On \mathcal{C}-excisive triads

By
Eiitirô Honma
(Received July 20, 1957)

The principal purpose of this paper is to generalize well-known properties of excisive triads by means of the e -notion of Abelian groups which was introduced by J.-P. Serre [5].

Namely, in §1 we shall define the Mayer-Vietoris sequence of C-excisive triad and its C-exactness will be shown (see (1.7) and (1.8)), in §2 the Blakers and Massey triad theorem given by J. C. Moore [2] will be extended for the case of e-excisive triad (see (2.9)). And the Hurewicz isomorphism theorem for triad will be given in the last section (§3, (3.1)).

Throughout the present paper, all triads will be assumed to be those of arcwise connected topological spaces, and homology will always mean singular cubic homology. By $\mathcal{C}=\mathcal{C}\left(I, I_{B}\right)$ for example, we mean that \mathcal{C} is a class of Abelian groups which satisfies the axioms (I) and (II_{B}) given in [5]. Im, Ker, Coker and $\lambda^{-1}()$ mean image, kernel, cokernel and inverse image by λ, respectively.

A triad ($X ; X_{1}, X_{2}$) will be called C-excisive, if $X=X_{1} \cup X_{2}, X, X_{1}, X_{2}$ and $X_{1} \cap X_{2}$ are arcwise connected and the inclusion map $k_{2}:\left(X_{1}, X_{1} \cap X_{2}\right) \rightarrow\left(X, X_{2}\right)$ induces the e-isomorphism

$$
k_{2 *}: H_{q}\left(X_{1}, X_{1} \cap X_{2}\right) \rightarrow H_{q}\left(X, X_{2}\right) \quad \text { for all } q .
$$

A triad ($X ; X_{1}, X_{2}$) will be called e-proper, if ($X_{1} \cup X_{2} ; X_{1}, X_{2}$) is C-excisive.
Let A and B be two subgroups of a same Abelian group. A will be called C-equal to B, if the inclusion maps $A \cap B \rightarrow \mathrm{~A}$ and $A \cap B \rightarrow B$ are \mathcal{C}-isomorphisms.

A sequence of groups $\left\{G_{q}, f_{q}\right\}$ will be called e-exact, if the image of G_{q+1} by $f_{q+1}: G_{q+1} \rightarrow G_{q}$ is \mathcal{C}-equal to the kernel of $f_{q}: G_{q} \rightarrow G_{q-1}$, for each q.

Let $\left(X ; X_{1}, X_{2}\right)$ be a triad. Let $x \in X$, and let X^{*} be the space of paths in X which start at x. Define $p: X^{*} \rightarrow X$ by $p(f)=f(1)$. Let $X_{\alpha}^{*}=p^{-1}\left(X_{\alpha}\right)(\alpha=1,2)$. The $\operatorname{triad}\left(X^{*}, X_{1}^{*}, X_{2}^{*}\right)$ will be called the associated triad of the $\operatorname{triad}\left(X ; X_{1}, X_{2}\right)$.

§ 1. The Mayer-Vietoris sequence of a \mathfrak{C}-excisive triad

(1.1) Proposition. Let G, H and K be Abelian groups and let $\lambda: G \rightarrow H$ and $\mu: H \rightarrow K$ be homomorphisms such that $\mu \circ \lambda$ is a \mathcal{C}-isomorphism of G with K, where $\mathcal{C}=\mathcal{C}(\mathrm{I})$. Then $\operatorname{Im} \lambda \cap \operatorname{Ker} \mu \in \mathcal{C}, \lambda$ is \mathcal{C}-monomorphic, μ is \mathcal{C}-epimorphic, μ is a \mathcal{e} isomorphism of $\operatorname{Im} \lambda$ with K and the inclusion $\operatorname{map} \theta: \operatorname{Im} \lambda / H_{1}+\operatorname{Ker} \mu / H_{1} \rightarrow H / H_{1}$ is

C-isomorphic (in detail, monomorphic and \mathcal{C}-epimorphic) where $H_{1}=\operatorname{Im} \lambda \cap \operatorname{Ker} \mu$ is a subgroup of H.

Proof. Since $\mu \circ \lambda$ is a C-isomorphism of G with $K, K / \mu \lambda(G) \in \bigodot$ and $\lambda^{-1}\left(H_{1}\right) \in \bigodot$. The first relation implies that $\mu \mid \lambda(G): \lambda(G) \rightarrow K$ is C-epimorphic. It follows from the second relation that $H_{1} \in \mathcal{C}$, namely $\mu \mid \lambda(G): \lambda(G) \rightarrow K$ is \mathcal{C}-monomorphic. Therefore μ is a C-isomorphism of $\lambda(G)$ with K. Since $K / \mu(H)$ is the image of the canonical epimorphism: $K / \mu \lambda(G) \rightarrow K / \mu(H)$, we have $K / \mu(H) \in \mathcal{C}$, namely μ is \mathcal{C} epimorphic. Since $\operatorname{Ker} \lambda \subset \operatorname{Ker}(\mu \circ \lambda) \in \varrho, \lambda$ is \mathcal{C}-monomorphic. And $\operatorname{Im} \lambda \cap \operatorname{Ker} \mu$ $=\operatorname{Ker}(\mu \circ \lambda) \in \mathcal{C}$. Secondly it is clear that θ is a monomorphism, and

$$
\frac{H / H_{1}}{\operatorname{Im} \lambda / H_{1}+\operatorname{Ker} \mu / H_{1}}=\operatorname{Ext}\left(\mu(H) / \mu \lambda(G), \frac{\mu^{-1} \mu \lambda(G) / H_{1}}{\lambda(G) / H_{1}+\operatorname{Ker} \mu / H_{1}}\right)
$$

where $\mu(H) / \mu \lambda(G) \subset K / \mu \lambda(G)=\operatorname{Coker}(\mu \circ \lambda) \in \varrho$.
On the other hand, put $G_{1}=\lambda^{-1}\left(H_{1}\right)$ and let $\bar{\lambda}: G / G_{1} \rightarrow \mu^{-1} \mu \lambda(G) / H_{1}, \bar{\mu}: \mu^{-1} \mu \lambda(G) / H_{1}$ $\rightarrow \mu \lambda(G)$ be the homomorphisms induced by λ, μ respectively, then it is easy to see that $\bar{\mu} \circ \bar{\lambda}: G / G_{1} \rightarrow \mu \lambda(G)$ is an isomorphism. Therefore,

$$
\mu^{-1} \mu \lambda(G) / H_{1}=\bar{\lambda}\left(G / G_{1}\right)+\operatorname{Ker} \bar{\mu}=\lambda(G) / H_{1}+\operatorname{Ker} \mu / H_{1} .
$$

Hence

$$
\frac{H / H_{1}}{\operatorname{Im} \lambda / H_{1}+\operatorname{Ker} \mu / H_{1}} \approx \mu(H) / \mu \lambda(H) \in \varrho .
$$

Consequently $\boldsymbol{\theta}$ is e -epimorphic. This completes the proof.
(1.2) Lemma. In the following diagram of Abelian groups and homomorphisms, assume that commutativity holds in each triangle and $\operatorname{Im} i_{\alpha}=\operatorname{Ker} j_{\alpha}(\alpha=1,2)$. If k_{1} and k_{2} are \mathcal{C}_{-} isomorphisms, then the homomorphism $i: G_{1}+G_{2}$ $\rightarrow G$ defined by $i\left(g_{1}, g_{2}\right)=i_{1}\left(g_{1}\right)+i_{2}\left(g_{2}\right)$ for $g_{\alpha} \in G_{\alpha}$ ($\alpha=1,2$) is \mathcal{C}-isomorphic, where $\mathcal{C}=\mathcal{C}(I)$, and further we have that $\operatorname{Im} i_{1} \cap \operatorname{Im} i_{2} \in \mathcal{C}$.

Proof. Let $g_{\alpha} \in G_{\alpha}(\alpha=1,2)$ be elements such that $\left(g_{1}, g_{2}\right) \in \operatorname{Ker} i$, namely $i_{1}\left(g_{1}\right)$ $+i_{2}\left(g_{2}\right)=0$. Applying j_{1}, we have $j_{1} i_{2}\left(g_{2}\right)=0$, i.e. $k_{1}\left(g_{2}\right)=0$. Similarly $k_{2}\left(g_{1}\right)=0$. Thus Ker $i \subset \operatorname{Ker} k_{1}+\operatorname{Ker} k_{2} \in \mathcal{C}$. On the other hand, for each $x \in j_{1}^{-1} j_{1} i_{2}\left(G_{2}\right)$ there exists $y_{2} \in G_{2}$ such that $j_{1}(x)=j_{1} i_{2}\left(y_{2}\right)$. Therefore $x-i_{2}\left(y_{2}\right) \in \operatorname{Ker} j_{1}=\operatorname{Im} i_{1}$, hence there exists $y_{1} \in G_{1}$ such that $x-i_{2}\left(y_{2}\right)=i_{1}\left(y_{1}\right)$. Namely $x=i_{1}\left(y_{1}\right)+i_{2}\left(y_{2}\right) \in i_{1}\left(G_{1}\right)+i_{2}\left(G_{2}\right)$. Thus $j_{1}^{-1} j_{1} i_{2}\left(G_{2}\right) \subset i_{1}\left(G_{1}\right)+i_{2}\left(G_{2}\right)$. Since $j_{1}^{-1} j_{1} i_{2}\left(G_{2}\right) \supset i_{1}\left(G_{1}\right)+i_{2}\left(G_{2}\right)$, we have $j_{1}^{-1} j_{1} i_{2}\left(G_{2}\right)$ $=i_{1}\left(G_{1}\right)+i_{2}\left(G_{2}\right)$, and

$$
\text { Coker } i=\frac{G}{i_{1}\left(G_{1}\right)+i_{2}\left(G_{2}\right)} \approx j_{1}(G) / j_{1} i_{2}\left(G_{2}\right) \subset G_{1}^{\prime} / k_{1}\left(G_{2}\right)=\text { Coker } k_{1} \in \varrho .
$$

Thus i is a e-isomorphism.
By (1.1), $i_{1}\left(G_{1}\right) \cap i_{2}\left(G_{2}\right)=i_{1}\left(G_{1}\right) \cap \operatorname{Ker} j_{2} \in \varrho$.
(1.3) Lemma. (The generalization of the hexagonal lemma, cf. [1].) In the following diagram of groups and homomorphisms,
 assume that commutativity holds in each triangle, $\operatorname{Im} i_{\alpha}=\operatorname{Ker} j_{\alpha}(\alpha=1,2), j_{0} i_{0}=0$. Then for each $x \in G_{0}$ we have that

$$
\begin{aligned}
& h_{1} k_{1}^{-1} l_{1}(x)+h_{2} k_{2}^{-1} l_{2}(x) \subset h_{1}\left(\operatorname{Ker} k_{1}\right) \\
& \quad=h_{2}\left(\operatorname{Ker} k_{2}\right)=j_{0}\left(\operatorname{Im} i_{1} \cap \operatorname{Im} i_{2}\right) .
\end{aligned}
$$

Proof. For each $y_{2} \in h_{1} k_{1}^{-1} l_{1}(x)$ and $y_{1} \in h_{2} k_{2}^{-1} l_{2}(x)$, there exist $y_{2}{ }^{\prime} \in k_{1}^{-1} l_{1}(x)$ and $y_{1}^{\prime} \in k_{2}^{-1} l_{2}(x)$ such that $h_{1}\left(y_{2}{ }^{\prime}\right)=y_{2}, h_{2}\left(y_{1}{ }^{\prime}\right)=y_{1}$. Since $k_{1}\left(y_{2}{ }^{\prime}\right)=l_{1}(x)$, i.e. $j_{1} i_{2}\left(y_{2}{ }^{\prime}\right)$
$=j_{1} i_{0}(x)$, we have $i_{2}\left(y_{2}{ }^{\prime}\right)-i_{0}(x) \in \operatorname{Ker} j_{1}=\operatorname{Im} i_{1}$. Therefore there exists $y_{1}{ }^{\prime \prime} \in G_{1}$ such that $i_{2}\left(y_{2}{ }^{\prime}\right)-i_{0}(x)=i_{1}\left(y_{1}{ }^{\prime \prime}\right)$. Applying j_{2}, we have $-l_{2}(x)=k_{2}\left(y_{2}{ }^{\prime \prime}\right)$. Since $k_{2}\left(y_{1}{ }^{\prime}\right)=l_{2}(x)$, $k_{2}\left(y_{1}{ }^{\prime}+y_{1}{ }^{\prime \prime}\right)=0$, i.e. $y_{1}{ }^{\prime}+y_{1}{ }^{\prime \prime} \in \operatorname{Ker} k_{2}$. Then

$$
\begin{aligned}
y_{1}+y_{2} & =h_{2}\left(y_{1}{ }^{\prime}\right)+h_{1}\left(y_{2}^{\prime}\right)=h_{2}\left(y_{1}^{\prime}\right)+j_{0} i_{2}\left(y_{2}^{\prime}\right)=h_{2}\left(y_{1}^{\prime}\right)+j_{0}\left(i_{0}(x)+i_{1}\left(y_{1}^{\prime \prime}\right)\right) \\
& =h_{2}\left(y_{1}^{\prime}\right)+j_{0} i_{1}\left(y_{1}^{\prime \prime}\right)=h_{2}\left(y_{1}^{\prime}+y_{1}^{\prime \prime}\right) \in h_{2}\left(\operatorname{Ker} k_{2}\right) .
\end{aligned}
$$

Moreover,
Applying j_{0},
$\operatorname{Im} i_{1} \cap \operatorname{Im} i_{2}=\operatorname{Im} i_{1} \cap \operatorname{Ker} j_{2}=i_{1}\left(\operatorname{Ker} k_{2}\right)$.
$h_{2}\left(\operatorname{Ker} k_{2}\right)=j_{0}\left(\operatorname{Im} i_{1} \cap \operatorname{Im} i_{2}\right)$.
Similarly
$h_{\mathrm{i}}\left(\operatorname{Ker} k_{1}\right)=j_{0}\left(\operatorname{Im} i_{1} \cap \operatorname{Im} i_{2}\right)$.
(1.4) Lemma. In the diagram given in (1.3), we have

$$
x_{1}-x_{2} \in h_{1}\left(\operatorname{Ker} k_{1}\right),
$$

where x_{1} and x_{2} are arbitrary elements of $h_{1} k_{1}^{-1}(x)$ for each $x \in G_{1}$.
Proof. Since $x_{\alpha} \in h_{1} k_{1}^{-1}(x)(\alpha=1,2)$, there exists $y_{\alpha} \in k_{1}^{-1}(x)$ such that $h_{1}\left(y_{\alpha}\right)=x_{\alpha}$. Then $x_{1}-x_{2}=h_{1}\left(y_{1}-y_{2}\right)$. Since $k_{1}\left(y_{1}-y_{2}\right)=x-x=0, x_{1}-x_{2} \in h_{1}\left(\operatorname{Ker} k_{1}\right)$.
(1.5) Lemma. If $\mathcal{e}=\mathfrak{e}(\mathrm{I})$, then the conditions for a triad $\left(X ; X_{1}, X_{2}\right)$ to be e excisive are equivalent to the following conditions: $X=X_{1} \cup X_{2}, X, X_{1}, X_{2}, X_{1} \cap X_{2}$ are arcwise connected and $H_{q}\left(X ; X_{1}, X_{2}\right) \in \mathcal{C}$ for all q.

This is trivial.
(1.6) Lemma. The conditions given in (1.5) are equivalent to the following conditions: $X=X_{1} \cup X_{2}, X, X_{1}, X_{2}, X_{1} \cap X_{2}$ are arcwise connected and the inclusion map $k_{1}:\left(X_{2}, X_{1} \cap X_{2}\right) \rightarrow\left(X, X_{1}\right)$ induces the ©-isomorphism $k_{1 *}: H_{q}\left(X_{2}, X_{1} \cap X_{2}\right) \rightarrow H_{q}(X$, $\left.X_{1}\right)$ for all q.

This lemma is also trivial.
In order to define the generalized Mayer-Vietoris sequence of a C-excisive triad (X, X_{1}, X_{2}), observe the following diagram, in which $A=X_{1} \cap X_{2}$ and all homomorphisms other than $\partial, \partial_{1}, \partial_{2}$ are induced by inclusion maps. Commutativity holds in each triangle, and the lower hexagon satisfies the hypotheses of (1.3). Furthermore $i_{1 *} n_{1 *}=j_{*} m_{1 *}, i_{2 *} n_{2 *}=j_{*} m_{2 *}$, and $k_{2 *}$ is a C-isomorphism, and by (1.6), $k_{1 *}$ is also a e-isomorphism.

(1.7) Definition. The generalized Mayer-Vietoris sequence of a Cexcisive $\operatorname{triad}\left(X ; X_{1}, X_{2}\right)$ with $A=X_{1} \cap X_{2}$ is the following sequence:

$$
\cdots \rightarrow H_{q}(A) / L_{q} \xrightarrow{\psi} H_{q}\left(X_{1}\right)+H_{q}\left(X_{2}\right) \xrightarrow{\varphi} H_{q}(X) \xrightarrow{\Delta} H_{q-1}(A) / L_{q-1} \rightarrow \cdots,
$$

where $L_{q-1}=\partial_{1}\left(\operatorname{Ker} k_{1 *}\right)$ which is equal to $\partial_{2}\left(\operatorname{Ker} k_{2 *}\right)$ and to $\partial\left(i_{1 *} H_{q}\left(X_{1}, A\right) \cap i_{2 *} H_{q}\right.$ (X_{2}, A)) (by (1.3)),
$\psi(\{u\})=\left(h_{1 *}(u),-h_{2 *}(u)\right)$ for $\{u\} \in H_{q}(A) / L_{q}$, the quotient class represented by $u \in H_{q}(A)$,

$$
\begin{aligned}
& \varphi\left(v_{1}, v_{2}\right)=m_{1 *}\left(v_{1}\right)+m_{2 *}\left(v_{2}\right) \text { for } v_{\alpha} \in H_{q}\left(X_{\alpha}\right)(\alpha=1,2), \\
& \Delta(w)=-\partial_{1} k_{1 *}^{-1} l_{1 *}(w) / L_{q-1} \quad \text { for } w \in H_{q}(X) .
\end{aligned}
$$

Since $h_{\alpha *}\left(L_{q}\right)=0(\alpha=1,2), \phi$ is a well-defined homomorphism. By (1.4), the difference of any two elements of $\partial_{1} k_{1 *}^{-1} l_{1 *}(w)$ is contained in L_{q-1}, hence Δ is well-defind.
(1.8) Theorem. The generalized Mayer-Vietoris sequence of a \mathcal{C}-excisive triad $\left(X ; X_{1}, X_{2}\right)$ is \mathcal{C}-exact, where $\mathcal{C}=\mathcal{C}(\mathrm{I})$. In detail, $\operatorname{Im} \psi \subset \operatorname{Ker} \varphi, \operatorname{Ker} \varphi / \operatorname{Im} \psi \in \mathcal{C}$, $\operatorname{Im} \varphi=\operatorname{Ker} \Delta, \operatorname{Im} \Delta=\operatorname{Ker} \psi$.

Proof. 1) By a manner similar to that given in [1] for the case of an ordinary excisive triad, it is possible to prove that $\operatorname{Im} \psi \subset \operatorname{Ker} \varphi, \operatorname{Im} \varphi \subset \operatorname{Ker} \Delta$ and $\operatorname{Im} \Delta=\operatorname{Ker} \psi$.
2) If $w \in H_{q}(X)$ and $\Delta(w)=0$, then $\partial_{1} k_{1 *}^{-1} l_{1 *}(w) \subset L_{q-1}=\partial_{1}$ (Ker $k_{1 *}$). Therefore, for each $x \in k_{1 *}^{-1} l_{1 *}(w)$ there exists $y \in \operatorname{Ker} k_{1 *}$ such that $\partial_{1}(x)=\partial_{1}(y)$, i.e., $x-y \in \operatorname{Ker} \partial_{1}$ $=n_{2 *} H_{q}\left(X_{2}\right)$. Thus there exists $v_{2} \in H_{q}\left(X_{2}\right)$ such that $x-y=n_{2 *}\left(v_{z}\right)$. Applying $k_{1 *}$ we have that

$$
l_{1 *}(w)=k_{1 *} n_{2 *}\left(v_{2}\right)=l_{1 *} m_{2 *}\left(v_{2}\right), \text { i.e., } w-m_{2 *}\left(v_{2}\right) \in \operatorname{Ker} l_{1 *}=m_{1 *} H_{q}\left(X_{1}\right) .
$$

Consequently there exists $v_{1} \in H_{q}\left(X_{1}\right)$ such that $w-m_{2 *}\left(v_{2}\right)=m_{1 *}\left(v_{1}\right)$, i.e., $w=m_{1 *}$ $\left(v_{1}\right)+m_{2 *}\left(v_{2}\right)=\varphi\left(v_{1}, v_{2}\right)$.
3) Setting $M=m_{1 *} H_{q}\left(X_{1}\right) \cap m_{2 *} H_{q}\left(X_{2}\right)$, we have

$$
\operatorname{Ker} \varphi / \operatorname{Im} \psi \subset m_{1 *}^{-1}(M) / h_{1 *} H_{q}(A)+m_{2 *}^{-1}(M) / h_{2 *} H_{q}(A),
$$

and

$$
m_{1 *}^{-1}(M) / h_{1 *} H_{q}(A)=\operatorname{Ext}\left(n_{1 *} m_{1 *}^{-1}(M), \frac{\operatorname{Ker} n_{1 *}}{h_{1 *} H_{q}(A)}\right)
$$

Now $k_{2 *} n_{1 *} m_{1 *}^{-1}(M)=l_{2 *} m_{1 *} m_{1 *}^{-1}(M)=l_{2 *}(M) \subset l_{2 *} m_{2 *} H_{q}\left(X_{2}\right)=0$ and hence $n_{1 *} m_{1 *}^{-1}(M) \subset$ Ker $k_{2 *} \in$ C. Since $\operatorname{Ker} n_{1 *}=h_{1 *} H_{q}(A), m_{1 *}^{-1}(M) / h_{1 *} H_{q}(A) \in$ C. Similarly $m_{2 *}^{-1}(M) / h_{2 *} H_{q}$ $(A) \in$ e. Consequently $\operatorname{Ker} \varphi / \operatorname{Im} \psi \in$ e. By 1) and 3) we have that $\operatorname{Ker} \varphi$ is $C_{\text {-equal }}$ to $\operatorname{Im} \psi$. The proof of (1.8) is complete.

The homology sequence of a C-proper triad $\left(X ; X_{1}, X_{2}\right)$ may be defined as follows: In the following diagram
the upper horizontal sequence is the homology exact sequence of the triple ($X, X_{1} \cup X_{2}, X_{2}$), k is a \mathcal{C}-isomorphism induced by inclusion map, θ is the canonical map. We define ∂^{\prime} and i^{\prime} as follows:

$$
\partial^{\prime}(x)=\theta k^{-1} \partial(x) \text { for } x \in H_{q+1}\left(X, X_{1} \cup X_{2}\right),
$$

$i^{\prime}(\{y\})=i k(y)$ for $\{y\} \in H_{q}\left(X_{1}, X_{1} \cap X_{2}\right) / \operatorname{Ker} k$, the quotient class represented by $y \in H_{q}\left(X_{1}, X_{1} \cap X_{2}\right)$.
(1.9) Definition. The homology sequence of the e-proper $\operatorname{triad}\left(X ; X_{1}, X_{2}\right)$ is the following:

$$
\cdots \rightarrow H_{q+1}\left(X, X_{2}\right) \xrightarrow{j} H_{q+1}\left(X, X_{1} \cup X_{2}\right) \xrightarrow{\partial^{\prime}} H_{q}\left(X_{1}, X_{1} \cap X_{2}\right) / \text { Ker } k \xrightarrow{i^{\prime}} H_{q}\left(X, X_{2}\right) \rightarrow \cdots .
$$

(1.10) Theorem. The homology sequence of the \mathcal{C}-proper $\operatorname{triad}\left(X ; X_{1}, X_{2}\right)$ is \mathcal{C}-exact, where $\mathcal{C}=\mathcal{C}(\mathrm{I})$. In detail, $\operatorname{Im} j=\operatorname{Ker} \partial^{\prime}, \operatorname{Im} \partial^{\prime}=\operatorname{Ker} i^{\prime}, \operatorname{Im} i^{\prime} \subset \operatorname{Ker} j$ and $\operatorname{Ker} j / \operatorname{Im} i^{\prime} \in \mathbb{C}$.

Proof. It is clear that $\operatorname{Im} j=\operatorname{Ker} \partial^{\prime}, \operatorname{Im} \partial^{\prime} \subset \operatorname{Ker} i^{\prime}$ and $\operatorname{Im} i^{\prime} \subset \operatorname{Ker} j$.
Now

$$
\operatorname{Ker} i^{\prime} / \operatorname{Im} \partial^{\prime}=\frac{k^{-1}(\operatorname{Im} k \cap \operatorname{Ker} i) / \operatorname{Ker} k}{k^{-1} \partial H_{q+1}\left(X, X_{1} \cup X_{2}\right) / \operatorname{Ker} k}=\frac{k^{-1}(\operatorname{Im} k \cap \operatorname{Im} \partial)}{k^{-1}(\operatorname{Im} \partial)}=0 .
$$

Thus $\operatorname{Im} \partial^{\prime}=\operatorname{Ker} i^{\prime}$.
Secondly
$\operatorname{Ker} j / \operatorname{Im} i^{\prime}=\operatorname{Im} i / \operatorname{Im}(i \circ k)=\frac{i H_{q}\left(X_{1} \cup X_{2}, X_{2}\right)}{i k H_{q}\left(X_{1}, X_{1} \cap X_{2}\right)}=$ image of Coker $k \in \mathbb{e}$.

§ 2. The Blakers and Massey theorem for a C-excisive triad

(2.1) Lemma. Let A and B be Abelian groups, and A^{\prime} and B^{\prime} be subgroups of A and B, respectively. If $h: A \rightarrow B$ is a C-isomorphism and $h \mid A^{\prime}$ is a C-epimorphism from A^{\prime} to B^{\prime}, then $h^{*}: A / A^{\prime} \rightarrow B / B^{\prime}$, the canonical homomorphism induced by h, is C -isomorphism, where $\mathfrak{C}=\mathfrak{C}(\mathrm{I})$.

Proof. h^{*} is the composition of two homomorphisms

$$
A / A^{\prime} \xrightarrow{\bar{h}} B / h\left(A^{\prime}\right) \xrightarrow{\theta} B / B^{\prime},
$$

where \bar{h} is induced by h and θ is the canonical epimorphism. Since \bar{h} is e-isomorphic [3, Proposition 3], h^{*} is \mathcal{C}-epimorphic.
Furthermore $\quad \operatorname{Ker} h^{*}=\bar{h}^{-1}\left(B^{\prime} / h\left(A^{\prime}\right)\right)=\operatorname{Ext}\left(h h^{-1}\left(B^{\prime}\right) / h\left(A^{\prime}\right)\right.$, $\left.\operatorname{Ker} \bar{h}\right)$.
Since $h h^{-1}\left(B^{\prime}\right) / h\left(A^{\prime}\right) \subset B^{\prime} / h\left(A^{\prime}\right) \in \mathcal{C}$, $\operatorname{Ker} \bar{h} \in \mathcal{C}$, we have Ker $h^{*} \in \mathcal{C}$.
(2.2) Lemma. In the following diagram of Abelian groups and homomorphisms, assume that h_{1} is a C-epimorphism, h_{2} is a C-isomorphism and h_{3} is a \bigodot-monomorphism, where $\mathcal{C}=\mathcal{C}(\mathrm{I})$. If the commutativity holds in each square, then $h_{2}{ }^{\prime}=h_{2} \mid \operatorname{Ker} f_{2}$ is a e-isomorphism of $\operatorname{Ker} f_{2}$ with $\operatorname{Ker} g_{2}$ and $h_{2}{ }^{\prime \prime}=h_{2} \mid \operatorname{Im} f_{1}$ is a \mathcal{C}-isomorphism of $\operatorname{Im} f_{1}$ with $\operatorname{Im} g_{1}$.

Proof. By the commutativity in each square, we have

$$
h_{2}\left(\operatorname{Ker} f_{2}\right) \subset \operatorname{Ker} g_{2}, \quad h_{2}\left(\operatorname{Im} f_{1}\right) \subset \operatorname{Im} g_{1} .
$$

Furthermore

$$
\text { Ker } h_{2^{\prime}}=\operatorname{Ker} f_{2} \cap \operatorname{Ker} h_{2} \subset \operatorname{Ker} h_{2} \in \mathcal{C},
$$

Coker $h_{2}{ }^{\prime}=\operatorname{Ker} g_{2} / h_{2}\left(\operatorname{Ker} f_{2}\right)=\operatorname{Ext}\left(\operatorname{Ker} g_{2} / h_{2} f_{2}{ }^{-1}\left(\operatorname{Ker} h_{3}\right), h_{2} f_{2}{ }^{-1}\left(\operatorname{Ker} h_{3}\right) / h_{2}\left(\operatorname{Ker} f_{2}\right)\right)$. Now the following relations hold:

$$
h_{2}\left(A_{2}\right) \cap \operatorname{Ker} g_{2} \subset h_{2} f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right) \subset \operatorname{Ker} g_{2} .
$$

To prove the first, let x be an arbitrary element of $h_{2}\left(A_{2}\right) \cap$ Ker g_{2}. There exists $y \in A_{2}$ such that $h_{2}(y)=x$. Then $g_{2} h_{2}(y)=g_{2}(x)=0$., i.e., $h_{3} f_{2}(y)=0$, hence $y \in f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right)$. Thus $x=h_{2}(y) \in h_{2} f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right)$. To prove the second, let x be an element of $h_{2} f_{2}{ }^{-1}$ (Ker h_{3}). There exists $y \in f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right)$ such that $h_{2}(y)=x$. Then $g_{2}(x)=g_{2} h_{2}(y)$ $=h_{3} f_{2}(y) \in h_{3} f_{2}\left(f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right)\right) \subset h_{3}\left(\operatorname{Ker} h_{3}\right)=0$, i.e., $x \in \operatorname{Ker} g_{2}$.
By these relations we have the following canonical epimorphism:

$$
\operatorname{Ker} g_{2} /\left(h_{2}\left(A_{2}\right) \cap \operatorname{Ker} g_{2}\right) \rightarrow \operatorname{Ker} g_{2} / h_{2} f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right) .
$$

Since

$$
\operatorname{Ker} g_{2} /\left(h_{2}\left(A_{2}\right) \cap \operatorname{Ker} g_{2}\right) \approx\left(\operatorname{Ker} g_{2}+h_{2}\left(A_{2}\right)\right) / h_{2}\left(A_{2}\right) \subset B_{2} / h_{2}\left(A_{2}\right) \in \mathcal{C} ;
$$

we obtain Ker $g_{2} / h_{2} f_{2}{ }^{-1}\left(\operatorname{Ker} h_{3}\right) \in \mathcal{C}$.
On the other hand, $h_{2} f_{2}{ }^{-1}\left(\operatorname{Ker} h_{3}\right) / h_{2}\left(\operatorname{Ker} f_{2}\right)$ is the image of $f_{2}{ }^{-1}\left(\operatorname{Ker} h_{3}\right) / \operatorname{Ker} f_{2}$ by
the homomorphism induced by h_{2}, and

$$
f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right) / \operatorname{Ker} f_{2} \approx f_{2} f_{2}^{-1}\left(\operatorname{Ker} h_{3}\right) \subset \operatorname{Ker} h_{3} \in \circlearrowright .
$$

Therefore $h_{2} f_{2}{ }^{-1}\left(\operatorname{Ker} h_{3}\right) / h_{2}\left(\operatorname{Ker} f_{2}\right) \in \mathcal{C}$. Thus Coker $h_{2}{ }^{\prime} \in \mathcal{C}$ and $h_{2}{ }^{\prime}$ is \mathcal{C}-isomorphic. The proof that $h_{2}{ }^{\prime \prime}$ is a C-isomorphism proceeds as follows:
$\operatorname{Ker} h_{2}{ }^{\prime \prime}=\operatorname{Im} f_{1} \cap \operatorname{Ker} h_{2} \subset \operatorname{Ker} h_{2} \in \mathcal{C}$,
Coker $h_{2}{ }^{\prime \prime}=g_{1}\left(B_{1}\right) /\left(h_{2} f_{1}\left(A_{1}\right)=\operatorname{Ext}\left(g_{1}\left(B_{1}\right) /\left(h_{2}\left(A_{2}\right) \cap g_{1}\left(B_{1}\right)\right),\left(h_{2}\left(A_{2}\right) \cap g_{1}\left(B_{1}\right)\right) / h_{2} f_{1}\left(A_{1}\right)\right)\right.$, where

$$
\begin{gathered}
g_{1}\left(B_{1}\right) /\left(h_{2}\left(A_{2}\right)+g_{1}\left(B_{1}\right)\right) \approx\left(g_{1}\left(B_{1}\right)+h_{2}\left(A_{2}\right)\right) / h_{2}\left(A_{2}\right) \subset B_{2} / h_{2}\left(A_{2}\right) \in \mathfrak{e}, \\
\left(h_{2}\left(A_{2}\right) \cap g_{1}\left(B_{1}\right)\right) / h_{2} f_{1}\left(A_{1}\right)=\left(h_{2}\left(A_{2}\right) \cap g_{1}\left(B_{1}\right)\right) / g_{1} h_{1}\left(A_{1}\right) \subset g_{1}\left(B_{1}\right) / g_{1} h_{1}\left(A_{1}\right) .
\end{gathered}
$$

Since $g_{1}\left(B_{1}\right) / g_{1} h_{1}\left(A_{1}\right)$ is the image of $B_{1} / h_{1}\left(A_{1}\right) \in \varrho$ by the homomorphism induced by g_{1}, we have $g_{1}\left(B_{1}\right) / g_{1} h_{1}\left(A_{1}\right) \in \mathrm{C}$ and hence

$$
\left(h_{2}\left(A_{2}\right) \cap g_{1}\left(B_{1}\right)\right) / h_{2} f_{1}\left(A_{1}\right) \in \bigodot .
$$

Consequently Coker $h_{2}{ }^{\prime \prime} \in \mathcal{C}$ and ${h_{2}}^{\prime \prime}$ is a \mathcal{C}-isomorphism.
(2.3) Lemma. In the diagram given in (2.2), if commutativity holds in each square and if further $f_{2} \circ f_{1}$ and $g_{2} \circ g_{1}$ are trivial, then h_{2} induces a C-isomorphism $h_{2}^{*}: \operatorname{Ker} f_{2} / \operatorname{Im} f_{1} \rightarrow \operatorname{Ker} g_{2} / \operatorname{Im} g_{1}$.

Proof. It follows from (2.2) that h_{2} induces C-isomorphisms $h_{2}{ }^{\prime}$ and $h_{2}{ }^{\prime \prime}$. By the trivialities of $f_{2} \circ f_{1}$ and $g_{2} \circ g_{1}$ we have that $\operatorname{Im} f_{1} \subset \operatorname{Ker} f_{2}$ and $\operatorname{Im} g_{1} \subset \operatorname{Ker} g_{2}$. Then the assertion follows from (2.1).

The following theorem concerned with the associated triad is a generalization of Theorem 3.3 of [2].
(2.4) Proposition. Let $\mathfrak{e}=\mathfrak{e}\left(\mathrm{I}, \mathrm{II}_{\mathrm{B}}\right)$. If a triad $\left(X ; X_{1}, X_{2}\right)$ is \mathfrak{e}-excisive, and X is 1-connected, then the associated triad $\left(X^{*}, X_{1}{ }^{*}, X_{2}{ }^{*}\right)$ of $\left(X ; X_{1}, X_{2}\right)$ is e-excisive.

The truth of this theorem follows from the definition of \mathfrak{e}-excisive triad once we have extended Theorem 2.2 of [2] in the following form:
(2.5) Proposition. Let (E, p, B) and ($E^{\prime}, p^{\prime}, B^{\prime}$) be fibre spaces in the sense of Serre [4] with fibre F, A and A^{\prime} be subspaces of B and B^{\prime} respectively, $D=p^{-1}(A)$, $D^{\prime}=p^{\prime-1}\left(A^{\prime}\right), B, A, B^{\prime}, A^{\prime}$ and F be arcwise connected and $\pi_{1}(B), \pi_{1}\left(B^{\prime}\right)$ operate trivially on $H_{q}(F)$ for all q, finally let $f:(E, D) \rightarrow\left(E^{\prime}, D^{\prime}\right)$ be a fibre preserving map, $f^{\prime}:(B, A) \rightarrow\left(B^{\prime}, A^{\prime}\right)$ be induced by f. If $f_{*}^{\prime}: H_{q}(B, A) \rightarrow H_{q}\left(B^{\prime}, A^{\prime}\right)$ is e -isomorphic for all q, then $f_{*}: H_{q}(E, D) \rightarrow H_{q}\left(E^{\prime}, D^{\prime}\right)$ is e-isomorphic for all q, where $\mathcal{C}=\mathfrak{C}\left(\mathrm{I}, \mathrm{II}_{\mathrm{B}}\right)$.

Application of (2.3), Corollary in [5, p. 263] and the five lemma in the case of e-notion [5] enables us to prove (2.5) in a way similar to that of Theorem 2.2 of [2].
(2.6) Remark. It should be noted that we have $\pi_{q}\left(X^{*}, X_{\alpha}^{*}\right) \approx \pi_{q}\left(X, X_{\alpha}\right)(\alpha=1,2)$ [5] and $\pi_{q}\left(X^{*} ; X_{1}{ }^{*}, X_{2}{ }^{*}\right) \approx \pi_{q}\left(X ; X_{1}, X_{2}\right)$ [2], for all q.

The following theorem is due to J.-P. Serre [5]:
Theorem S. Let (E, p, B) be a fibre space with fibre F, A be a subspace of B and $D=p^{-1}(A)$. Assume that B, A and F are arcwise connected and the local system formed by $H_{q}(F)$ on B is trivial for all q. If $H_{q}(B, A) \in \mathcal{C}$ for $0 \leqslant q<m$ and $H_{q}(F) \in \mathcal{C}$ for $0<q<r$, then the projection p induces

$$
p_{*}: H_{q}(E, D) \rightarrow H_{q}(B, A)
$$

such that p^{*} is \mathcal{C}-isomorphic for $q \leq m+r-1$ and \bigodot-epimorphic for $q \leq m+r$, where $\mathrm{e}=\mathrm{e}\left(\mathrm{I}, \mathrm{II}_{\mathrm{B}}\right)$.

As an immediate consequence of Theorem S, we have the following:
(2.7) Proposition. Let $\mathfrak{C}=\mathfrak{C}\left(\mathrm{I}, \mathrm{II}_{\mathrm{B}}\right)$. Let $\left(X ; X_{1}, X_{2}\right)$ be a triad such that
X is 1-connected, X_{1} and X_{2} are arcwise connected, $H_{q}(X) \in \mathcal{C}$ for $0<q \leqslant r, H_{q}\left(X, X_{\alpha}\right) \in \mathcal{\bigodot}$ for $q<m_{a}(\alpha=1,2)$.
Let $\left(X^{*} ; X_{1}{ }^{*}, X_{2}{ }^{*}\right)$ be the associated triad of $\left(X ; X_{1}, X_{2}\right)$ and $p:\left(X^{*} ; X_{1}{ }^{*}, X_{2}{ }^{*}\right) \rightarrow$ ($X ; X_{1}, X_{2}$) be the projection. Then p induces

$$
p_{\alpha *}: H_{q}\left(X^{*}, X_{\alpha}^{*}\right) \rightarrow H_{q}\left(X, X_{a}\right)
$$

which is \mathcal{C}-isomorphic for $q \leqslant m_{a}+r-1$ and \mathcal{C}-epimorphic for $q \leqslant m_{a}+r(\alpha=1,2)$.
Proof. Since X^{*} is contractible, we have $H_{q}\left(X^{*}\right) \in \mathcal{C}$ for each $q>0$. The axiom $\left(\mathrm{II}_{\mathrm{B}}\right)$ implies the axiom (II_{Λ}) of [5]. Therefore applying Proposition 3.A of [5, p. 269] it follows, from the assumptions: $H_{q}(X) \in \bigodot$ for $0<q \leqslant r$, that $H_{q}(F) \in \bigodot$ for $0<q<r$, where F is the fibre of $\left(X^{*}, p, X\right)$. Our theorem now follows from Theorem S.

Before we study the Blakers and Massey triad theorem, it is convenient to state the following lemma:
(2.8) Lemma. If ($X ; X_{1}, X_{2}$) is a \bigodot-excisive triad where $\mathcal{C}=\bigodot(\mathrm{I})$, then the following sequence is C -exact:

$$
\cdots \rightarrow H_{q}(Z) / L_{q}^{\prime} \xrightarrow{i^{\prime}} H_{q}\left(X_{1} \times X_{2}\right) / i\left(L_{q}^{\prime}\right) \xrightarrow{j^{\prime}} H_{q}\left(X_{1} \times X_{2}, Z\right) \xrightarrow{\partial^{\prime}} H_{q-1}(Z) / L_{q-1}^{\prime} \rightarrow \cdots
$$

where $Z=\left(X_{1} \times X_{2}\right) \cap X_{d}, X_{d}$ is the diagonal of $X \times X, L_{q}^{\prime}$ is the inverse image of L_{q} (for the definition of L_{q}, see (1.7)) by the isomorphism τ of $H_{q}(Z)$ with $H_{q}\left(X_{1} \cap X_{2}\right)$ induced by the homeomorphism $Z \approx X_{1} \cap X_{2}, i^{\prime}$ and j^{\prime} are induced by the inclusion maps $i: H_{q}(Z) \rightarrow H_{q}\left(X_{1} \times X_{2}\right)$ and $j: H_{q}\left(X_{1} \times X_{2}\right) \rightarrow H_{q}\left(X_{1} \times X_{2}, Z\right)$, and ∂^{\prime} is the composition of the two homomorphisms

$$
H_{q}\left(X_{1} \times X_{2}, Z\right) \xrightarrow{\partial} H_{q-1}(Z) \xrightarrow{\theta} H_{q-1}(Z) / L_{q-1}^{\prime},
$$

where ∂ is the boundary homomorphism and θ is the canonical map.
Proof. It is clear that
$\operatorname{Im} i^{\prime}=\operatorname{Ker} j^{\prime}, \quad \operatorname{Im} j^{\prime}=\operatorname{Ker} \partial \subset \operatorname{Ker} \partial^{\prime}, \quad \operatorname{Im} \partial^{\prime}=\operatorname{Ker} i / L_{q-1}^{\prime} \subset \operatorname{Ker} i^{\prime}$.
Furthermore $\operatorname{Ker} \partial^{\prime} / \operatorname{Im} j^{\prime}=\partial^{-1}\left(L_{\boldsymbol{q}-1}^{\prime}\right) / \operatorname{Ker} \partial$ is isomorphic with a subgroup of L_{q-1}^{\prime}.

Since ($X ; X_{1}, X_{2}$) is \mathcal{C}-excisive, it follows from (1.2) and (1.3) that $L_{q-1} \in \mathcal{C}$, hence $L_{q-1}^{\prime} \in \mathfrak{C}$. Thus $\operatorname{Ker} \partial^{\prime} / \operatorname{Im} j^{\prime} \in \mathfrak{C}$, and consequently $\operatorname{Ker} \partial^{\prime}$ is \mathfrak{C}-equal to $\operatorname{Im} j^{\prime}$. Secondly

$$
\operatorname{Ker} i^{\prime} / \operatorname{Im} \partial^{\prime}=\frac{i^{-1} i\left(L_{q-1}^{\prime}\right) / L_{q-1}^{\prime}}{\operatorname{Ker} i / L_{q-1}^{\prime}} \approx \frac{i^{-1} i\left(L_{q-1}^{\prime}\right)}{\operatorname{Ker} i} \approx i\left(L_{q-1}^{\prime}\right) \in \mathbb{C} .
$$

Therefore $\operatorname{Ker} i^{\prime}$ is \mathcal{C}-equal to $\operatorname{Im} \partial^{\prime}$.
This completes the proof of \mathcal{C}-exactness.
Now Theorem 3.4 of [2] may be generalized as follows:
(2.9) Theorem. (The generalized Blakers and Massey triad theorem) Let $\mathfrak{C}=\mathfrak{C}\left(\mathrm{I}, \mathrm{II}_{\mathrm{B}}, \mathrm{III}\right)$. If ($X ; X_{1}, X_{2}$) is a \mathfrak{e}-excisive triad with $A=X_{1} \cap X_{2}$ such that
X is 1-connected, $\left(X, X_{1}\right)$ and (X, X_{2}) are 2-connected, $\pi_{3}\left(X ; X_{1}, X_{2}\right)=0$,
then

$$
\begin{aligned}
& \pi_{q}\left(X ; X_{1}, X_{2}\right) \in \mathcal{C} \text { for } q<m+n-1 \\
& \pi_{m+n-1}\left(X ; X_{1}, X_{2}\right) \text { is } \text { e-isomorphic with } H_{m}\left(X, X_{1}\right) \otimes H_{n}\left(X, X_{2}\right) .
\end{aligned}
$$

(2.10) Remark. In (2.9), if ($X ; X_{1}, X_{2}$) is excisive in the ordinary sense, and if further A is 1 -connected, then the assumption: $\pi_{3}\left(X ; X_{1}, X_{2}\right)=0$, is an immediate consequence of the other assumptions, and it may be verified as follows:

Since $\pi_{2}\left(X, X_{\alpha}\right)=0$ and $\pi_{1}(X)=0, \pi_{1}\left(X_{\alpha}\right)=0 \quad(\alpha=1,2)$. Then by the Hurewicz isomorphism theorem, $H_{q}\left(X, X_{2}\right)=0, \pi_{3}\left(X, X_{2}\right) \approx H_{3}\left(X, X_{2}\right)$. From the excision property of $\left(X ; X_{1}, X_{2}\right), H_{2}\left(X_{1}, A\right) \approx H_{2}\left(X, X_{2}\right)=0$. Then, since X_{1} and A are 1-connected, we have $\pi_{2}\left(X_{1}, A\right)=0$ and $\pi_{3}\left(X_{1}, A\right) \approx H_{3}\left(X_{1}, A\right)$. Consequently $\pi_{3}\left(X_{1}, A\right) \approx \pi_{3}\left(X, X_{2}\right)$ (by the isomorphism induced by the inclusion map). Then from the exactness of the homotopy sequence of triad $\left(X ; X_{1}, X_{2}\right)$, it follows that $\pi_{3}\left(X ; X_{1}, X_{2}\right)=0$.

Proof of (2.9). The proof proceeds after the manner of J. C. Moore [2]. By (2.4), (2.6) and (2.7) it may be assumed that X is contractible, hence the following relations 1° and 2° hold [2]:
1°. $\pi_{q}\left(X_{1} \times X_{2}, Z\right) \approx \pi_{q+1}\left(X ; X_{1}, X_{2}\right)$ for all q, where Z is the same set as given in (2.8).
2°. In the following diagram, we have that $j_{1} \mid \operatorname{Ker} \mu$ is an isomorphism of Ker μ with $H_{q}\left(X_{1} \times X_{2}, X_{1} \vee X_{2}\right)$, where j_{1} is injection, μ is the natural homo-
 morphism defined using the projections of $X_{1} \times X_{2}$ on its factors. Now consider the following diagram:

$$
\begin{aligned}
\cdots \rightarrow & H_{q}(Z) / L_{q}{ }^{\prime} \xrightarrow{i^{\prime}} H_{q}\left(X_{1} \times X_{2}\right) / i\left(L_{q}{ }^{\prime}\right) \xrightarrow{j^{\prime}} H_{q}\left(X_{1} \times X_{2}, Z\right) \xrightarrow{\partial^{\prime}} H_{q-1}(Z) / L_{q-1}^{\prime} \rightarrow \cdots \\
& \approx \downarrow \boldsymbol{\tau}^{\prime} \\
& H_{q}(A) / L_{q} \xrightarrow{\varphi} H_{q}\left(X_{1}\right)+H_{q}\left(X_{2}\right)
\end{aligned}
$$

where the upper horizontal sequence is e-exact one given in (2.8), τ^{\prime} and μ^{\prime} are induced by τ and μ (for the definition of τ, see (2.8)), ψ is the map given in (1.7), and commutativity holds in the square.
Since ($X ; X_{1}, X_{2}$) is C-excisive, its generalized Mayer-Vietoris sequence:

$$
\cdots \rightarrow H_{q}(A) / L_{q} \xrightarrow{\varphi} H_{q}\left(X_{1}\right)+H_{q}\left(X_{2}\right) \xrightarrow{\varphi} H_{q}(X) \xrightarrow{\Delta} H_{q-1} / L_{q-1} \rightarrow \cdots
$$

is \mathcal{C}-exact (by (1.8)). Now X is contractible, hence $H_{q}(X)=0$. Then by (1.8), $\operatorname{Ker} \psi=\operatorname{Im} \Delta=0$, i.e., ψ is a monomorphism. Therefore we have $\operatorname{Im} i^{\prime} \cap \operatorname{Ker} \mu^{\prime}=0$, i.e., $\operatorname{Ker} j^{\prime} \cap \operatorname{Ker} \mu^{\prime}=0$, and moreover i^{\prime} is monomorphic. Thus $j^{\prime} \mid \operatorname{Ker} \mu^{\prime}$ is a monomorphism of Ker μ^{\prime} into $H_{q}\left(X_{1} \times X_{2}, Z\right)$. Since $\operatorname{Im} \partial^{\prime} \subset \operatorname{Ker} i^{\prime}=0, H_{q}\left(X_{1} \times X_{2}, Z\right)=\operatorname{Ker} \partial^{\prime}$, hence

$$
H_{q}\left(X_{1} \times X_{2}, Z\right) / j^{\prime}\left(\operatorname{Ker} \mu^{\prime}\right)=\operatorname{Ker} \partial^{\prime} / j^{\prime}\left(\operatorname{Ker} \mu^{\prime}\right)=\operatorname{Ext}\left(\operatorname{Ker} \partial^{\prime} / \operatorname{Im} j^{\prime}, \operatorname{Im} j^{\prime} / j^{\prime}\left(\operatorname{Ker} \mu^{\prime}\right)\right),
$$

where $\operatorname{Ker} \partial^{\prime} / \operatorname{Im} j^{\prime} \in \mathcal{C}$ (by (2.8)). And by (1.1) with $H_{1}=0$,

$$
\frac{H_{q}\left(X_{1} \times X_{2}\right) / i\left(L_{q^{\prime}}\right)}{\operatorname{Im} i^{\prime}+\operatorname{Ker} \mu^{\prime}} \in \mathbb{C},
$$

hence $\operatorname{Im} j^{\prime} / j^{\prime}\left(\operatorname{Ker} \mu^{\prime}\right) \in \mathcal{C}$.
Consequently $H_{q}\left(X_{1} \times X_{2}, Z\right)$ is the \mathbb{e}-isomorphic image of Ker μ^{\prime} by j^{\prime}.
Furthermore, since $i\left(L_{q}{ }^{\prime}\right) \in \mathcal{C}$, $\operatorname{Ker} \mu$ is \mathfrak{C}-isomorphic with $\operatorname{Ker} \mu^{\prime}=\operatorname{Ker} \mu / i\left(L_{q}{ }^{\prime}\right)$.
Combining these results, we find that $H_{q}\left(X_{1} \times X_{2}, Z\right)$ is \mathcal{C}-isomorphic with $H_{q}\left(X_{1} \times X_{2}\right.$, $X_{1} \vee X_{2}$).
Then using the Künneth theorem, we see that $H_{q}\left(X_{1} \times X_{2}, Z\right)$ is e-isomorphic with

$$
\sum_{\substack{r+s=q \\ r, s>0}} H_{r}\left(X_{1}\right) \otimes H_{s}\left(X_{2}\right)+\sum_{r+s=q-1} H_{r}\left(X_{1}\right) * H_{s}\left(X_{2}\right)
$$

for all q. Since the axiom $\left(\mathrm{II}_{\mathrm{B}}\right)$ is equivalent to the axiom (II_{B}) of [5], $H_{r}\left(X_{1}\right) \otimes H_{s}\left(X_{2}\right) \in \mathcal{C}$ for non-zero r and s such that $r+s<m+n-2$, $H_{r}\left(X_{1}\right) * H_{s}\left(X_{2}\right) \in \mathcal{C}$ for all r and s such that $r+s<m+n-2$.
Hence

$$
\begin{aligned}
& H_{q}\left(X_{1} \times X_{2}, Z\right) \in \mathcal{E} \text { for } q<m+n-2, \\
& H_{m+n-2}\left(X_{1} \times X_{2}, Z\right) \text { is } \text { C-isomorphic with } H_{m-1}\left(X_{1}\right) \otimes H_{n-1}\left(X_{2}\right) .
\end{aligned}
$$

Since $\pi_{1}\left(X_{\alpha}\right)=\pi_{2}\left(X, X_{\alpha}\right)=0, X_{\alpha}$ is 1-connected ($\alpha=1,2$), and hence $X_{1} \times X_{2}$ is also. Moreover $\pi_{2}\left(X_{1} \times X_{2}, Z\right) \approx \pi_{3}\left(X ; X_{1}, X_{2}\right)=0$. Then by the relative Hurewicz isomorphism theorem [5],

$$
\begin{gathered}
\pi_{q}\left(X_{1} \times X_{2}, Z\right) \in \mathcal{E} \text { for } q<m+n-2, \\
\pi_{m+n-2}\left(X_{1} \times X_{2}, Z\right) \text { is } \mathcal{C} \text {-isomorphic with } H_{m-1}\left(X_{1}\right) \otimes H_{n-1}\left(X_{2}\right) .
\end{gathered}
$$

This completes the proof of (2.9).
(2.11) Corollary. Let $\bigodot=C\left(I, I_{B}\right.$, III). If $\left(X ; X_{1}, X_{2}\right)$ is a \mathcal{C}-proper triad such that

$$
\begin{aligned}
& X_{1} \cup X_{2} \text { is 1-connected, } \pi_{3}\left(X_{1} \cup X_{2} ; X_{1}, X_{2}\right)=0, \\
& \left(X_{1} \cup X_{2}, X_{1}\right) \text { and }\left(X_{1} \cup X_{2}, X_{2}\right) \text { are 2-connected, } \\
& H_{q}\left(X_{1} \cup X_{2}, X_{1}\right) \in \text { e for } q<m, \quad H_{q}\left(X_{1} \cup X_{2}, X_{2}\right) \in \text { e for } q<n, \\
& \pi_{q}\left(X, X_{1} \cup X_{2}\right) \in \text { e for } q<r,
\end{aligned}
$$

then $\pi_{q}\left(X ; X_{1}, X_{2}\right) \in \mathcal{C}$ for $q<\min (m+n-1, r)$.
Proof. By (2.9), we have that $\pi_{q}\left(X_{1} \cup X_{2} ; X_{1}, X_{2}\right) \in \mathcal{\bigodot}$ for $q<m+n-1$. Therefore by the exactness of the following homotopy sequence of tetrad ($X ; X_{1} \cup X_{2}, X_{1}, X_{2}$):

$$
\begin{gathered}
\cdots \rightarrow \pi_{q}\left(X_{1} \cup X_{2} ; X_{1}, X_{2}\right) \rightarrow \pi_{q}\left(X ; X_{1}, X_{2}\right) \rightarrow \pi_{q}\left(X ; X_{1} \cup X_{2} ; X_{1}, X_{2}\right) \\
\rightarrow \pi_{q-1}\left(X_{1} \cup X_{2} ; X_{1}, X_{2}\right) \rightarrow \cdots,
\end{gathered}
$$

we have that $\pi_{q}\left(X ; X_{1}, X_{2}\right) \rightarrow \pi_{q}\left(X ; X_{1} \cup X_{2}, X_{1}, X_{2}\right)$ is \mathcal{C}-isomorphic for $q<m+n-1$. Since $\pi_{q}\left(X ; X_{1} \cup X_{2}, X_{1}, X_{2}\right) \approx \pi_{q}\left(X, X_{1} \cup X_{2}\right)$ for all q, it follows, from the assumption: $\pi_{q}\left(X, X_{1} \cup X_{2}\right) \in \mathcal{C}$ for $q<r$, that $\pi_{q}\left(X ; X_{1}, X_{2}\right) \in \mathcal{C}$ for $q<\min (m+n-1, r)$.

§3. The Hurewicz isomorphism theorem for triad

The matter of this section has no intimate relations with that of preceding sections. The following theorem is a formal generalization of the relative Hurewicz isomorphism theorem due to J.-P. Serre [5].
(3.1) Theorem. Let $\left(X ; X_{1}, X_{2}\right)$ be a triad such that
X, X_{1}, X_{2} and $X_{1} \cap X_{2}$ are 1-connected, the inclusion maps $\pi_{2}\left(X_{2}\right) \rightarrow \pi_{2}(X)$ and $\pi_{2}\left(X_{1} \cap X_{2}\right) \rightarrow \pi_{2}\left(X_{1}\right)$ are epimorphic, $\pi_{q}\left(X_{1}, X_{1} \cap X_{2}\right) \in \mathcal{C}$ for $q \leqslant n$,
where $\mathfrak{C}=\mathfrak{C}\left(\mathrm{I}, \mathrm{II}_{\mathrm{B}}, \mathrm{III}\right)$. If $\pi_{q}\left(X ; X_{1}, X_{2}\right) \in \mathfrak{C}$ for $q<n$, we have that $H_{q}\left(X ; X_{1}, X_{2}\right) \in \mathfrak{C}$ for $0<q<n$ and the natural map $\omega_{2}: \pi_{q}\left(X ; X_{1}, X_{2}\right) \rightarrow H_{q}\left(X ; X_{1}, X_{2}\right)$ is e -isomorphic for $q=n$ and e-epimorphic for $q=n+1$.

Proof. The Hurewicz isomorphism theorem implies that $H_{q}\left(X_{1}, X_{1} \cap X_{2}\right) \in \mathcal{C}$ for $q \leq n$. Therefore the exactness of the homology sequence of ($X ; X_{1}, X_{2}$) implies that the homomorphism

$$
j_{*}: H_{q}\left(X, X_{2}\right) \rightarrow H_{q}\left(X ; X_{1}, X_{2}\right),
$$

induced by inclusion, is $e^{-i s o m o r p h i c ~ f o r ~} q \leqslant n$ and is e-epimorphic for $q=n+1$. Similarly by the assumptions: $\pi_{q}\left(X_{1}, X_{1} \cap X_{2}\right) \in \mathcal{C}$ for $q \leqslant n$, and by the exactness of the homotopy sequence of ($X ; X_{1}, X_{2}$), we have that

$$
j_{0}: \pi_{q}\left(X, X_{2}\right) \rightarrow \pi_{q}\left(X ; X_{1}, X_{2}\right)
$$

is e -isomorphic for $q \leq n$.
From the hypotheses: $\pi_{q}\left(X ; X_{1}, X_{2}\right) \in \bigodot$ for $q<n$, we have that $\pi_{q}\left(X, X_{2}\right) \in \mathcal{C}$ for $q<n$, and by the application of the Hurewicz isomorphism theorem we see that $H_{q}\left(X, X_{2}\right) \in \mathcal{C}$ for $q<n$ and the natural homomorphism

$$
\omega_{1}: \pi_{q}\left(X, X_{2}\right) \rightarrow H_{q}\left(X, X_{2}\right)
$$

is \bigodot-isomorphic for $q \leq n$ and \bigodot-epimorphic for $q=n+1$.
Consequently $H_{q}\left(X ; X_{1}, X_{2}\right) \in \mathcal{C}$ for $q<n$, and from the following commutative diagrams, where j_{0}, j_{*} and ω_{1} in the left diagram are C-isomorphisms and j_{*} and ω_{1} in the right diagram are \mathcal{C}-epimorphisms, it follows that the natural homomorphism $\omega_{2}: \pi_{q}\left(X ; X_{1}, X_{2}\right) \rightarrow H_{q}\left(X ; X_{1}, X_{2}\right)$ is C-isomorphic for $q=n$ and ©-epimorphic for $q=n+1$.

Thus the proof is complete.
(3.2) Corollary. Let ($X ; X_{1}, X_{2}$) be the triad mentioned in (3.1). If $H_{q}\left(X ; X_{1}\right.$, $\left.X_{2}\right) \in \mathcal{C}=\mathcal{C}\left(I, I_{B}\right.$, III $)$ for $0<q<n$, we have that

$$
\pi_{q}\left(X ; X_{1}, X_{2}\right) \in \mathcal{C} \text { for } 2 \leq q<n
$$

and the natural homomorphism $\omega_{2}: \pi_{q}\left(X ; X_{1}, X_{2}\right) \rightarrow H_{q}\left(X ; X_{1}, X_{2}\right)$ is e-isomorphic for $q=n$ and e-epimorphic for $q=n+1$.

Proof. Since the inclusion map: $\pi_{2}\left(X_{2}\right) \rightarrow \pi_{2}(X)$ is epimorphic and $\pi_{1}\left(X_{2}\right)=0$, $\pi_{2}\left(X, X_{2}\right)=0$. Since $\pi_{1}\left(X_{1}\right)=0, \pi_{1}\left(X_{1}, X_{1} \cap X_{2}\right)=0$. Then by the exactness of the homotopy sequence of ($X ; X_{1}, X_{2}$) we have that $\pi_{2}\left(X ; X_{1}, X_{2}\right)=0 \in \mathrm{e}$.
Our corollary now follows from (3.1).

References

[1] S. Eilenberg and N. Steenrod: Foundations of algebraic topology, Princeton University Press, 1952.
[2] J. C. Moore: Some applications of homology theory to homotopy problems, Ann. of Math. 58 (1953), 325-350.
[3] M. Nakaoka: On a theorem of Eilenberg-MacLane, Journ. Inst. Polyt. Osaka City Univ. 5 (1954), 32-39.
[4] J.-P. Serre: Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.
[5] J.•P. Serre: Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294.

