\right)$ under the norm map $N_{L / K}$.

Proof. Since $\left(M_{K}: N_{L / K} M_{L}\right)=p$, we have $\#\left(N_{L / K} M_{L}\right)=\#\left(M_{K}\right) / p$. Let $\mathbf{N}_{L / K}: M_{L} /$ $M_{L}{ }^{\tau-1} \rightarrow M_{K}$ be the homomorphism induced from the norm map $N_{L / K}$. Then, as

$$
\#\left(M_{L} / M_{L}^{\tau}-1\right)=\#\left(M_{L(\tau-1)}\right)=\frac{\#\left(M_{K}\right)}{p\left(E_{K}: E K \cap N_{L / K} L^{*}\right)},
$$

we have

$$
\#\left(\operatorname{Ker} \mathbf{N}_{L / K}\right)=\frac{\#\left(M_{L} / M_{L^{\tau}-1}\right)}{\#\left(N_{L / K} M_{L}\right)}=\frac{1}{\left(E_{K}: E_{K \cap} N_{L / K} L^{*}\right)} . \quad \text { Q. E. D. }
$$

Proof of Theorem 3. Let σ be a generator of $\operatorname{Gal}\left(L / K_{1}\right)$, then we can consider $\boldsymbol{\sigma}$ as a generator of $\operatorname{Gal}(K / \mathbf{Q})$. Since $\left(M_{K}: N_{L / K} M_{L}\right)=p$ and $N_{L / K} M_{L}$ is σ-admissible,
$N_{L / K} M_{L}=M_{K}{ }^{\sigma-1}$. Hence by Lemma 3 we have

$$
N_{L / K}: M_{L} / M_{L}^{\tau-1} \approx M_{K}{ }^{0-1} \approx \mathfrak{p} / \mathfrak{p e}
$$

Assume (i). Then $\#\left(M_{L} / M_{L}^{\tau-1}\right)=p$. As p_{2} is not principal, we have $N_{L / K} c l_{p}\left(\mathfrak{ß}_{2}\right)=$ $c l\left(\mathfrak{p}_{2}\right) a \neq 1 \in M_{K}$. Hence by Lemma $3 c l_{p}\left(\Re_{2}\right) \notin M_{L}^{\tau-1}$. Thus M_{L} is generated by $c l_{p}\left(\Re_{2}\right)$, $c l_{p}\left(\Re_{2}\right)^{\tau-1}, c l_{p}\left(\Re_{2}\right)^{(\tau-1)^{2}}, \ldots \ldots . \quad$ As $\mathfrak{ß}_{2}$ is an ambiguous ideal in $L / K_{1}, M_{L(\sigma-1)}=M_{L}$ and every class in M_{L} is represented by ambiguous idal in L / K_{1}. On the other hand, let $C_{L(\sigma-1)}{ }^{0}$ be the group of ideal classes represented by ambiguous ideals in L / K_{1}. Then $\left(M_{L(\sigma-1)}: M_{L(\sigma-1)}{ }^{0}\right)=1$ implies $\left(C_{L(\sigma-1)}: C_{L(\sigma-1)}{ }^{0}\right)=1$ since $\left(C_{L(\sigma-1)}: C_{L(\sigma-1)}\right)=\left(E_{K_{1} \cap}\right.$ $N_{L / K_{1}} L^{*}: N_{L / K_{1}} E_{L}$) a power of p, where $M_{L(\sigma-1)}{ }^{0}=C_{L(\sigma-1)}{ }^{0} \cap M_{L}$. Hence ($E_{K_{1} \cap} N_{L / K_{1}}$ $L^{*}: N_{L / K_{1}} E_{L}$) $=1$. This proves that (i) implies (ii). Conversely, assume (ii). Then $M_{L}=M_{L\left(\sigma_{-1}\right)}$ and every ambiguous class in L / K_{1} is represented by an ambiguous ideal in L / K_{1}. Therefore M_{L} is generated by $c l_{p}\left(\Re_{2}\right), c l\left(\Re_{2}\right)^{\tau}, \ldots \ldots, c l_{p}\left(\Re_{2}\right)^{\tau p-1}$. And since $c l_{p}\left(\Re_{2}\right)^{\tau}$ $\equiv c l_{p}\left(\Re_{2}\right) \bmod M_{L}^{\tau-1}, M_{L} / M_{L}^{\tau-1}$ is generated by $c l_{p}\left(\Re_{2}\right) M_{L}^{\tau-1}$. Since $c l_{p}\left(\Re_{2}\right) \notin M_{L}^{\tau-1}$ and the order of $c l_{p}\left(\Re_{2}\right)$ is p, we have $\#\left(M_{L} / M_{L^{\tau-1}}\right)=p$. Hence $e=2$, which proves that (ii) implies (i).

The fact that (ii) implies (iii) is obvious. Conversely assume (iii). Then since $p^{r}=$ \# $\left(M_{L(\sigma-1)}\right), M_{L\left(\sigma_{-1}\right)}$ is generated by $c l_{p}\left(\Re_{2}\right), c l_{p}\left(\Re_{2}\right)^{\tau-1}, \ldots \ldots, c l_{p}\left(\mathfrak{ß}_{2}\right)^{(\tau-1) r-1}$. Hence every ambiguous class in L / K_{1} is represented by an ambiguous ideal in L / K_{1}. Thus we have
 $a=b^{\sigma-1} \neq 1$. Put $a_{i}=c l_{p}\left(\Re_{2}\right)^{(r-1)}{ }^{i}$ for $i=0,1, \ldots \ldots, r-1$. Then we can write $a=a_{j} f_{i} \cdot a_{j+1} f_{j+1}$ $\ldots . . a_{r-1} f_{r-1}$, where $f_{j} \neq 0 \bmod p$. Then $a^{(\tau-1)^{r-1-j}}=a_{r-1} f_{j}=b^{(\tau-1) r-1-j(\sigma-1)}$. Hence $c l_{p}\left(\Re_{2}\right)^{(\tau-1) r-1} f_{j}=b^{(\tau-1) r-1-j(\sigma-1)}$. Thus $\widehat{\chi}_{L / K_{1}}\left(c l_{p}\left(\Re_{2}{ }^{(\tau-1) r-1}\right)\right)=1$ which is a contradiction. Therefore $M_{L}=M_{L(\sigma-1)} \approx(D / p) r$. This proves that (iii) implies (ii). Q. E. D.

Let p_{1}, p_{2} be odd primes such that $p_{i} \equiv 1 \bmod p$ or $p_{i}=p$. Then there exist $p-1$ cyclic extensions K / \mathbf{Q} of degree p in which only p_{1}, p_{2} are ramified, and the genus fields L of such K / \mathbf{Q} coincide. In general, however, every M_{K} is not necessarily isomorphic to others. But if $M_{K} \approx \mathfrak{D} / \mathfrak{p}$ for some K, then $p X h_{L}$. So $M_{K} \approx \mathfrak{O} / \mathfrak{p}$ for all K. Moreover,

Corollary 1. ([3 Proposition VI 6]) If $M_{K} \approx \mathfrak{D} / \mathfrak{p}^{2}$ for some K, then $M_{K} \approx \mathfrak{D} / p^{2}$ for all K.

Proof. Let $K / \mathbf{Q}, \widehat{K} / \mathbf{Q}$ be cyclic extensions of degree p in which only p_{1}, p_{2} are ramified, and let $M_{K} \approx D / p^{2}, M_{\widehat{R}} \approx D / p e$. Let notation be as in Theorem 3. Then we can take a generator $\hat{\tau}$ of $\operatorname{Gal}(L / \widehat{K})$ such that $\hat{\tau}=\tau \cdot \sigma^{j}$ for some j. Since it follows from Theorem 3 (ii) that σ operates trivially on M_{L}, the operations of τ and $\widehat{\tau}$ on M_{L} coincide. Hence $M_{L} / M_{L}^{\widehat{T}-1}=M_{L} / M_{L}^{\tau-1}$, so $\#\left(M_{L} / M_{L}^{\widehat{T}-1}\right)=p$. Thus we have $M_{\widehat{K}} \approx D / p^{2}$. Q. E. D.

Corollary 2. If for each $p_{i}, i=1,2$ there exists $a K$ in which the prime divisor of p_{i} is not principal and $M_{K} \approx \mathcal{D} / \mathfrak{p}^{2}$, then $M_{L} \approx \mathcal{D} / \mathfrak{p}$.

Proof. Let the prime divisor \mathfrak{p}_{2} of p_{2} in K be not principal, and let the prime divisor
\widehat{p}_{1} of p_{1} in \widehat{K} be not principal. Then by Theorem $3 M_{L} \approx(\mathcal{O} / \mathfrak{p}) r$, and $\operatorname{Gal}\left(L / K_{1}\right), \operatorname{Gal}(L /$ K_{2}) operate trivially on M_{L}. Let τ be a generator of $\operatorname{Gal}(L / K)$. Then τ operates trivially on M_{L}, so $M_{L^{\tau}}{ }^{-1}=\{1\}$. Thus we have $M_{L} \approx M_{L} / M_{L}^{\tau-1} \approx D / p$. Q. E. D.

Let K / \mathbf{Q} be a cyclic extension of degree p, and let $r\left(M_{K}\right)$ be the rank of M_{K}. Then from the results of [6] it follows that if $r\left(M_{K}\right) \geqq 2+2 \sqrt{p}$, the p-class field tower of K is infinite.

Using Čebotarev Density Theorem, we can show by a similar method to that used in Corollary of Theorem 3 that there exist infinitely many cyclic extensions K / \mathbf{Q} of degree p such that $r\left(M_{K}\right)=2$ and p-class field towers of K are finite.

Theorem 4. There exist infinitely many triples of odd primes p_{1}, p_{2}, p_{3} such that $p X h_{\bar{L}}$, where \bar{L} is the genus field of K / \mathbf{Q} and K / \mathbf{Q} is a cyclic extension of degree p in which only p_{1}, p_{2}, p_{3} are ramified.

Lemma 4. Let p be an odd prime. For an odd prime p_{1} such that $p_{1} \equiv 1 \bmod p$, there exist infinitely many odd primes p_{2} which satisfy the following conditions (i), (ii), (iii);
(i) $p_{2} \equiv 1 \bmod p$,
(ii) p_{2} is p-th power nonresidue modulo p_{1},
(iii) p_{1} is p-th power nonresidue modulo p_{2}.

Proof. Put $k=\mathbf{Q}\left(\xi_{p}\right), K_{1}=\mathbf{Q}\left(\sqrt[p]{p_{1}}\right), \bar{K}_{1}=k \cdot K_{1}$ and let K / \mathbf{Q} be the cyclic extension of degree p in which only p_{1} is ramified. Then from Cebotarev Density Theorem it follows that the Dirichlet density of the rational primes whose decomposition fields in $\overline{K_{1}} / \mathbf{Q}$ are k is $1 / p$, and that of the rational primes whose decomposition fields in $K \cdot \overline{K_{1}} / \mathbf{Q}$ are $k \cdot K$ is $1 / p^{2}$. Hence there exist infinitely many odd primes p_{2} such that p_{2} are not decomposed in K / \mathbf{Q} and their decomposition fields in \bar{K}_{1} / \mathbf{Q} are k. Then it is obvious that p_{2} satisfy (i), (ii). In order to prove (iii), we suppose that p_{1} is p-th power residue modulo p_{2} Then the equation $X^{P}-p_{1} \equiv 0 \bmod p_{2}$ has a rational integer solution. Now we may assume $p_{2} \chi\left(\mathfrak{D}_{K_{1}}: \mathbf{Z}\left[\sqrt[p]{p_{1}}\right]\right)$, where $\mathfrak{D}_{K_{1}}$ denotes the integer ring of K_{1}. So there exists a prime divisor \mathfrak{p}_{2} of p_{2} in K_{1} such that $N_{K_{1} / \mathbf{Q}} \mathfrak{p}_{2}=p_{2}$. Let \mathfrak{p}_{2} be a prime divisor of \mathfrak{p}_{2} in $\overline{K_{1}}$, then we have $N_{\bar{K}_{1}} / \boldsymbol{Q} \mathfrak{p}_{2}=p_{2} \boldsymbol{p}$ since the decomposition field of \mathfrak{P}_{2} is k. On the other hand, we have $N_{\bar{K}_{1} / K_{1}} \mathfrak{F}_{2}=p_{2}{ }^{i}$ for $1 \leqq i \leqq p-1$, which is a contradiction. This proves (iii).
Q. E. D.

Corollary There exist infinitely many triples of odd primes satisfying the following conditions (i) $\sim(\mathrm{vi})$;
(i) $p_{i} \equiv 1 \bmod p, i=1,2,3$,
(ii) p_{1} is p-th power nonresidue modulo p_{2},
(iii) p_{1} is p-th power nonresidue modulo p_{3},
(iv) p_{2} is p-th power nonresidue modulo p_{1},
(v) p_{3} is p-th power residue modulo p_{1},
(vi) p_{3} is p-th power nonresidue modulo p_{2}.

The proof is analogous to Lemma 4.
Proof of Theorem 4. Let p_{1}, p_{2}, p_{3} be primes satisfying the conditions of the above corollary. Let K_{23} / \mathbf{Q} be the cyclic extension of degree p in which only p_{2}, p_{3} are ramified and p_{1} is completely decomposed. It follows from above conditions (i), (ii), (iii), that such an extension always exists. Let K_{1} / \mathbf{Q} be the cyclic extension of degree p in which only p_{1} is ramified. Then because of the above condition (v), p_{3} is completely decomposed in K_{1}. Put $L=K_{1} \cdot K_{23}$. Then L / \mathbf{Q} is an abelian extension of degree p^{2} in which only p_{1}, p_{2}, p_{3} are ramified. Let K / \mathbf{Q} be a subfield of L with degree p over \mathbf{Q} such that $K \neq K_{1}, K_{23}$. Then p_{1}, p_{2}, p_{3} are ramified in K / \mathbf{Q}, and hence L / K is unramified. Moreover

$$
\left(\left(\frac{p_{i}: K / \mathbf{Q}}{p_{j}}\right)\right)_{i, j-1,2,3}=\left(\begin{array}{ccc}
? & * & * \\
* & ? & ? \\
1 & * & ?
\end{array}\right)
$$

where $*$ means nonidentity.
So by the results of 2 we have $M_{K} \approx(D / p)^{2}$. Let p_{1}, p_{2}, p_{3} be the prime divisors of p_{1}, p_{2}, p_{3} in K respectively, then these are not principal in K and \mathfrak{p}_{1}, p_{3} are completely decomposed in L / K. And let $\mathfrak{\beta}_{3}$ be a prime divisor of \mathfrak{p}_{3} in L, then $N_{L / K}\left(c l_{p}\left(\mathfrak{F}_{3}\right)\right)=c l\left(\mathfrak{p}_{3}\right) a \neq$ $1 \in M_{K}$. So by Lemma 3 we have $c_{p}\left(\mathfrak{F}_{3}\right) \notin M_{L}^{\tau-1}$, where τ is a generator of $\operatorname{Gal}(L / K)$. On the other hand from $M_{K} \approx(\mathcal{D} / \mathfrak{p})^{2}$, we see $\#\left(M_{L} / M_{L}^{\tau-1}\right)=p$. Hence M_{L} is generated by $\left.c l_{p}\left(\Re_{3}\right), c l_{p}\left(\Re_{3}\right)^{r-1}, c l_{p}\left(\Re_{3}\right)^{r}-1\right)^{2}, \ldots \ldots$. As $c l\left(\Re_{3}\right)$ is an ambiguous class in L / K_{1}, the order of $c l_{p}\left(\Re_{3}\right)$ is p. Let σ_{1} be a generator of $\operatorname{Gal}\left(L / K_{1}\right)$, then σ_{1} operates trivially on M_{L} since $\mathfrak{ß}_{3} \sigma_{1}=\Re_{3}$. Similarly, let $\mathfrak{\Re}_{1}$ be a prime divisor of p_{1} in L, then $c l_{p}\left(\Re_{1}\right) \in M_{L}^{\tau-1}$ and M_{L} is also generated by $c l_{p}\left(\Re_{1}\right), c l_{p}\left(\Re_{1}\right)^{\tau-1}, c l_{p}\left(\mathfrak{F}^{\left.()^{\tau}-1\right)^{2}}, \ldots \ldots\right.$. Let σ_{23} be a generator of $\operatorname{Gal}\left(L / K_{23}\right)$, then σ_{23} operates trivially on M_{L} since $c l\left(\Re_{1}\right)$ is an ambiguous class in L / K_{23}. Therefore noting $\operatorname{Gal}(L / \mathbf{Q})$ is generated by $\operatorname{Gal}\left(L / K_{1}\right)$ and $\operatorname{Gal}\left(L / K_{23}\right)$ we see that τ also operates trivially on M_{L}. Thus we have $M_{L}=M_{L} / M_{L^{\tau}-1} \approx D / p$. On the other hand \bar{L} / L is the unramified cyclic extension of degree p. Hence by Burnside Basis Theorem we have $p X h_{\bar{L}}$.
Q. E. D.

References

[1] F. Gerth III, Number fields with prescribed l-class groups, Proc. Amer. Math. Soc., 49 (1975), 284288.
[2] R. Gold, Genera in abelian extensions, Proc. Amer. Math. Soc., 47 (1975), 25-28.
[3] G. Gras, Sur les l-classes d'ideaux dans les extensions cycliques relative de degre premier l, Ann. Inst. Fourier, Grenoble 23, 3 (1973), 1-48, 4 (1973), 1-44.
[4] F. Halter-Косн, Ein Satz über die Geschlechter relativzyklischer Zahlkörper von Primzahlgrad und seine Anwendug auf biquadratisch-bizyklische Körper, J. Number Theory, 4 (1972), 144-156.
[5] E. Inaba, Uber die Struktur der l-klassengruppe zyklischer Zahlkörper von Primzahlgrad l, J. Fac. Sci. Univ. Tokyo Sect I, 4 (1940), 61-115.
[6] P. Roquette, On class field towers, Proc. instr. conf. at Brighton (Algebraic Number Theory), (1967), 231-249.

[^0]: * Niigata University.

