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The principal purpose of this paper is to generalize well-known properties of
excisive triads by means of the C-notion of Abelian groups which was introduced
by J.-P. Serre [51.

Namely, in \S 1 we shall define the Mayer-Vietoris sequence of C-excisive triad
and its C-exactness will be shown (see (1.7) and (1.8)), in \S 2 the Blakers and Massey
triad theorem given by J. C. Moore [2] will be extended for the case of C-excisive
triad (see (2.9)). And the Hurewicz isomorphism theorem for triad will be given
in the last section (\S 3, (3.1)).

Throughout the present paper, all triads will be assumed to be those of arc-
wise connected topological spaces, and homology will always mean singular cubic
homology. By $C=C(I, II_{B})$ for example, we mean that $C$ is a class of Abelian
groups which satisfies the axioms (I) and $(II_{B})$ given in [5]. $Im,$ $Ker$ , Coker and
$\lambda^{-1}($ $)$ mean image, kernel, cokernel and inverse image by $\lambda$ , respectively.

A triad (X; $X_{1},$ $X_{2}$) will be called C-excisive, if $X=X_{1}\cup X_{2},$ $X,$ $X_{1},$ $X_{2}$ and $X_{1}\cap X_{2}$

are arcwise connected and the inclusion map $k_{2}$ : $(X_{1}, X_{1}\cap X_{2})\rightarrow(X, X_{2})$ induces the
C-isomorphism

$k_{2*}:$ $H_{q}(X_{1}, X_{1}\cap X_{2})\rightarrow H_{q}(X, X_{2})$ for all $q$ .
A triad (X; $X_{1},$ $X_{2}$) will be called C-proper, if $(X_{1}\cup X_{2};X_{1}, X_{2})$ is C-excisive.
Let $A$ and $B$ be two subgroups of a same Abelian group. $A$ will be called

C-equal to $B$ , if the inclusion maps $A\cap B\rightarrow A$ and $A\cap B\rightarrow B$ are C-isomorphisms.
A sequence of groups $\{G_{q}, f_{q}\}$ will be called C-exact, if the image of $G_{Q+1}$ by

$f_{q+1}$ : $G_{q+1}\rightarrow G_{q}$ is C-equal to the kernel of $f_{q}$ : $G_{q}\rightarrow G_{q-1}$ , for each $q$ .
Let (X; $X_{1},$ $X_{2}$) be a triad. Let $x\in X$, and let $x*$ be the space of paths in $X$

which start at $x$ . Define $p:X^{*}\rightarrow X$ by $p(f)=f(1)$ . Let $X_{a}^{*}=p^{-1}(X_{a})(\alpha=1,2)$ . The
triad $(X^{*}, X_{1}^{*}, X_{2}^{*})$ will be called the associated triad of the triad (X; $X_{1},$ $X_{2}$).

\S 1. The Mayer-Vietoris. sequence of a $C$-excisive triad

(1.1) PROPOSITION. Let $G,$ $H$ and $K$ be Abelian groups and let $\lambda:G\rightarrow H$ and
$\mu:H\rightarrow K$ be homomorphisms such that $\mu\circ\lambda$ is a C-isomorphism of $G$ with $K$, where
$C=C(I)$ . Then ${\rm Im}\lambda\cap Ker\mu\epsilon C,$ $\lambda$ is C-monomorphic, $\mu$ is C-epimorphic, $\mu$ is a C-
isomorphism of ${\rm Im}\lambda$ with $K$ and the inclusion map $\theta:{\rm Im}\lambda/H_{1}+Ker\mu/H_{1}\rightarrow H/H_{1}$ is
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C-isomorphic (in detail, monomorphic and C-epimorphic) where $ H_{1}={\rm Im}\lambda\cap Ker\mu$ is
a subgroup of $H$.

Proof. Since $\mu\circ\lambda$ is a C-isomorphism of $G$ with $K,$ $K/\mu\lambda(G)\epsilon C$ and $\lambda^{-1}(H_{1})\epsilon C$ .
The first relation implies that $\mu|\lambda(G):\lambda(G)\rightarrow K$ is C-epimorphic. It follows from
the second relation that $H_{1}\epsilon C$ , namely $\mu|\lambda(G):\lambda(G)\rightarrow K$ is C-monomorphic. There-
fore $\mu$ is a C-isomorphism of $\lambda(G)$ with $K$. Since $K/\mu(H)$ is the image of the
canonical epimorphism: $K/\mu\lambda(G)\rightarrow K/\mu(H)$ , we have $K/\mu(H)\epsilon C$ , namely $\mu$ is C-
epimorphic. Since $Ker\lambda\subset Ker(\mu\circ\lambda)\epsilon C$ , $\lambda$ is C-monomorphic. And ${\rm Im}\lambda\cap Ker\mu$

$=Ker(\mu\circ\lambda)\epsilon C$ . Secondly it is clear that $\theta$ is a monomorphism, and

$\frac{H/H_{1}}{{\rm Im}\lambda/H_{1}+Ker\mu/H_{1}}=Ext(\mu(H)/\mu\lambda(G),\frac{\mu^{-1}\mu\lambda(G)/H_{1}}{\lambda(G)/H_{1}+Ker\mu/H_{1}})$

where $\mu(H)/\mu\lambda(G)\subset K/\mu\lambda(G)=Coker(\mu\circ\lambda)\in C$ .
On the other hand, put $G_{1}=\lambda^{-1}(H_{1})$ and let $\overline{\lambda}:G/G_{1}\rightarrow\mu^{-1}\mu\lambda(G)/H_{1},\overline{\mu}:\mu^{-1}\mu\lambda(G)/H_{1}$

$\rightarrow\mu\lambda(G)$ be the homomorphisms induced by $\lambda,$

$\mu$ respectively, then it is easy to see that
$\overline{\mu}\circ\overline{\lambda}:G/G_{1}\rightarrow\mu\lambda(G)$ is an isomorphism. Therefore,

$\mu^{-1}\mu\lambda(G)/H_{1}=\overline{\lambda}(G/G_{1})+Ker\overline{\mu}=\lambda(G)/H_{1}+Ker\mu/H_{1}$ .
Hence

$\frac{H/H_{1}}{{\rm Im}\lambda/H_{1}+Ker\mu/H_{1}}\approx\mu(H)/\mu\lambda(H)\epsilon C$ .
Consequently $\theta$ is C-epimorphic. This completes the proof.

(1.2) LEMMA. In the following diagram of Abelian groups and homomorphisms,

assume that commutativity holds in each triangle
and ${\rm Im} i_{a}=Kerj_{\alpha}(\alpha=1,2)$ . If $k_{1}$ and $k_{2}$ are C-
isomorphisms, then the homomorphism $i:G_{1}+G_{2}$

$\rightarrow G$ defined by $i(g_{1}, g_{2})=i_{1}(g_{1})+i_{2}(g_{2})$ for $g_{a}\epsilon G_{a}$

$(\alpha=1,2)$ is C-isomorphic, where $C=C(I)$ , and fur-
ther we have that ${\rm Im} i_{1}\cap{\rm Im}\dot{i}_{2}\epsilon C$ .

Proof. Let $g_{a}\epsilon G_{a}(\alpha=1,2)$ be elements such that $(g_{1}, g_{Z})\epsilon Keri$ , namely $i_{1}(g_{1})$

$+i_{-}(g_{2})=0$ . Applying $j_{1}$ , we have $j_{1}i_{2}(g_{2})=0$ , I.e. $k_{1}(g_{2})=0$ . Similarly $k_{2}(g_{1})=0$ .
Thus $Keri\subset Kerk_{1}+Kerk_{2}\epsilon C$ . On the other hand, for each $x\epsilon j_{1}^{-1}j_{1}i_{2}(G_{3})$ there
exists $y_{2}\epsilon G_{2}$ such that $j_{1}(x)=j_{I}i_{2}(y_{2})$ . Therefore $x-i_{2}(y_{2})\epsilon Kerj_{1}={\rm Im} i_{1}$ , hence
there exists $y_{1}\epsilon G_{1}$ such that $x-i_{2}(y_{2})=i_{1}(y_{1})$ . Namely $x=i_{1}(y_{1})+i_{2}(y_{2})\epsilon i_{1}(G_{1})+i_{2}(G_{2})$ .
Thus $j_{1}^{-1}j_{1}i_{2}(G_{2})\subset i_{1}(G_{1})+i_{2}(G_{Z})$ . Since $j_{1}^{-1}j_{1}i_{2}(G_{2})\supset i_{1}(G_{1})+i_{2}(G_{2})$ , we have $j_{1}^{-1}j_{1}i_{2}(G_{2})$

$=i_{1}(G_{1})+i_{2}(G_{2})$ , and

Coker $i=\frac{G}{i_{1}(G_{1})+i_{2}(G_{2})}\approx j_{1}(G)/j_{1}i_{2}(G_{2})\subset G_{1}^{\prime}/k_{1}(G_{2})=Cokerk_{1}\epsilon C$ .

Thus $i$ is a C-isomorphism.
By (1.1), $i_{1}(G_{1})\cap i_{2}(G_{2})=i_{1}(G_{1})\cap Kerj_{2}\epsilon C$ .
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(1.3) LEMMA. (The generalization of the hexagonal lemma, cf. [1].) In the
following diagram of groups and homomorphisms,
assume that commutativity holds in each triangle,
${\rm Im} i_{a}=Kerj_{a}(\alpha=1,2),$ $j_{0}i_{0}=0$ . Then for each $x\epsilon G_{0}$

we have that
$h_{1}k_{1}^{-1}l_{1}(x)+h_{2}k_{2}^{-1}l_{2}(x)\subset h_{1}(Kerk_{1})$

$=h_{2}(Kerk_{2})=j_{0}({\rm Im} i_{1}\cap{\rm Im} i_{2})$ .
Proof. For each $y_{2}\epsilon h_{1}k_{1}^{-1}l_{1}(x)$ and $y_{1}\epsilon h_{2}k_{2}^{-1}l_{2}(x)$ ,

there exist $y_{2}^{\prime}\epsilon k_{1}^{-1}l_{1}(x)$ and $y_{1}^{\prime}\epsilon k_{2}^{-1}l_{2}(x)$ such that
$h_{1}(y_{2^{\prime}})=y_{2}$ , $h_{2}(y_{1^{\prime}})=y_{1}$ . Since $k_{1}(y_{2^{\prime}})=l_{1}(x)$ , i.e. $j_{1}i_{2}(y_{2^{\prime}})$

$=j_{1}i_{0}(x)$ , we have $i_{2}(y_{2^{\prime}})-i_{0}(x)\epsilon Kerj_{1}={\rm Im} i_{1}$ . Therefore there exists $y_{1}^{\prime\prime}\epsilon G_{1}$ such
that $i_{2}(y_{2^{J}})-i_{0}(x)=i_{1}(y_{1}^{\prime\prime})$ . Applying $j_{2}$ , we have $-l_{2}(x)=k_{2}(y_{2}^{\prime\prime})$ . Since $k_{2}(y_{1}^{\prime})=l_{2}(x)$ ,
$k_{2}(y_{1}^{\prime}+y_{1}^{\prime\prime})=0$ , i.e. $y_{1^{\prime}}+y_{1}^{\prime\prime}\in Kerk_{2}$ . Then

$y_{1}+y_{2}=h_{2}(y_{1}^{\prime})+h_{1}(y_{2^{\prime}})=h_{2}(y_{1}^{\prime})+j_{0}i_{2}(y_{2^{\prime}})=h_{2}(y_{1}^{\prime})+j_{0}(i_{0}(x)+i_{1}(y_{1}^{\prime\prime}))$

$=h_{2}(y_{1}^{\prime})+j_{0}i_{1}(y_{1}^{\prime\prime})=h_{2}(y_{1}^{\prime}+y_{1}^{\prime\prime})\epsilon h_{2}(Kerk_{2})$ .
Moreover, ${\rm Im} i_{1}\cap{\rm Im} i_{2}={\rm Im} i_{1}\cap Kerj_{2}=i_{1}(Kerk_{2})$ .
Applying $j_{0}$ , $h_{2}(Kerk_{2})=j_{0}({\rm Im} i_{1}\cap{\rm Im} i_{2})$ .
Similarly $h_{i}(Kerk_{1})=j_{0}$ (Im $\prime i_{1}\cap{\rm Im} i_{2}$).

(1.4) LEMMA. In the diagram given in (1.3), we have
$x_{1}-x_{2}\epsilon h_{1}(Kerk_{1})$ ,

where $x_{1}$ and $x_{2}$ are arbitrary elements of $h_{1}k_{1}^{-1}(x)$ for each $x\epsilon G_{1^{J}}$ .
Proof. Since $x_{a}\epsilon h_{1}k_{1}^{-1}(x)(\alpha=1,2)$ , there exists $y_{a}\epsilon k_{1}^{-1}(x)$ such that $h_{1}(y_{a})=x_{a}$ .

Then $x_{1}-x_{2}=h_{1}(y_{1}-y_{2})$ . Since $k_{1}(y_{1}-y_{\sim^{y}})=x-x=0,$ $x_{1}-x_{2}\epsilon h_{1}(Kerk_{1})$ .
(1.5) LEMMA. If $C=C(I)$ , then the conditions for a triad (X; $X_{1},$ $X_{2}$) to be C-

excisive are equivalent to the following conditions: $X=X_{1}\cup X_{2},$ $X,$ $X_{1},$ $X_{2},$ $X_{1}\cap X_{2}$

are arcwise connected and $H_{q}(X;X_{1}, X_{2})\in C$ for all $q$ .
This is trivial.
(1.6) LEMMA. The conditions given in (1.5) are equivalent to the following

conditions: $X=X_{1}\cup X_{2},$ $X,$ $X_{1},$ $X_{2},$ $X_{1}\cap X_{2}$ are arcwise connected and the inclusion
map $k_{1}$ : $(X_{2}, X_{1}\cap X_{2})\rightarrow(X, X_{1})$ induces the C-isomorphism $k_{1*}:$ $H_{q}(X_{2}, X_{1}\cap X_{2})\rightarrow H_{q}(X$,
$X_{1})$ for all $q$ .

This lemma is also trivial.
In order to define the generalized Mayer-Vietoris sequence of a C-excisive

triad (X, $X_{1},$ $X_{2}$), observe the following diagram, in which $A=X_{1}\cap X_{2}$ and all homo-
morphisms other than $\partial,$ $\partial_{1},$ $\partial_{2}$ are induced by inclusion maps. Commutativity
holds in each triangle, and the lower hexagon satisfie8 the hypotheses of (1.3).

Furthermore $i_{1*}n_{1*}=j_{*}m_{1*},$ $i_{2*}n_{2*}=j_{*}m_{2*}$ , and $k_{2*}$ is a C-isomorphism, and by
(1.6), $k_{1*}$ is also a C-isomorphism.
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(1.7) DEFINITION. The generalized Mayer-Vietoris sequence of a C-excisive
triad (X; $X_{1},$ $X_{2}$) with $A=X_{1}\cap X_{2}$ is the following sequence:

$\rightarrow H_{q}(A)/L_{q}-\rightarrow H_{q}(X_{1})+H_{q}(X_{2})\psi\rightarrow^{\varphi}H_{q}(X)\rightarrow^{\Delta}H_{q-1}(A)/L_{q-1}\rightarrow\cdots$ ,

where $L_{q-1}=\partial_{1}(Kerk_{1*})$ which is equal to $\cdot$ $\partial_{2}(Kerk_{2*})$ and to $\partial(i_{1*}H_{q}(X_{1}, A)\cap i_{2*}H_{q}$

$(X_{2}, A))$ (by (1.3)),
$\psi(\{u\})=(h_{1*}(u), -h_{2*}(u))$ for $\{u\}\epsilon H_{q}(A)/L_{q}$ , the quotient class represented by

$u\epsilon H_{q}(A)$ ,
$\varphi(v_{1}, v_{2})=m_{1*}(v_{1})+m_{2*}(v_{2})$ for $v_{a}\epsilon H_{q}(X_{a})(\alpha=1,2)$ ,

$\Delta(w)=-\partial_{1}k_{1*}^{-1}l_{1*}(w)/L_{q-1}$ for $w\epsilon H_{q}(X)$ .
Since $h_{a*}(L_{q})=0(\alpha=1,2),$ $\psi$ is a well-defined homomorphism. By (1.4), the difference
of any two element8 of $\partial_{1}k_{1*}^{-1}l_{1*}(w)$ is contained in $L_{q-1}$ , hence $\Delta$ is well-defind.

(1.8) THEOREM. The generalized Mayer-Vietoris sequence of a C-excisive triad
(X; $X_{1},$ $X_{2}$) is C-exact, where $C=C(I)$ . In detail, ${\rm Im}\psi\subset Ker\varphi$ , $Ker\varphi/{\rm Im}\psi\epsilon C$ ,
${\rm Im}\varphi=Ker\Delta,$ ${\rm Im}\Delta=Ker\psi$ .

Proof. 1) By a manner similar to that given in [1] for the case of an ordinary

excisive triad, it is possible to prove that ${\rm Im}\psi\subset Ker\varphi,$ ${\rm Im}\varphi\subset Ker\Delta$ and ${\rm Im}\Delta=Ker\psi$ .
2) If $w\epsilon H_{q}(X)$ and $\Delta(w)=0$ , then $\partial_{1}k_{1l}^{-1}l_{1*}(w)\subset L_{q-1}=\partial_{1}(Kerk_{1*})$ . Therefore,

for each $x\epsilon k_{1*}^{-1}l_{1*}(w)$ there exists $y\epsilon Kerk_{1*}$ such that $\partial_{1}(xJ=\partial_{1}(y)$ , i.e., $x-y\epsilon Ker\partial_{1}$

$=n_{2*}H_{q}(X_{2})$ . Thus there exists $v_{2}\epsilon H_{q}(X_{2})$ such that $x-y=n_{2*}(v_{Z})$ . Applying $k_{1*}$

we have that
$l_{1*}(w)=k_{I*}n_{Z*}(v_{2})=l_{1*}m_{2*}(v_{2})$ , i.e., $w-m_{2*}(v_{2})\epsilon Kerl_{1*}=m_{1*}H_{q}(X_{1})$ .

Consequently there exists $v_{1}\epsilon H_{q}(X_{1})$ such that $w-m_{2*}(v_{2})=m_{1*}(v_{1})$ , i.e., $w=m_{1*}$

$(v_{1})+m_{2*}(v_{2})=\varphi(v_{1}, v_{2})$ .
3) Setting $M=m_{1*}H_{q}(X_{1})\cap m_{2*}H_{q}(X_{2})$ , we have



On $C$-excisive triads 61

$Ker\varphi/{\rm Im}\psi\subset m_{1*}^{-1}(M)/h_{1*}H_{q}(A)+m_{2*}^{-1}(M)/h_{2*}H_{q}(A)$ ,

and

$m_{1*}^{-1}(M)/h_{1*\Psi}A)=Ext(n_{1*}m_{1*}^{-1}(M),$ $\frac{Kern_{1*}}{h_{1*}H_{q}(A)}I$ .

Now $k_{2*}n_{1*}m_{1*}^{-1}(M)=l_{\rightarrow*}\supset m_{1*}m_{1*}^{-1}(M)=l_{2*}(M)\subset l_{2*}m_{2*}H_{q}(X_{2})=0$ and hence $ n_{1*}m_{1*}^{-1}(M)\subset$

$Kerk_{2*}\epsilon C$ . Since $Kern_{1*}=h_{1*}H_{q}(A),$ $m_{1*}^{-1}(M)/h_{1*}H_{q}(A)\epsilon C$ . Similarly $m_{2*}^{-1}(M)/h_{2*}H_{q}$

$(A)\in C$ . Consequently $Ker\varphi/{\rm Im}\psi\in C$ . By 1) and 3) we have that $Ker\varphi$ is C-equal
to ${\rm Im}\psi$ . The proof of (1.8) is complete.

The homology sequence of a C-proper triad (X; $X_{1},$ $X_{2}$) may be defined as
follows: In the following diagram

the upper horizontal sequence is the homology exact sequence of the triple
(X, $X_{1}\cup X_{2},$ $X_{2}$), $k$ is a C-isomorphism induced by inclusion map, $\theta$ is the canonical
map. We define $\partial$ ‘ and $i^{\prime}$ as follows:

$\partial^{\prime}(x)=\theta k^{-1}\partial(x)$ for $x\epsilon H_{q+1}(X, X_{1}\cup X_{2})$ ,
$i^{\prime}(\{y\})=ik(y)$ for $\{y\}\epsilon H_{q}(X_{1}, X_{1}\cap X_{2})/Kerk$ , the quotient class represented by

$y\in H_{q}(X_{1}, X_{1}\cap X_{2})$ .
(1.9) DEFINITION. The homology sequence of the C-proper triad (X; $X_{1},$ $X_{2}$) is

the following:

$\rightarrow H_{q+1}(X, X_{2})-\rightarrow H_{q+1}(X, X_{1}j\cup X_{2})\rightarrow^{\partial^{\prime}}H_{q}(X_{1}, X_{1}\cap X_{2})/Kerk\rightarrow^{i^{\prime}}H_{q}(X, X_{2})\rightarrow\cdots$ .
(1.10) THEOREM. The homology sequence of the C-proper triad (X; $X_{1},$ $X_{2}$) is

C-exact, where $C=C(I)$ . In detail, ${\rm Im} j=Ker\partial^{\prime}$ , ${\rm Im}\partial^{\prime}=Keri^{\prime}$ , ${\rm Im} i^{\prime}\subset Kerj$ and
$Kerj/{\rm Im} i^{\prime}\epsilon C$ .

Proof. It is clear that ${\rm Im} j=Ker\partial^{\prime},$ ${\rm Im}\partial^{\prime}\subset Keri^{\prime}$ and ${\rm Im} i^{\prime}\subset Kerj$ .
Now

$Keri^{\prime}/{\rm Im}\partial^{\prime}=\frac{k^{-1}({\rm Im} k\cap Keri)/Kerk}{k^{-1}\partial H_{q+1}(X,X_{1}\cup X_{2})/Kerk}=\frac{k^{-1}({\rm Im} k\cap{\rm Im}\partial)}{k^{-1}({\rm Im}\partial)}=0$ .
Thus ${\rm Im}\partial^{\prime}=Keri^{\prime}$ .
Secondly

$Kerj/Im’\dot{\iota}^{\prime}={\rm Im} i/{\rm Im}(i\circ k)=\frac{\prime iH_{q}(X_{1}\cup X_{2},X_{2})}{ikH_{q}(X_{1},X_{1}\cap X_{2})}=image$ of Coker $k\epsilon C$ .
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\S 2. The Blakers and Massey theorem for a C-excisive triad

(2.1) LEMMA. Let $A$ and $B$ be Abelian groups, and $A^{\prime}$ and $B^{\prime}$ be subgroups of
$A$ and $B$ , respectively. If $h:A\rightarrow B$ is a C-isomorphism and $h|A^{\prime}$ is a C-epimorphism
from $A^{\prime}$ to $B^{\prime}$ , then $h^{*}:$ $A/A^{\prime}\rightarrow B/B^{\prime}$ , the canonical homomorphism induced by $h$ ,

is C-isomorphism, where $C=C(I)$ .
Proof. $h^{\star}$ is the composition of two homomorphisms

$A/A^{\prime}\rightarrow^{\overline h}B/h(A^{\prime})\rightarrow^{\theta}B/B^{\prime}$ ,

where $\overline{h}$ is induced by $h$ and $\theta$ is the canonical epimorphism. Since $\overline{h}$ is C-iso-
morphic [3, Proposition 3], $h^{*}$ is C-epimorphic.

Furthermore $Kerh^{*}=\overline{h}^{-1}(B^{\prime}/h(A^{\prime}))=Ext(hh^{-1}(B^{\prime})/h(A^{\prime}), Ker\overline{h})$ .
Since $hh^{-1}(B^{\prime})/h(A^{\prime})\subset B^{\prime}/h(A^{\prime})\epsilon C,$ $Ker\overline{h}\epsilon C$ , we have $Kerh^{*}\epsilon C$ .

(2.2) LEMMA. In the following diagram of Abelian groups and homomorphisms,
assume that $h_{1}$ is a C-epimorphism, $h_{2}$ is a C-iso-
morphism and $h_{3}$ is a C-monomorphism, where $f_{1}$ $f_{2}$

$A_{1}\rightarrow A_{2}\rightarrow A_{3}$

$C=C(I)$ . If the commutativity holds in each square,
then $h_{2^{\prime}}=h_{a}|Kerf_{2}$ is a C-isomorphism of $Kerf_{2}$ $\downarrow h_{1}g_{1}$ $\downarrow h_{2}g_{2}$ $\downarrow h_{3}$

with $Kerg_{2}$ and $h_{2}^{\prime\prime}=h_{2}|{\rm Im} f_{1}$ is a C-isomorphism $B_{1}\rightarrow B_{2}\rightarrow B_{s}$

of ${\rm Im} f_{1}$ with ${\rm Im} g_{1}$ .
Proof. By the commutativity in each square, we have

$h_{2}(Kerf_{2})\subset Kerg_{\rightarrow\supset}$ , $h_{2}({\rm Im} f_{1})\subset{\rm Im} g_{1}$ .
Furthermore

$Kerh_{2}^{\prime}=Kerf_{2}\cap Kerh_{2}\subset Kerh_{2}\epsilon C$ ,

Coker $h_{2}^{\prime}=Kerg_{2}/h_{2}(Kerf_{2})=Ext(Kerg_{Z}/h_{2}f_{2}^{-1}(Kerh_{3}), h_{2}f_{2}^{-1}(Kerh_{3})/h_{2}(Kerf_{2}))$ .
Now the following relations hold:

$h_{2}(A_{2})\cap Kerg_{2}\subset h_{2}f_{2}^{-1}(Kerh_{3})\subset Kerg_{2}$ .
To prove the first, let $x$ be an arbitrary element of $h_{2}(A_{2})\cap Kerg_{z}$ . There exists
$y\epsilon A_{2}$ such that $h_{2}(y)=x$ . Then $g_{2}h_{2}(y)=g_{2}(x)=0.$ , i.e., $h_{\theta}f_{2}(y)=0$ , hence $y\epsilon f_{2}^{-1}(Kerh_{\epsilon})$ .
Thus $x=h_{2}(y)\epsilon h_{2}f_{2}^{-1}(Kerh_{3})$ . To prove the second, let $x$ be an element of $h_{2}f_{2}^{-1}$

$(Kerh_{3})$ . There exists $y\epsilon f_{2}^{-1}(Kerh_{\epsilon})$ such that $h_{2}(y)=x$ . Then $g_{2}(x)=g_{2}h_{2}(y)$

$=h_{3}f_{2}(y)\epsilon h_{3}f_{2}(f_{2}^{-1}(Kerh_{3}))\subset h_{3}(Kerh_{3})=0$ , i.e., $x\epsilon Kerg_{2}$ .
By these relations we have the following canonical epimorphi8m:

$Kerg_{2}/(h_{2}(A_{2})\cap Kerg_{2})\rightarrow Kerg_{2}/h_{2}f_{2}^{-1}(Kerh_{3})$ .
Since

$Kerg_{2}/(h_{2}(A_{2})\cap Kerg_{2})\approx(Kerg_{2}+h_{2}(A_{2}))/h_{2}(A_{2})\subset B_{2}/h_{2}(A_{2})\epsilon C,Q$

we obtain $Kerg_{2}/h_{2}f_{2}^{-1}(Kerh_{3})\epsilon C$ .
On the other hand, $h_{2}f_{2}^{-1}(Kerh_{3})/h_{3}(Kerf_{2})$ is the image of $f_{2}^{-1}(Kerh_{3})/Kerf_{2}$ by
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the homomorphism induced by $ h_{v}\lrcorner$ and
$f_{2}^{-1}(Kerh_{3})/Kerf_{2}\approx f_{2}f_{2}^{-1}(Kerh_{3})\subset Kerh_{3}\epsilon C$ .

Therefore $h_{2}f_{2}^{-1}(Kerh_{3})/h_{2}(Kerf_{2})\in C$ . Thus Coker $h_{2}^{\prime}\epsilon C$ and $h_{2^{\prime}}$ is C-isomorphic.
The proof that $h_{2^{\prime\prime}}$ is a C-isomorphism proceeds as follows:

$Kerh_{2}^{\prime\prime}={\rm Im} f_{1}\cap Kerh_{2}\subset Kerh_{2}\epsilon C$ ,

Coker $h_{2}^{\prime\prime}=g_{1}(B_{1})/(h_{2}f_{1}(A_{1})=Ext(g_{1}(B_{1})/(h_{2}(A_{2})\cap g_{1}(B_{1})), (h_{2}(A_{2})\cap g_{1}(B_{1}))/h_{2}f_{1}(A_{1}))$ ,

where
$g_{1}(B_{1})/(h_{2}(A_{2})+g_{1}(B_{1}))\approx(g_{1}(B_{1})+h_{2}(A_{2}))/h_{2}(A_{2})\subset B_{2}/h_{2}(A_{2})\epsilon C$ ,

$(h_{2}(A_{2})\cap g_{1}(B_{1}))/h_{2}f_{1}(A_{1})=(h_{2}(A_{2})\cap g_{1}(B_{1}))/g_{1}h_{1}(A_{1})\subset g_{1}(B_{1})/g_{1}h_{1}(A_{1})$ .
Since $g_{1}(B_{1})/g_{1}h_{1}(A_{1})$ is the image of $B_{1}/h_{1}(A_{1})\in C$ by the homomorphism induced
by $g_{1}$ , we have $g_{1}(B_{1})/g_{1}h_{1}(A_{1})\epsilon C$ and hence

$(h_{2}(A_{2})\cap g_{1}(B_{1}))/h_{2}f_{1}(A_{1})\epsilon C$ .
Consequently Coker $h_{2}^{\prime\prime}\epsilon C$ and $h_{2}^{\prime\prime}$ is a C-isomorphism.

(2.3) LEMMA. In the diagram given in (2.2), if commutativity holds in each
square and if further $f_{2}\circ f_{1}$ and $g_{2}\circ g_{1}$ are trivial, then $h_{2}$ induces a C-isomorphism
$h_{2}^{*}:$ $Kerf_{2}/{\rm Im} f_{1}\rightarrow Kerg_{2}/{\rm Im} g_{1}$ .

Proof. It follows from (2.2) that $h_{2}$ induces C-isomorphisms $h_{z^{\prime}}$ and $h_{2}^{\prime\prime}$ . By
the trivialities of $f_{2}\circ f_{1}$ and $g_{2}\circ g_{1}$ we have that ${\rm Im} f_{1}\subset Kerf_{2}$ and ${\rm Im} g_{1}\subset Kerg_{z}$ .
Then the assertion follows from (2.1).

The following theorem concerned with the associated triad is a generalization
of Theorem 3.3 of [2].

(2.4) PROPOSITION. Let $C=C(I, II_{B})$ . If a triad (X; $X_{1},$ $X_{2}$) is C-excisive, and $X$

is l-connected, then the associated triad $(x*, x_{1}*, x_{2^{*}})$ of (X; $X_{1},$ $X_{2}$) is C-excisive.
The truth of this theorem follows from the definition of C-excisive triad once

we have extended Theorem 2.2 of [2] in the following form:
(2.5) PROPOSITION. Let $(E, p, B)$ and $(E^{\prime}, p^{\prime}, B^{\prime})$ be fibre spaces in the sense of

Serre [4] with fibre $F,$ $A$ and $A^{\prime}$ be subspaces of $B$ and $B^{\prime}$ respectively, $D=p^{-1}(A)$ ,
$D^{\prime}=p^{\prime-1}(A^{\prime}),$ $B,$ $A,$ $B^{\prime},$ $A^{\prime}$ and $F$ be arcwise connected and $\pi_{1}(B),$ $\pi_{1}(B^{\prime})$ operate
trivially on $H_{q}(F)$ for all $q$ , finally let $f:(E, D)\rightarrow(E^{\prime}, D^{\prime})$ be a fibre preserving
map, $f^{\prime}$ : $(B, A)\rightarrow(B^{\prime}, A^{\prime})$ be induced by $f$. If $f_{*}^{\prime}$ : $H_{q}(B, A)\rightarrow H_{q}(B^{\prime}, A^{\prime})$ is C-iso-
morphic for all $q$ , then $f_{*}:$ $H_{q}(E, D)\rightarrow H_{q}(E^{\prime}, D^{\prime})$ is C-isomorphic for all $q$ , where
$C=C(I, II_{B})$ .

Application of (2.3), Corollary in [5, p. 263] and the five lemma in the case of
C-notion [5] enableq us to prove (2.5) in a way similar to that of Theorem 2.2 of
[2].

(2.6) REMARK. It should be noted that we have $\pi_{q}(X^{*}, X_{a}^{*})\approx\pi_{q}(X, X_{a})(\alpha=1,2)$

[5] and $\pi_{q}(X^{*}; X_{1^{*}}, X_{2^{*}})\approx\pi_{q}(X;X_{1}, X_{2})[2]$ , for all $q$ .
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The following theorem is due to J.-P. Serre [5]:

THEOREM S. Let $(E, p, B)$ be a fibre space with fibre $F,$ $A$ be a subspace of
$B$ and $D=p^{-1}(A)$ . Assume that $B,$ $A$ and $F$ are arcwise connected and the local
system formed by $H_{q}(F)$ on $B$ is trivial for all $q$ . If $H_{q}(B, A)\epsilon C$ for $0\leq q<m$

and $H_{q}(F)\epsilon C$ for $0<q<r$, then the projection $p$ induces

$p_{*}:$ $H_{q}(E, D)\rightarrow H_{q}(B, A)$

such that $p^{*}$ is C-isomorphic for $q\leq m+r-1$ and C-epimorphic for $q\leq m+r$ , where
$C=C(I, II_{B})$ .

As an immediate consequence of Theorem $S$ , we have the following:
(2.7) PROPOSITION. Let $C=C(I, II_{B})$ . Let (X; $X_{1},$ $X_{2}$) be a triad such that

$X$ is l-connected, $X_{1}$ and $X_{2}$ are arcwise connected,
$H_{q}(X)\epsilon C$ for $0<q\leq r,$ $H_{q}(X, X_{l})\epsilon C$ for $q<m_{a}(a=1,2)$ .

Let $(X^{*};X_{1}^{*}, X_{2^{*}})$ be the associated triad of (X; $X_{1},$ $X_{2}$) and $ p:(X^{*}; X_{1^{*}}, X_{2^{*}})\rightarrow$

(X; $X_{1},$ $X_{2}$) be the projection. Then $p$ induces

$p_{a*}:$ $H_{q}(X^{*}, X_{a}^{*})\rightarrow H_{q}(X, X_{l})$

which is C-isomorphic for $q\leq m_{a}+r-1$ and C-epimorphic for $q\leq m_{a}+r(a=1,2)$ .
Proof. Since $x*$ is contractible, we have $H_{q}(X^{*})\epsilon C$ for each $q>0$ . The axiom

$(II_{B})$ implies the axiom $(II_{A})$ of [5]. Therefore applying Proposition 3. $A$ of [5, $p$ .
269] it follows, from the assumptions: $H_{q}(X)\in C$ for $0<q\leq r$, that $H_{q}(F)\epsilon C$ for
$0<q<r$ , where $F$ is the fibre of $(X^{*}, p, X)$ . Our theorem now follows from Theo-
rem S.

Before we study the Blakers and Massey triad theorem, it is convenient to
state the following lemma:

(2.8) LEMMA. If (X; $X_{1},$ $X_{3}$) is a C-excisive triad where $C=C(I)$ , then the
following sequence is C-exact:

$\rightarrow H_{q}(Z)/L_{q}^{\prime}\rightarrow^{i^{\prime}}H_{q}(X_{1}\times X_{2})/i(L_{q}^{\prime})\rightarrow^{j^{\prime}}H_{q}(X_{1}\times X_{3}, Z)\rightarrow^{\partial^{\prime}}H_{q- 1}(Z)/L_{q- 1}^{\prime}\rightarrow\cdots$

where $Z=(X_{1}\times X_{2})\cap X_{d},$ $X_{d}$ is the diagonal of $X\times X,$ $L_{q}^{\prime}$ is the inverse image of $L_{q}$

(for the definition of $L_{q}$ , see (1.7)) by the isomorphism $\tau$ of $H_{q}(Z)$ with $H_{q}(X_{1}\cap X_{2})$

induced by the homeomorphism $Z\approx X_{1}\cap X_{2},$ $i^{\prime}$ and $j^{\prime}$ are induced by the inclusion
maps $i:H_{q}(Z)\rightarrow H_{q}(X_{1}\times X_{2})$ and $j:H_{q}(X_{1}\times X_{2})\rightarrow H_{q}(X_{1}\times X_{2}, Z)$ , and $\partial^{\prime}$ is the composi-
tion of the two homomorphisms

$H_{q}(X_{1}\times X_{3}, Z)\rightarrow^{\partial}H_{q-1}(Z)\rightarrow^{\theta}H_{q-1}(Z)/L_{q-1}^{\prime}$ ,

where $\partial$ is the boundary homomorphism and $\theta$ is the canonical map.
Proof. It is clear that

${\rm Im} i^{\prime}=Kerj^{\prime}$ , ${\rm Im} j^{\prime}=Ker\partial\subset Ker\partial^{\prime}$ , ${\rm Im}\partial^{\prime}=Keri/L_{q-1}^{\prime}\subset Keri^{\prime}$ .
Furthermore $Ker\partial^{\prime}/{\rm Im} j^{\prime}=\partial^{-1}(L_{q-\dot{A}}^{\prime})/Ker\partial$ is isomorphic with a subgroup of $L_{q-1}^{\prime}$ .
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Since (X; $X_{1},$ $X_{2}$) is C-excisive, it follows from (1.2) and (1.3) that $L_{q-1}\epsilon C$ , hence
$L_{q- 1}^{\prime}\epsilon C$ . Thus $Ker\partial^{\prime}/{\rm Im} j^{\prime}\epsilon C$ , and consequently $Ker\partial^{J}$ is C-equal to $Imj^{\prime}$ .
Secondly

$Keri^{\prime}/{\rm Im}\partial^{\prime}=\frac{i^{-1}i(L_{q- 1}^{\prime})/L_{q- 1}^{\prime}}{Keri/L_{q- 1}}\approx\frac{i^{-1}i(L_{q- 1}^{\prime})}{Keri}\approx i(L_{q- 1}^{\prime})\epsilon C$ .
Therefore $Keri^{\prime}$ is C-equal to ${\rm Im}\partial^{\prime}$ .
This completes the proof of C-exactness.

Now Theorem 3.4 of [2] may be generalized as follows:
(2.9) THEOREM. (The generalized Blakers and Massey triad theorem) Let

$C=C$ ($I,$ $II_{B}$ , III). If (X; $X_{1},$ $X_{2}$) is a C-excisive triad with $A=X_{1}\cap X_{2}$ such that
$X$ is l-connected, (X, $X_{1}$) and (X, $X_{2}$) are 2-connected, $\pi_{3}(X;X_{1}, X_{2})=0$ ,

$H_{q}(X, X_{1})\epsilon C$ for $q<m,$ $H_{q}(X, X_{2})\epsilon C$ for $q<n$ ,

then $\pi_{q}(X;X_{1}, X_{2})\in C$ for $q<m+n-1$ ,

$\pi_{m+n-1}(X;X_{1}, X_{2})$ is C-isomorphic with $H_{m}(X, X_{1})\otimes H_{n}(X, X_{2})$ .
(2.10) REMARK. In (2.9), if (X; $X_{1},$ $X_{2}$) is excisive in the ordinary sense, and if

further $A$ is l-connected, then the assumption: $\pi_{3}(X;X_{1}, X_{2})=0$ , is an immediate
consequence of the other assumptions, and it may be verified as follows:

Since $\pi_{2}(X, X_{a})=0$ and $\pi_{1}(X)=0,$ $\pi_{1}(X_{a})=0(a=1,2)$ . Then by the Hurewicz
isomorphism theorem, $H_{q}(X, X_{2})=0,$ $\pi_{3}(X, X_{2})\approx H_{3}(X, X_{2})$ . From the excision pro-
perty of (X; $X_{I},$ $X_{2}$), $H_{2}(X_{1}, A)\approx H_{2}(X, X_{2})=0$ . Then, since $X_{1}$ and $A$ are l-connected,
we have $\pi_{2}(X_{1}, A)=0$ and $\pi_{3}(X_{1}, A)\approx H_{3}(X_{1}, A)$ . Consequently $\pi_{3}(X_{1}, A)\approx\pi_{8}(X, X_{8})$

(by the isomorphism induced by the inclusion map). Then from the exactness of
the homotopy sequence of triad (X; $X_{1},$ $X_{2}$), it follows that $\pi_{3}(X;X_{1}, X_{2})=0$ .

Proof of (2.9). The proof proceeds after the manner of J. C. Moore [2]. By
(2.4), (2.6) and (2.7) it may be assumed that $X$ is contractible, hence the following
relations $1^{o}$ and $2^{o}$ hold [2]:

$1^{O}$ . $\pi_{q}(X_{1}\times X_{2}, Z)\approx\pi_{q+1}(X;X_{1}, X_{2})$ for all $q$ , where $Z$ is the same $8et$ as given
in (2.8).

$2^{O}$ . In the following diagram, we
have that $ j_{1}|Ker\mu$ is an isomorphism
of $Ker\mu$ with $H_{q}(X_{1}\times X_{3}, X_{1}X_{2})$ , where
$j_{1}$ is injection, $\mu$ is the natural homo-

$j_{1}$

$H_{q}(X_{1}\times X_{2})\rightarrow H_{q}(X_{1}\times X_{2}, X_{1}\vee X_{2})$

$\downarrow\mu$

$H_{q}(X_{1})+H_{q}(X_{2})$

morphism defined using the projections
of $X_{1}\times X_{2}$ on its factors. Now consider the following diagram:

$\rightarrow H_{q}(Z)/L_{q}^{\prime}\rightarrow^{i^{\prime}}H_{q}(X_{1}\times X_{2})/i(L_{q}^{\prime})\rightarrow^{j^{\prime}}H_{q}(X_{1}\times X_{2}, Z)H_{q-I}(Z)/L_{q-1}^{\prime}\underline{\partial^{\prime}}\rightarrow\ldots$

$\approx\downarrow\tau^{\prime}$ $\downarrow\mu^{\prime}$

$H_{q}(A)/L_{q}\rightarrow^{\varphi}H_{q}(X_{1})+H_{q}(X_{2})$
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where the upper horizontal sequence is C-exact one given in (2.8), $\tau^{\prime}$ and $\mu^{\prime}$ are
induced by $\tau$ and $\mu$ (for the definition of $\tau$ , see (2.8)), $\psi$ is the map given in (1.7),

and commutativity holds in the square.
Since (X; $X_{1},$ $X_{2}$) is C-excisive, its generalized Mayer-Vietoris sequence:

. . $.\rightarrow H_{q}(A)/L_{q}\rightarrow^{\psi}H_{q}(X_{1})+H_{q}(X_{2})\rightarrow^{\psi}H_{q}(X)\rightarrow^{\Delta}H_{q- 1}/L_{q- 1}\rightarrow\cdots$

is C-exact (by (1.8)). Now $X$ is contractible, hence $H_{q}(X)=0$ . Then by (1.8),
$Ker\psi={\rm Im}\Delta=0$ , i.e., $\psi$ is a monomorphism. Therefore we have ${\rm Im} i^{\prime}\cap Ker\mu^{\prime}=0$ ,
i.e., $Kerj^{\prime}\cap Ker\mu^{\prime}=0$ , and moreover $i^{J}$ is monomorphic. Thus $j^{\prime}|Ker\mu^{\prime}$ is a mono-
morphism of $Ker\mu^{\prime}$ into $H_{q}(X_{1}\times X_{2}, Z)$ . Since ${\rm Im}\partial^{\prime}\subset Keri^{\prime}=0,$ $H_{q}(X_{1}\times X_{2}, Z)=Ker\partial^{\prime}$ ,
hence

$H_{q}(X_{1}\times X_{2}, Z)/j^{\prime}(Ker\mu^{\prime})=Ker\partial^{\prime}/j^{\prime}(Ker\mu^{\prime})=Ext(Ker\partial^{\prime}/{\rm Im} j^{\prime}, {\rm Im} j^{\prime}/i^{\prime}(Ker\mu^{\prime}))$ ,

where $Ker\partial^{\prime}/{\rm Im} j^{\prime}\epsilon C$ (by (2.8)). And by (1.1) with $H_{1}=0$ ,

$\frac{H_{q}(X_{1}\times X_{2})/i(L_{q}^{\prime})}{{\rm Im} i+Ker\mu}\epsilon C$ ,

hence ${\rm Im} j^{\prime}/j^{\prime}(Ker\mu^{\prime})\epsilon C$ .
Consequently $H_{q}(X_{1}\times X_{2}, Z)$ is the C-isomorphic image of $Ker\mu^{\prime}$ by $j^{\prime}$ .
Furthermore, since $i(L_{q^{J}})\epsilon C,$ $Ker\mu$ is C-isomorphic with $Ker\mu^{\prime}=Ker\mu/i(L_{q}^{\prime})$ .
Combining these results, we find that $H_{q}(X_{1}\times X_{2}, Z)$ is C-isomorphic with $H_{q}(X_{1}\times X_{2}$ ,

$X_{1}X_{2})$ .
Then using the K\"unneth theorem, we see that $H_{q}(X_{1}\times X_{2}, Z)$ is C-isomorphic with

$\sum_{r+s=q}H_{r}(X_{1})\otimes H_{s}(X_{2})+\sum_{r+s=q-1}H_{r}(X_{1})*H_{s}(X_{2})$

$r,s>0$

for all $q$ . Since the axiom $(II_{B})$ is equivalent to the axiom $(II_{B^{\prime}})$ of [5],

$H_{r}(X_{1})\otimes H_{l}(X_{2})\in C$ for non-zero $r$ and $s$ such that $r+s<m+n-2$ ,

$H_{r}(X_{1})*H_{s}(X_{2})\epsilon C$ for all $\prime r$ and $s$ such that $r+s<m+n-2$ .
Hence

$H_{q}(X_{1}\times X_{2}, Z)\epsilon C$ for $q<m+n-2$,

$H_{m+n-2}(X_{1}\times X_{2}, Z)$ is C-isomorphic with $H_{m- 1}(X_{1})\otimes H_{n-1}(X_{2})$ .
Since $\pi_{1}(X_{\alpha})=\pi_{2}(X, X_{a})=0,$ $X_{a}$ is l-connected $(\alpha=1,2)$ , and hence $X_{1}\times X_{2}$ is also.
Moreover $\pi_{2}(X_{1}\times X_{2}, Z)\approx\pi_{3}(X;X_{1}, X_{2})=0$ . Then by the relative Hurewicz iso-
morphism theorem [5],

$\pi_{q}(X_{1}\times X_{2}, Z)\epsilon C$ for $q<m+n-2$ ,

$\pi_{m+n-2}(X_{1}\times X_{2}, Z)$ is C-isomorphic with $H_{m- 1}(X_{1})\otimes H_{n-1}(X_{2})$ .
This completes the proof of (2.9).

(2.11) $CoROLLARY$ . Let $C=C$ ( $I,$ $II_{B}$ , III). If (X; $X_{1},$ $X_{2}$) is a C-proper triad such
that
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$X_{1}\cup X_{2}$ is l-connected, $\pi_{3}(X_{1}\cup X_{2};X_{1}, X_{2})=0$ ,
$(X_{1}\cup X_{2}, X_{1})$ and $(X_{1}\cup X_{2}, X_{2})$ are 2-connected,
$H_{q}(X_{1}\cup X_{2}, X_{1})\epsilon C$ for $q<m$ , $H_{q}(X_{1}\cup X_{2}, X_{2})\epsilon C$ for $q<n$ ,
$\pi_{q}(X, X_{1}\cup X_{2})\epsilon C$ for $q<r$ ,

then $\pi_{q}(X;X_{1}, X_{\mathfrak{g}})\epsilon C$ for $q<\min(m+n-1, r)$ .
Proof. By (2.9), we have that $\pi_{q}(X_{1}\cup X_{2};X_{1}, X_{2})\epsilon C$ for $q<m+n-1$ . Therefore

by the exactness of the following homotopy sequence of tetrad (X; $X_{1}\cup X_{2},$ $X_{1},$ $X_{2}$):

$\rightarrow\pi_{q}(X_{1}\cup X_{2};X_{1}, X_{2})\rightarrow\pi_{q}(X;X_{1}, X_{2})\rightarrow\pi_{q}(X;X_{1}\cup X_{2};X_{1}, X_{2})$

$\rightarrow\pi_{q-1}(X_{1}\cup^{\backslash }X_{2};X_{1}, X_{2})\rightarrow\cdots$ ,

we have that $\pi_{q}(X;X_{1}, X_{2})\rightarrow\pi_{q}(X;X_{1}\cup X_{2}, X_{1}, X_{2})$ is C-isomorphic for $q<m+n-1$ .
Since $\pi_{q}(X;X_{1}\cup X_{2}, X_{1}, X_{2})\approx\pi_{q}(X, X_{1}\cup X_{2})$ for all $q$ , it follows, from the assump-
tion: $\pi_{q}(X, X_{1}\cup X_{2})\epsilon C$ for $q<r$ , that $\pi_{q}(X;X_{1}, X_{2})\epsilon C$ for $q<\min(m+n-1, r)$ .

\S 3. The Hurewicz isomorphism theorem for triad

The matter of this section has no intimate relations with that of preceding
sections. The following theorem is a formal generalization of the relative Hurewicz
isomorphism theorem due to J.-P. Serre [5].

(3.1) THEOREM. Let (X; $X_{1},$ $X_{2}$) be a triad such that
$X,$ $X_{1},$ $X_{2}$ and $X_{1}\cap X_{2}$ are l-connected,
the inclusion maps $\pi_{2}(X_{2})\rightarrow\pi_{2}(X)$ and $\pi_{2}(X_{1}\cap X_{2})\rightarrow\pi_{2}(X_{1})$ are epimorphic,
$\pi_{q}(X_{1}, X_{1}\cap X_{2})\epsilon C$ for $q\leq n$ ,

where $C=C$ ( $I,$ $II_{B}$ , III). If $\pi_{q}(X;X_{1}, X_{2})\epsilon C$ for $q<n$ , we have that $H_{q}(X;X_{1}, X_{2})\epsilon C$

for $0<q<n$ and the natural map $\omega_{2}$ ; $\pi_{q}(X;X_{1}, X_{2})\rightarrow H_{q}(X;X_{1}, X_{2})$ is C-isomorphic
for $q=n$ and C-epimorphic for $q=n+1$ .

Proof. The Hurewicz isomorphism theorem implies that $H_{q}(X_{1}, X_{1}\cap X_{2})\in C$ for
$q\leq n$ . Therefore the exactness of the homology sequence of (X; $X_{1},$ $X_{2}$) implies
that the homomorphism

$j_{*}:$ $H_{q}(X, X_{2})\rightarrow H_{q}(X;X_{1}, X_{2})$ ,

induced by inclusion, is C-isomorphic for $q\leq n$ and is C-epimorphic for $q=n+1$ .
Similarly by the assumptions: $\pi_{q}(X_{1}, X_{1}\cap X_{2})\epsilon C$ for $q\leq n$ , and by the exactness of
the homotopy sequence of (X; $X_{1},$ $X_{2}$), we have that

$j_{0}$ ; $\pi_{q}(X, X_{2})\rightarrow\pi_{q}(X;X_{1}, X_{2})$

is C-isomorphic for $q\leq n$ .
From the hypotheses: $\pi_{q}(X;X_{1}, X_{2})\in C$ for $q<n$ , we have that $\pi_{q}(X, X_{2})\epsilon C$ for
$q<n$ , and by the application of the Hurewicz isomorphism theorem we see that
$H_{q}(X, X_{3})\in C$ for $q<n$ and the natural homomorphism



68 E. HONMA

$\omega_{1}$ ; $\pi_{q}(X, X_{2})\rightarrow H_{q}(X, X_{2})$

is C-isomorphic for $q\leq n$ and C-epimorphic for $q=n+1$ .
Consequently $H_{q}(X;X_{1}, X_{2})\epsilon C$ for $q<n$ , and from the following commutative dia-
grams, where $j_{0},$ $j_{*}$ and $\omega_{1}$ in the left diagram are $C$-isomorphisms and $j_{*}$ and $\omega_{1}$

in the right diagram are C-epimorphisms, it follows that the natural homomorphism
$\omega_{2}$ ; $\pi_{q}(X;X_{1}, X_{2})\rightarrow H_{q}(X;X_{1}, X_{2})$ is C-isomorphic for $q=n$ and C-epimorphic for
$q=n+1$ .

$j_{0}$

$\pi_{n}(X, X_{2})\rightarrow\pi_{n}(X;X_{1}, X_{2})$

$\omega_{1}\downarrow$ $ a_{2}\downarrow$

$j_{*}$

$H_{n}(X, X_{2})\rightarrow H_{n}(X:X_{1}, X_{2})$

$j_{0}$

$\pi_{n+1}(X, X_{2})\rightarrow\pi_{n+1}(X_{1}X_{1}, X_{2})$

$ v_{1}\downarrow$ $\omega_{2}\downarrow$

$j_{*}$

$H_{n+1}(X, X_{2})\rightarrow H_{n+1}(X;X_{1}, X_{2})$

Thus the proof is complete.
(3.2) $CoROLLARY$ . Let (X; $X_{1},$ $X_{2}$) be the triad mentioned in (3.1). $i_{f}H_{q}(X:X_{1}$ ,

$X_{2})\epsilon C=C$( $I,$ $II_{B}$ , III) for $0<q<n$ , we have that
$\pi_{q}(X;X_{1}, X_{2})\epsilon C$ for $2\leq q<n$ ,

and the natural homomorphism $\omega_{2}$ ; $\pi_{q}(X;X_{1}, X_{2})\rightarrow H_{q}(X;X_{1}, X_{2})$ is C-isomorphic for
$q=n$ and C-epimorphic for $q=n+1$ .

Proof. Since the inclusion map: $\pi_{2}(X_{2})\rightarrow\pi_{2}(X)$ is epimorphic and $\pi_{1}(X_{I})=0$ ,
$\pi_{2}(X, X_{2})=0$ . Since $\pi_{1}(X_{1})=0,$ $\pi_{1}(X_{1}, X_{1}\cap X_{2})=0$ . Then by the exactness of the
homotopy sequence of (X; $X_{1},$ $X_{2}$) we have that $\pi_{2}(X;X_{1}, X_{2})=0\epsilon C$ .
Our corollary now follows from (3.1).
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